This repository has been archived by the owner on Jun 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 135
/
vis_tracks.py
219 lines (178 loc) · 7.16 KB
/
vis_tracks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# coding=utf-8
# given MOT track file path, visualize into videos
import argparse
import cv2
import random
import os
import sys
from tqdm import tqdm
from glob import glob
import numpy as np
import matplotlib.colors as mcolors # to get a list of colors
parser = argparse.ArgumentParser()
parser.add_argument("track_path")
parser.add_argument("frame_path")
parser.add_argument("video_name_lst")
parser.add_argument("out_path")
parser.add_argument("--show_only_global", action="store_true")
def hex_color_to_rgb(s):
r = int(s[1:3], 16)
g = int(s[3:5], 16)
b = int(s[5:7], 16)
return (r, g, b) # (0-255)
def load_track_file(file_path, cat_names):
track_data = {} # frame_id -> {cat_name: }
video_name = os.path.splitext(os.path.basename(file_path))[0]
for cat_name in cat_names:
track_file_path = os.path.join(file_path, cat_name, video_name + ".txt")
data = []
with open(track_file_path, "r") as f:
for line in f:
frame_idx, track_id, left, top, width, height, conf, gid, _, _ = line.strip().split(",")
data.append([frame_idx, track_id, left, top, width, height, conf, gid])
data = np.array(data, dtype="float32") # [N, 8]
frame_ids = np.unique(data[:, 0]).tolist()
for frame_id in frame_ids:
if frame_id not in track_data:
track_data[frame_id] = {}
track_data[frame_id][cat_name] = data[data[:, 0] == frame_id, :]
return track_data
def get_or_create_color_from_dict(key, color_dict, color_list):
if key not in color_dict:
this_color = color_list.pop()
color_dict[key] = hex_color_to_rgb(color_name_to_hex[this_color])
# recycle it
color_list.insert(0, this_color)
color = color_assign[key]
return color
def draw_boxes(im, boxes, labels=None, colors=None, font_scale=0.6,
font_thick=1, box_thick=1, bottom_text=False, offsets=None):
if not boxes:
return im
boxes = np.asarray(boxes, dtype="int")
FONT = cv2.FONT_HERSHEY_SIMPLEX
FONT_SCALE = font_scale
if labels is not None:
assert len(labels) == len(boxes), "{} != {}".format(len(labels), len(boxes))
if colors is not None:
assert len(labels) == len(colors)
areas = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)
sorted_inds = np.argsort(-areas) # draw large ones first
assert areas.min() > 0, areas.min()
im = im.copy()
for i in sorted_inds:
box = boxes[i, :]
if box[0] < 0 or box[1] < 0 or box[2] < 0 or box[3] < 0:
continue
color = (218, 218, 218)
if colors is not None:
color = colors[i]
best_color = color
lineh = 2 # for box enlarging, replace with text height if there is label
if labels is not None:
label = labels[i]
# find the best placement for the text
((linew, lineh), _) = cv2.getTextSize(label, FONT, FONT_SCALE, font_thick)
bottom_left = [box[0] + 1, box[1] - 0.3 * lineh]
top_left = [box[0] + 1, box[1] - 1.3 * lineh]
if top_left[1] < 0: # out of image
top_left[1] = box[3] - 1.3 * lineh
bottom_left[1] = box[3] - 0.3 * lineh
textbox = [int(top_left[0]), int(top_left[1]),
int(top_left[0] + linew), int(top_left[1] + lineh)]
#textbox.clip_by_shape(im.shape[:2])
offset = 0
if offsets is not None:
offset = lineh * offsets[i]
if bottom_text:
cv2.putText(im, label, (box[0] + 2, box[3] - 4 + offset),
FONT, FONT_SCALE, color=best_color, thickness=font_thick)
else:
cv2.putText(im, label, (textbox[0], textbox[3] - offset),
FONT, FONT_SCALE, color=best_color, thickness=font_thick)
# expand the box on y axis for overlapping results
offset = 0
if offsets is not None:
offset = lineh * offsets[i]
box[0] -= box_thick * offsets[i] + 1
box[2] += box_thick * offsets[i] + 1
if bottom_text:
box[1] -= box_thick * offsets[i] + 1
box[3] += offset
else:
box[3] += box_thick * offsets[i] + 1
box[1] -= offset
cv2.rectangle(im, (box[0], box[1]), (box[2], box[3]),
color=best_color, thickness=box_thick)
return im
color_name_to_hex = mcolors.CSS4_COLORS.copy() # {'whitesmoke': '#F5F5F5', ...}
if __name__ == "__main__":
args = parser.parse_args()
color_name_list = sorted(list(color_name_to_hex.keys()))[:]
random.seed(69)
random.shuffle(color_name_list)
color_assign = {} # global track id, obj -> name
if not os.path.exists(args.out_path):
os.makedirs(args.out_path)
video_names = [os.path.basename(line.strip()) # with .avi
for line in open(args.video_name_lst, "r").readlines()]
for video_name in tqdm(video_names):
video_name_no_appendix = os.path.splitext(video_name)[0]
frames = glob(os.path.join(args.frame_path, video_name_no_appendix, "*.jpg"))
frames.sort()
# frame_id -> {cat_name: ..}
track_data = load_track_file(
os.path.join(args.track_path, video_name),
["Person", "Vehicle"])
target_file = os.path.join(args.out_path, "%s.mp4" % video_name_no_appendix)
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
fps = 30.0
video_writer = cv2.VideoWriter(target_file, fourcc, fps, (1920, 1080), True)
count_global_ids = {}
for frame in frames:
filename = os.path.splitext(os.path.basename(frame))[0]
frame_id = int(filename.split("_F_")[-1])
boxes = []
labels = []
box_colors = []
if frame_id in track_data:
this_track_data = track_data[frame_id]
for cat_name in this_track_data:
for box_data in this_track_data[cat_name]: # [N, 8]
# get color and label
local_track_id = box_data[1]
global_track_id = box_data[7]
if global_track_id != -1:
color_key = (global_track_id, cat_name)
count_global_ids[color_key] = 1
track_id = "g%s" % global_track_id
else:
if args.show_only_global:
continue
color_key = (video_name, local_track_id, cat_name)
track_id = local_track_id
color = get_or_create_color_from_dict(
color_key, color_assign, color_name_list)
box_colors.append(color)
conf = box_data[6]
conf_str = ""
if conf != 1.:
conf_str = "%.2f" % conf
labels.append("%s #%s %s"%(cat_name, track_id, conf_str))
tlwh = box_data[2:6]
tlbr = [tlwh[0], tlwh[1], tlwh[0] + tlwh[2], tlwh[1] + tlwh[3]]
boxes.append(tlbr)
new_im = cv2.imread(frame, cv2.IMREAD_COLOR)
new_im = draw_boxes(new_im, boxes, labels, box_colors, font_scale=0.8,
font_thick=2, box_thick=2, bottom_text=False)
# write the frame idx
new_im = cv2.putText(new_im, "# %d" % frame_id,
(0, 20), cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 255, 0), 2)
# the frames might not be 1920x1080
new_im = cv2.resize(new_im, (1920, 1080))
video_writer.write(new_im)
video_writer.release()
tqdm.write("%s has %s global tracks:%s" % (
video_name, len(count_global_ids), count_global_ids.keys()))
cv2.destroyAllWindows()