This repository has been archived by the owner on Jun 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 135
/
utils.py
executable file
·961 lines (789 loc) · 29.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
# coding=utf-8
"""Some util functions/classes."""
import random
import itertools
import math
import threading
import json
import sys
import time
import os
import psutil
import operator
import cv2
#import commands
if sys.version_info > (3, 0):
import subprocess as commands
else:
import commands
import tensorflow as tf
from operator import mul
#from itertools import izip_longest
import itertools
from collections import defaultdict
import numpy as np
import pycocotools.mask as cocomask
# these pycocotools guys will cause
# 'Unable to init server: Could not connect: Connection refused'
# for python 3
# so need this
import matplotlib
matplotlib.use("Agg")
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
#from nn import soft_nms, nms
from generate_anchors import generate_anchors
def valid_box(tlwh, img, min_area=10):
x, y, w, h = tlwh
area = w * h
height, width, _ = img.shape
if x >= 0 and y >= 0 and w >= 0 and h >= 0:
if x <= width and y <= height and x + w <= width and y + h <= height:
if area > min_area:
return True
else:
return False
else:
return False
else:
return False
def warp_points(points, homography):
# h [3x3], points [3xN] -> [3xN]
assert points.shape[0] == 2
N = points.shape[1]
points = np.concatenate([points, np.ones((1, N), dtype="float")], axis=0)
w_x1, w_y1, w_z1 = np.tensordot(homography, points, axes=1)
return np.stack([w_x1/w_z1, w_y1/w_z1], axis=0)
def parse_camera_file(file_path):
if file_path.endswith("json"):
with open(file_path) as f:
data = json.load(f)
k3x3 = np.zeros((3, 3), dtype="float")
k3x3[0, 0] = data["intrinsic"]["intrinsic_matrix"][0]
k3x3[1, 0] = data["intrinsic"]["intrinsic_matrix"][1]
k3x3[2, 0] = data["intrinsic"]["intrinsic_matrix"][2]
k3x3[0, 1] = data["intrinsic"]["intrinsic_matrix"][3]
k3x3[1, 1] = data["intrinsic"]["intrinsic_matrix"][4]
k3x3[2, 1] = data["intrinsic"]["intrinsic_matrix"][5]
k3x3[0, 2] = data["intrinsic"]["intrinsic_matrix"][6]
k3x3[1, 2] = data["intrinsic"]["intrinsic_matrix"][7]
k3x3[2, 2] = data["intrinsic"]["intrinsic_matrix"][8]
rotation = np.identity(3, dtype="float")
rotation[0, 0] = data["extrinsic"][0]
rotation[1, 0] = data["extrinsic"][1]
rotation[2, 0] = data["extrinsic"][2]
rotation[0, 1] = data["extrinsic"][4]
rotation[1, 1] = data["extrinsic"][5]
rotation[2, 1] = data["extrinsic"][6]
rotation[0, 2] = data["extrinsic"][8]
rotation[1, 2] = data["extrinsic"][9]
rotation[2, 2] = data["extrinsic"][10]
translation = np.zeros((3, 1), dtype="float")
translation[0, 0] = data["extrinsic"][12]
translation[1, 0] = data["extrinsic"][13]
translation[2, 0] = data["extrinsic"][14]
return rotation, translation, k3x3
else:
return parse_camera_krtd(file_path)
def parse_camera_krtd(file_path):
k3x3 = np.zeros((3, 3), dtype="float")
rotation = np.identity(3, dtype="float")
translation = np.zeros((3, 1), dtype="float")
with open(file_path) as f:
lines = f.readlines()
k3x3[0, :] = lines[0].strip().split()
k3x3[1, :] = lines[1].strip().split()
k3x3[2, :] = lines[2].strip().split()
rotation[0, :] = lines[4].strip().split()
rotation[1, :] = lines[5].strip().split()
rotation[2, :] = lines[6].strip().split()
translation[0], translation[1], translation[2] = lines[8].strip().split()
return rotation, translation, k3x3
def compute_c1_to_c2_homography(c1_r, c1_t, c1_k, c2_r, c2_t, c2_k):
# https://docs.opencv.org/3.4/d9/dab/tutorial_homography.html
# https://en.wikipedia.org/wiki/Homography_(computer_vision)
normal = np.array([0, 0, 1], dtype="float").reshape((3, 1))
normal1 = np.matmul(c1_r, normal) # 3x1
origin = np.array([0, 0, 0], dtype="float").reshape((3, 1))
origin1 = np.matmul(c1_r, origin) + c1_t # 3x1
d_inv = 1.0 / np.dot(normal1.squeeze(), origin1.squeeze()) # scalar
r_1to2 = np.matmul(c2_r, c1_r.T)
t_1to2 = np.matmul(c2_r, np.matmul(-c1_r.T, c1_t)) + c2_t # 3x1
homography = r_1to2 + d_inv * np.matmul(t_1to2, normal1.T) # 3x3
homography = np.matmul(c2_k, np.matmul(homography, np.linalg.inv(c1_k)))
# normalize so that last element is 1
homography = homography / homography[2, 2]
return homography # 3x3
def tlwh_intersection(tlwh1, tlwh2):
# compute intersection area / area of tlwh2
box1_left, box1_top, box1_w, box1_h = tlwh1
box2_left, box2_top, box2_w, box2_h = tlwh2
box1_bottom, box1_right = box1_left + box1_w, box1_top + box1_h
box2_bottom, box2_right = box2_left + box2_w, box2_top + box2_h
tlwh2_area = box2_w * box2_h
tlbr1 = [box1_left, box1_top, box1_bottom, box1_right]
tlbr2 = [box2_left, box2_top, box2_bottom, box2_right]
xx1 = np.maximum(tlbr1[0], tlbr2[0])
yy1 = np.maximum(tlbr1[1], tlbr2[1])
xx2 = np.minimum(tlbr1[2], tlbr2[2])
yy2 = np.minimum(tlbr1[3], tlbr2[3])
w = np.maximum(0, xx2 - xx1)
h = np.maximum(0, yy2 - yy1)
return (w * h) / tlwh2_area
def expand_tlwh(tlwh, w_p=0.1, h_p=0.1):
# expand tlwh box by width portion (0.1) and height
left, top, width, height = tlwh
expanded_width = width * (1. + w_p)
expanded_height = height * (1. + h_p)
new_left = left - width * w_p * 0.5
new_top = top - height * h_p * 0.5
return [new_left, new_top, expanded_width, expanded_height]
def parse_meva_clip_name(clip_name):
# assuming no appendix
date, start_time, end_time, location, camera = clip_name.split(".")
return date, end_time.split("-")[0], camera
class Summary():
def __init__(self):
self.lines = []
def add(self, string, print_it=True):
if print_it:
print(string)
self.lines.append(string)
def writeTo(self, path):
with open(path, "w") as f:
f.writelines("%s" % ("\n".join(self.lines)))
def grouper(l, n, fillvalue=None):
# given a list and n(batch_size), devide list into n sized chunks
# last one will fill None
args = [iter(l)]*n
if sys.version_info > (3, 0):
out = itertools.zip_longest(*args, fillvalue=None)
else:
out = itertools.izip_longest(*args, fillvalue=None)
out = list(out)
return out
# simple FIFO class for moving average computation
class FIFO_ME:
def __init__(self, N):
self.N = N
self.lst = []
assert N > 0
def put(self, val):
if val is None:
return None
self.lst.append(val)
if len(self.lst) > self.N:
self.lst.pop(0)
return 1
def me(self):
if not self.lst:
return None
return np.mean(self.lst)
# return the gpu utilization at the moment. float between 0~1.0
# tested for nvidia 384.90
# gpuid_range is a tuple of (gpu_startid, gpu_num)
def parse_nvidia_smi(gpuid_range):
nvi_out = commands.getoutput("nvidia-smi")
# ['| 0% 41C P8 9W / 180W | 26MiB / 8117MiB | 0% Default |']
gpu_info_blocks = get_gpu_info_block(nvi_out)
gpu_info_blocks = gpu_info_blocks[gpuid_range[0]:(gpuid_range[0] + gpuid_range[1])]
# num_gpu = len(gpu_info_blocks) # the ones we care
# all are a list of
temps = [float(info_block.strip().strip("|").split()[1].strip("C"))
for info_block in gpu_info_blocks]
utilizations = [float(
info_block.strip().strip("|").split()[-2].strip("%")) / 100.0
for info_block in gpu_info_blocks]
# in mb
memories = [float(
info_block.strip().strip("|").split()[-6].strip(" MiB"))
for info_block in gpu_info_blocks]
return temps, utilizations, memories
class PerformanceLogger(object):
def __init__(self, gpu_ids, interval=10.):
self.gpu_ids = gpu_ids
self.interval = interval # in seconds
self.logs = {
"cpu_utilization": [],
"gpu_utilization": [],
"gpu_temperature": [],
"gpu_memory": [],
"ram_used": [],
"timing": [],
}
self.mb = 1024 * 1024.
# can use process since we need shared memory for the logs
self.performance_check_thread = threading.Thread(
target=self.log_util_fn)
self.performance_check_thread.daemon = True
def log_util_fn(self):
while True:
time.sleep(self.interval)
self.logs["timing"].append(time.time())
gpu_temps, gpu_utils, gpu_mems = parse_nvidia_smi(self.gpu_ids)
# https://psutil.readthedocs.io/en/latest/#psutil.cpu_percent
cpu_percent = psutil.cpu_percent(interval=0.1, percpu=False) # already %
ram_used = psutil.virtual_memory().used / self.mb # in MB
# save the average of this instant
self.logs["gpu_utilization"].append(np.mean(gpu_utils) * 100.)
self.logs["gpu_temperature"].append(np.mean(gpu_temps))
self.logs["gpu_memory"].append(np.mean(gpu_mems))
self.logs["cpu_utilization"].append(cpu_percent)
self.logs["ram_used"].append(ram_used)
def start(self):
self.performance_check_thread.start()
def end(self):
self.performance_check_thread.join(0)
def get_gpu_info_block(nvi_out):
nvi_out = nvi_out.split("\n")
start_idx = -1
end_idx = -1
for i, line in enumerate(nvi_out):
if line.startswith("|====="):
start_idx = i + 1
break
for i, line in enumerate(nvi_out):
if line.startswith(" "):
end_idx = i
break
assert (start_idx >= 0) and (end_idx >= 0), nvi_out
# each gpu contains two line
gpu_info_blocks = []
for i in range(start_idx, end_idx, 4):
# nvi_out[i]:"| 0 GeForce GTX TIT... Off | 00000000:01:00.0 Off |
# N/A |"
# nvi_out[i+1]: "| 47% 81C P2 87W / 250W | 10547MiB / 12205MiB |
# 0% Default |"
gpu_info_blocks.append(nvi_out[i+1])
return gpu_info_blocks
def nms_wrapper(final_boxes, final_probs, config):
# in this mode,
# final_boxes would be [num_class-1, num_prop, 4]
# final_probs would be [num_class-1, num_prop]
# 1. make one dets matrix
# [num_class-1, num_prop, 5]
dets = np.concatenate([final_boxes, np.expand_dims(final_probs, axis=-1)],
axis=-1)
final_boxes, final_probs, final_labels = [], [], []
for c in range(dets.shape[0]): # 0- num_class-1
this_dets = dets[c]
# hard limit of confident score
select_ids = this_dets[:, -1] > config.result_score_thres
this_dets = this_dets[select_ids, :]
classid = c + 1 # first one is BG
# 2. nms, get [K, 5]
#if config.use_soft_nms:
# keep = soft_nms(this_dets)
#else:
keep = nms(this_dets, config.fastrcnn_nms_iou_thres)
this_dets = this_dets[keep, :]
# sort the output and keep only k for each class
boxes = this_dets[:, :4] # [K,4]
probs = this_dets[:, 4] # [K]
final_boxes.extend(boxes)
final_probs.extend(probs)
final_labels.extend([classid for i in range(len(probs))])
# they could be empty, for empty scenes when filtered using result_score_thres
if not final_boxes:
return [], [], []
final_boxes_all = np.array(final_boxes, dtype="float")
final_probs_all = np.array(final_probs)
final_labels_all = np.array(final_labels)
# keep max result across all class
ranks = np.argsort(final_probs)[::-1]
final_boxes = final_boxes_all[ranks, :][:config.result_per_im]
final_probs = final_probs_all[ranks][:config.result_per_im]
final_labels = final_labels_all[ranks][:config.result_per_im]
return final_boxes, final_labels, final_probs
class Dataset():
# data should be
"""
data = {"imgs":[],"ids":[],"gt":[]}
"""
def __init__(self, data, add_gt=False, valid_idxs=None):
self.data = data
self.add_gt = add_gt
self.valid_idxs = range(len(next(iter(self.data.values())))) \
if valid_idxs is None else valid_idxs
self.num_examples = len(self.valid_idxs) # get one var "x" and get the len
def get_by_idxs(self, idxs):
out = defaultdict(list) # so the initial value is a list
for key, val in self.data.items():
out[key].extend(val[idx] for idx in idxs) # extend with one whole list
return out
# retrun num_batchs , each batch is batch_size.
# if cap, will make sure the total sample used <= dataset size
def get_batches(self, batch_size, num_batches, shuffle=True, cap=False):
num_batches_per_epoch = int(
math.ceil(self.num_examples / float(batch_size)))
if cap and (num_batches > num_batches_per_epoch):
num_batches = num_batches_per_epoch
# this may be zero
num_epochs = int(math.ceil(num_batches/float(num_batches_per_epoch)))
# shuflle
if shuffle:
# this is the list of shuffled all idxs
random_idxs = random.sample(self.valid_idxs, len(self.valid_idxs))
# all batch idxs for one epoch
random_grouped = lambda: list(grouper(random_idxs, batch_size))
grouped = random_grouped
else:
raw_grouped = lambda: list(grouper(self.valid_idxs, batch_size))
grouped = raw_grouped
# all batches idxs from multiple epochs
batch_idxs_iter = itertools.chain.from_iterable(
grouped() for _ in range(num_epochs))
# so how all the epoch is order is fixed here
for _ in range(num_batches):
# so in the end batch, the None will not included
batch_idxs = tuple(i for i in next(batch_idxs_iter) if i is not None)
# a dict of {"x":[],"y":[],"ids":[]...}
# batch_idxs could be str?
#batch_data = self.get_by_idxs(batch_idxs)
#yield batch_idxs,Dataset(batch_data) # make a new Dataset object
# will continue next time it is called, i.e., in the next loop
# modififiled for multi gpu setting, each image has one Dataset Object
batch_datas = [self.get_by_idxs([idx]) for idx in batch_idxs]
#print(batch_idxs
#print(batch_datas
yield batch_idxs, [Dataset(batch_data) for batch_data in batch_datas]
# helper function for eval
def gather_dt(boxes, probs, labels, eval_target, targetid2class, tococo=False,
coco_class_names=None):
target_dt_boxes = {one:[] for one in eval_target.keys()}
for box, prob, label in zip(boxes, probs, labels):
# coco box
box[2] -= box[0]
box[3] -= box[1]
assert label > 0
if tococo:
cat_name = coco_class_names[label]
else:
# diva class trained from scratch
cat_name = targetid2class[label]
target_class = None
if tococo:
for t in eval_target:
if cat_name in eval_target[t]:
target_class = t
else:
if cat_name in eval_target:
target_class = cat_name
if target_class is None: # box from other class of mscoco/diva
continue
prob = float(round(prob, 4))
#box = list(map(lambda x:float(round(x, 2)),box))
box = [float(round(x, 2)) for x in box]
target_dt_boxes[target_class].append((box, prob))
return target_dt_boxes
def aggregate_eval(e, maxDet=100):
aps = {}
ars = {}
for catId in e:
e_c = e[catId]
# put all detection scores from all image together
dscores = np.concatenate([e_c[imageid]["dscores"][:maxDet]
for imageid in e_c])
# sort
inds = np.argsort(-dscores, kind="mergesort")
# dscores_sorted = dscores[inds]
# put all detection annotation together based on the score sorting
dm = np.concatenate([e_c[imageid]["dm"][:maxDet] for imageid in e_c])[inds]
num_gt = np.sum([e_c[imageid]["gt_num"] for imageid in e_c])
# here the average precision should also put the unmatched ground truth
#as detection box with lowest score
#aps[catId] = computeAP(dm)
aps[catId] = computeAP_v2(dm, num_gt)
ars[catId] = computeAR_2(dm, num_gt)
return aps, ars
def weighted_average(aps, ars, eval_target_weight=None):
if eval_target_weight is not None:
average_ap = sum([aps[class_]*eval_target_weight[class_] for class_ in aps])
average_ar = sum([ars[class_]*eval_target_weight[class_] for class_ in ars])
else:
average_ap = sum(aps.values())/float(len(aps))
average_ar = sum(ars.values())/float(len(ars))
return average_ap, average_ar
def gather_gt(anno_boxes, anno_labels, eval_target, targetid2class):
gt_boxes = {one:[] for one in eval_target.keys()}
for box, label in zip(anno_boxes, anno_labels):
label = targetid2class[label]
if label in eval_target:
#gt_box = list(map(lambda x:float(round(x,1)),box))
gt_box = [float(round(x, 1)) for x in box]
# gt_box is in (x1,y1,x2,y2)
# convert to coco box
gt_box[2] -= gt_box[0]
gt_box[3] -= gt_box[1]
gt_boxes[label].append(gt_box)
return gt_boxes
# change e in place
def match_dt_gt(e, imgid, target_dt_boxes, gt_boxes, eval_target):
for target_class in eval_target.keys():
#if len(gt_boxes[target_class]) == 0:
# continue
target_dt_boxes[target_class].sort(key=operator.itemgetter(1), reverse=True)
d = [box for box, prob in target_dt_boxes[target_class]]
dscores = [prob for box, prob in target_dt_boxes[target_class]]
g = gt_boxes[target_class]
# len(D), len(G)
dm, gm = match_detection(d, g, cocomask.iou(
d, g, [0 for _ in range(len(g))]), iou_thres=0.5)
e[target_class][imgid] = {
"dscores": dscores,
"dm": dm,
"gt_num": len(g)}
# for activity boxes
def gather_act_singles(actsingleboxes, actsinglelabels, topk):
single_act_boxes = []
single_act_labels = []
single_act_probs = []
# [K,num_act_class]
# descending order
sorted_prob_single = np.argsort(actsinglelabels, axis=-1)[:, ::-1]
BG_ids = sorted_prob_single[:, 0] == 0 # [K] of bool
for j in range(len(actsinglelabels)):
if BG_ids[j]:
continue
labelIds = [sorted_prob_single[j, k] for k in range(topk)]
# ignore BG class # or ignore everything after BG class?
this_labels = [lid for lid in labelIds if lid != 0]
this_probs = [actsinglelabels[j, lid] for lid in this_labels]
this_boxes = [actsingleboxes[j] for _ in range(len(this_labels))]
single_act_probs.extend(this_probs)
single_act_labels.extend(this_labels)
single_act_boxes.extend(this_boxes)
return single_act_boxes, single_act_labels, single_act_probs
def match_detection(d, g, ious, iou_thres=0.5):
D = len(d)
G = len(g)
# < 0 to note it is not matched, once matched will be the index of the d
gtm = -np.ones((G)) # whether a gt box is matched
dtm = -np.ones((D))
# for each detection bounding box (ranked), will get the best IoU
# matched ground truth box
for didx, _ in enumerate(d):
iou = iou_thres # the matched iou
m = -1 # used to remember the matched gidx
for gidx, _ in enumerate(g):
# if this gt box is matched
if gtm[gidx] >= 0:
continue
# the di,gi pair doesn"t have the required iou
# or not better than before
if ious[didx, gidx] < iou:
continue
# got one
iou = ious[didx, gidx]
m = gidx
if m == -1:
continue
gtm[m] = didx
dtm[didx] = m
return dtm, gtm
def get_all_anchors(stride, sizes, ratios, max_size):
"""
Get all anchors in the largest possible image, shifted, floatbox
Returns:
anchors: SxSxNUM_ANCHORx4, where S == MAX_SIZE//STRIDE, floatbox
The layout in the NUM_ANCHOR dim is NUM_RATIO x NUM_SCALE.
"""
# Generates a NAx4 matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors
# are centered on stride / 2, have (approximate) sqrt areas of the specified
# sizes, and aspect ratios as given.
# got all anchor start from center (8,8) [so the base box is (0,0,15,15)]
# -> ratios * scales
cell_anchors = generate_anchors(
stride, scales=np.array(sizes, dtype=np.float) / stride,
ratios=np.array(ratios, dtype=np.float))
# anchors are intbox here.
# anchors at featuremap [0,0] are centered at fpcoor (8,8) (half of stride)
# 1920/16 -> 120
# previous tensorpack code
#field_size = max_size // stride # how many anchor position in an image
# at one axis
field_size = int(np.ceil(max_size / stride))
# 0, 120, ...., 1920
# 120*120 (x,y)
shifts = np.arange(0, field_size) * stride # each position"s (x,y)
shift_x, shift_y = np.meshgrid(shifts, shifts)
shift_x = shift_x.flatten()
shift_y = shift_y.flatten()
# for 1920 , will be (120x120,4) # all the anchor boxes xy
# all anchor position xy, so should be [51x51, 4]
shifts = np.vstack((shift_x, shift_y, shift_x, shift_y)).transpose()
# Kx4, K = field_size * field_size
K = shifts.shape[0] # 1920 gets 120x120
A = cell_anchors.shape[0] # number of anchor at 1 position
field_of_anchors = (
cell_anchors.reshape((1, A, 4)) +
shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
field_of_anchors = field_of_anchors.reshape((field_size, field_size, A, 4))
# FSxFSxAx4
# Many rounding happens inside the anchor code anyway
#assert np.all(field_of_anchors == field_of_anchors.astype("int32")),
#(field_of_anchors,field_of_anchors.astype("int32"))
# 1920 -> (120,120,NA,4)
field_of_anchors = field_of_anchors.astype("float32")
# the last 4 is (x1,y1,x2,y2)
# (x1,y1+1,x2+1,y2)??
field_of_anchors[:, :, :, [2, 3]] += 1
return field_of_anchors
# flatten a tensor
# [N,M,JI,JXP,dim] -> [N*M*JI,JXP,dim]
# keep how many dimension in the end, so final rank is keep + 1
def flatten(tensor, keep):
# get the shape
fixed_shape = tensor.get_shape().as_list() #[N, JQ, di] # [N, M, JX, di]
# len([N, JQ, di]) - 2 = 1 # len([N, M, JX, di] ) - 2 = 2
start = len(fixed_shape) - keep
# each num in the [] will a*b*c*d...
# so [0] -> just N here for left
# for [N, M, JX, di] , left is N*M
left = reduce(mul, [fixed_shape[i] or tf.shape(tensor)[i]
for i in range(start)])
# [N, JQ,di]
# [N*M, JX, di]
out_shape = [left] + [fixed_shape[i] or tf.shape(tensor)[i]
for i in range(start, len(fixed_shape))]
# reshape
flat = tf.reshape(tensor, out_shape)
return flat
def evalcoco(res, annofile, add_mask=False):
coco = COCO(annofile)
cocoDt = coco.loadRes(res)
cocoEval = COCOeval(coco, cocoDt, "bbox")
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
if add_mask:
cocoEval = COCOeval(coco, cocoDt, "segm")
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
#给定秒数,换成 H M S
def sec2time(secs):
#return strftime("%H:%M:%S",time.gmtime(secs)) # doesnt support millisec """
m, s = divmod(secs, 60)
#print(m,s
h, m = divmod(m, 60)
if s >= 10.0:
return "%02d:%02d:%.3f"%(h, m, s)
else:
return "%02d:%02d:0%.3f"%(h, m, s)
def get_op_tensor_name(name):
"""
Will automatically determine if ``name`` is a tensor name (ends with ":x")
or a op name.
If it is an op name, the corresponding tensor name is assumed to be
``op_name + ":0"``.
Args:
name(str): name of an op or a tensor
Returns:
tuple: (op_name, tensor_name)
"""
if len(name) >= 3 and name[-2] == ":":
return name[:-2], name
else:
return name, name + ":0"
# from tensorpack
def draw_boxes(im, boxes, labels=None, colors=None):
"""
Args:
im (np.ndarray): a BGR image in range [0,255]. It will not be modified.
boxes (np.ndarray or list[BoxBase]): If an ndarray,
must be of shape Nx4 where the second dimension is [x1, y1, x2, y2].
labels: (list[str] or None)
color: a 3-tuple (in range [0, 255]). By default will choose automatically.
Returns:
np.ndarray: a new image.
"""
FONT = cv2.FONT_HERSHEY_SIMPLEX
FONT_SCALE = 0.4
if isinstance(boxes, list):
arr = np.zeros((len(boxes), 4), dtype="int32")
for idx, b in enumerate(boxes):
assert isinstance(b, BoxBase), b
arr[idx, :] = [int(b.x1), int(b.y1), int(b.x2), int(b.y2)]
boxes = arr
else:
boxes = boxes.astype("int32")
if labels is not None:
assert len(labels) == len(boxes), "{} != {}".format(len(labels), len(boxes))
areas = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)
sorted_inds = np.argsort(-areas) # draw large ones first
assert areas.min() > 0, areas.min()
# allow equal, because we are not very strict about rounding error here
assert boxes[:, 0].min() >= 0 and boxes[:, 1].min() >= 0 \
and boxes[:, 2].max() <= im.shape[1] and boxes[:, 3].max() <= im.shape[0], \
"Image shape: {}\n Boxes:\n{}".format(str(im.shape), str(boxes))
im = im.copy()
COLOR_DIFF_WEIGHT = np.asarray((3, 4, 2), dtype="int32")
COLOR_CANDIDATES = PALETTE_RGB[:, ::-1]
if im.ndim == 2 or (im.ndim == 3 and im.shape[2] == 1):
im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
for i in sorted_inds:
box = boxes[i, :]
best_color = colors[i] if colors is not None else (255, 0, 0)
if labels is not None:
label = labels[i]
# find the best placement for the text
((linew, lineh), _) = cv2.getTextSize(label, FONT, FONT_SCALE, 1)
bottom_left = [box[0] + 1, box[1] - 0.3 * lineh]
top_left = [box[0] + 1, box[1] - 1.3 * lineh]
if top_left[1] < 0: # out of image
top_left[1] = box[3] - 1.3 * lineh
bottom_left[1] = box[3] - 0.3 * lineh
textbox = IntBox(int(top_left[0]), int(top_left[1]),
int(top_left[0] + linew), int(top_left[1] + lineh))
textbox.clip_by_shape(im.shape[:2])
cv2.putText(im, label, (textbox.x1, textbox.y2),
FONT, FONT_SCALE, color=best_color)#, lineType=cv2.LINE_AA)
cv2.rectangle(im, (box[0], box[1]), (box[2], box[3]),
color=best_color, thickness=1)
return im
# a lists of floats, if < 0 means false positive, otherwise true positive
# assume lists is sorted
def computeAP(lists):
#相关的总数
rels = 0
#当前排名
rank = 0
#AP 分数
score = 0.0
for one in lists:
rank += 1
#是相关的
if one >= 0:
rels += 1
score += rels / float(rank)
if rels != 0:
score /= float(rels)
return score
def computeAP_v2(lists, total_gt):
#相关的总数
rels = 0
#当前排名
rank = 0
#AP 分数
score = 0.0
for one in lists:
rank += 1
#是相关的
if one >= 0:
rels += 1
score += rels / float(rank)
if total_gt != 0:
score /= float(total_gt)
return score
# given a fixed number (recall_k) of detection,
# assume d is sorted, and each d should be < 0
# if false positive, true positive d[i] == gidx
def computeAR(d, g, recall_k):
TrueDetections = len([one for one in d[:recall_k] if one >= 0])
num_gt = len(g)
if len(g) > recall_k:
num_gt = recall_k
if not g:
return 1.0
else:
return TrueDetections/float(num_gt)
def computeAR_2(d, num_gt):
true_positives = len([one for one in d if one >= 0])
if num_gt == 0:
return 1.0
else:
return true_positives/float(num_gt)
PALETTE_HEX = [
"#000000", "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6",
"#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF",
"#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53",
"#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA",
"#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349",
"#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99",
"#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1",
"#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED",
"#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F",
"#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1",
"#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF",
"#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465",
"#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72",
"#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66",
"#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200",
"#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#A30059",
"#997D87", "#FF2F80", "#D16100", "#00846F", "#001E09", "#788D66", "#886F4C",
"#938A81", "#1E6E00", "#9B9700", "#922329", "#6A3A4C", "#222800", "#5B4E51",
"#7ED379", "#012C58"]
def _parse_hex_color(s):
r = int(s[1:3], 16)
g = int(s[3:5], 16)
b = int(s[5:7], 16)
return (r, g, b)
PALETTE_RGB = np.asarray(
list(map(_parse_hex_color, PALETTE_HEX)),
dtype="int32")
# conver from COCO format (x,y,w,h) to (x1,y1,x2,y2)
def box_wh_to_x1x2(box):
return [box[0], box[1], box[0]+box[2], box[1]+box[3]]
class BoxBase(object):
__slots__ = ["x1", "y1", "x2", "y2"]
def __init__(self, x1, y1, x2, y2):
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
def copy(self):
new = type(self)()
for i in self.__slots__:
setattr(new, i, getattr(self, i))
return new
def __str__(self):
return "{}(x1={}, y1={}, x2={}, y2={})".format(
type(self).__name__, self.x1, self.y1, self.x2, self.y2)
__repr__ = __str__
def area(self):
return self.w * self.h
def is_box(self):
return self.w > 0 and self.h > 0
class IntBox(BoxBase):
def __init__(self, x1, y1, x2, y2):
for k in [x1, y1, x2, y2]:
assert isinstance(k, int)
super(IntBox, self).__init__(x1, y1, x2, y2)
@property
def w(self):
return self.x2 - self.x1 + 1
@property
def h(self):
return self.y2 - self.y1 + 1
def is_valid_box(self, shape):
"""
Check that this rect is a valid bounding box within this shape.
Args:
shape: int [h, w] or None.
Returns:
bool
"""
if min(self.x1, self.y1) < 0:
return False
if min(self.w, self.h) <= 0:
return False
if self.x2 >= shape[1]:
return False
if self.y2 >= shape[0]:
return False
return True
def clip_by_shape(self, shape):
"""
Clip xs and ys to be valid coordinates inside shape
Args:
shape: int [h, w] or None.
"""
self.x1 = np.clip(self.x1, 0, shape[1] - 1)
self.x2 = np.clip(self.x2, 0, shape[1] - 1)
self.y1 = np.clip(self.y1, 0, shape[0] - 1)
self.y2 = np.clip(self.y2, 0, shape[0] - 1)
def roi(self, img):
assert self.is_valid_box(img.shape[:2]), \
"{} vs {}".format(self, img.shape[:2])
return img[self.y1:self.y2 + 1, self.x1:self.x2 + 1]