Skip to content

Latest commit

 

History

History
172 lines (146 loc) · 8.39 KB

README.md

File metadata and controls

172 lines (146 loc) · 8.39 KB

Prepare Rich Visual Features

These steps will allow you to generate the prepared data in the format as here and to conduct experiments starting from raw ActEV videos.

Dependencies

Tested on TF 1.10. We will also need to use other repos: this and this.

Step 1. Get the videos

First, download all videos from the official website and put all videos into a folder named actev_all_videos. There should be 119 mp4 videos under this folder. Example:

# All the commands below assumes to be under prepare_data/ folder.
$ cd code/prepare_data/

# Get the data split lists.
$ wget https://precognition.team/next/data/072019_prepare_data/data_splits.tgz
$ tar -zxvf data_splits.tgz

# Extract video frames using opencv. Note all frames will be resized to 1920x1080
$ python step1_get_frames.py actev_all_videos/ actev_all_video_frames \
--resize --size 1080 --maxsize 1920

Step 2. Get object/trajectory/activity ground truth labels

# Download the original ActEV labels. Please do get permission from the official website
$ wget https://precognition.team/next/data/actev-v1-drop4-yaml.tgz
$ tar -zxvf actev-v1-drop4-yaml.tgz
$ mkdir actev_all_annotations/
$ find actev-v1-drop4-yaml/ -name "*.yml" | while read line;do \
mv $line actev_all_annotations/; done

# Pack the ground truth tracks into a file for each video. Note here we rescale
# all bounding box to be under 1920x1080 scale.
# For real-world system, you could replace this part with outputs from
# a object detection & tracking system.
$ python step2_object_act_annotations.py data_splits/all.lst \
actev_all_annotations/ actev_all_obj-track-act

Step 3. Get scene semantic segmentation features [ADE20K pre-trained model]

# Download the Deeplabv3 pre-trained model: deeplabv3_xception_ade20k_train
# Official website: https://github.com/tensorflow/models/tree/master/research/deeplab
$ wget https://precognition.team/next/data/072019_prepare_data/deeplabv3_xception_ade20k_train.pb

# Get an ordered list of frames.
$ find $PWD/actev_all_video_frames/ -name "*.jpg" -print0 |sort -z| \
xargs -r0 echo|sed 's/ /\n/g'  > actev_all_video_frames.ordered.lst

# We skip some frames and downsize the features.
$ python step3_scene_semantics.py actev_all_video_frames.ordered.lst \
deeplabv3_xception_ade20k_train.pb actev_all_video_frames_scene_seg_every30_36x64 \
--every 30 --down_rate 8.0

Here is a visualization of the output.

Step 4. Generate trajectory data and all the runtime annotations

$ python step4_generate_traj.py actev_all_obj-track-act/ data_splits/ traj_2.5fps \
--drop_frame 12 --scene_feat_path actev_all_video_frames_scene_seg_every30_36x64/ \
--scene_map_path anno_scene --person_box_path anno_person_box --other_box_path \
anno_other_box --activity_path anno_activity

Step 5. Get person appearance features

# Get the pre-trained object detection model to extract features.
# step 5 script will import necessary code from the repo.
$ git clone https://github.com/JunweiLiang/Object_Detection_Tracking
$ cd Object_Detection_Tracking/
$ git checkout 04f24336a02efb7671760a5e1bacd27141a8617c
$ wget https://aladdin-eax.inf.cs.cmu.edu/shares/diva_obj_detect_models/models/obj_v3_model.tgz
$ tar -zxvf obj_v3_model.tgz
$ cd ../

# Install all the dependencies according to the repo's README.

# Extract features given the person bounding boxes.
# Save a npy file per person per frame and also a mapping file.
$ python step5_person_appearance.py traj_2.5fps/ anno_person_box/ \
actev_all_video_frames Object_Detection_Tracking/obj_v3_model/ \
person_appearance_features person_boxkey2id.p --imgh 1080 --imgw 1920 \
--person_h 9 --person_w 5 --gpuid 0

Step 6. Get person keypoint features

Different from in the paper, we switch to use HRNet here. We have modified the original code (minimally) to allow inferencing on ActEV video frames and not exiting when an image file does not exist.

# Get my fork of the HRNet.
$ git clone https://github.com/JunweiLiang/deep-high-resolution-net.pytorch

# Install all the dependencies according to the repo's README.

# Get the COCO pre-trained model (pose_hrnet_w48_384x288.pth) by the HRNet authors.
$ wget https://precognition.team/next/data/072019_prepare_data/pose_hrnet_w48_384x288.pth
# Also this thing
$ wget https://precognition.team/next/data/072019_prepare_data/person_keypoints_val2017.json

# Convert the person bbox to json format for HRNet.
$ mkdir anno_person_box_json/
$ ls anno_person_box/*/*.p | while read line;do videoname=$(basename $line .p); \
python step6-1_get_person_json_box.py $line anno_person_box_json/${videoname}.json;done

# Run HRNet inferencing given person bounding boxes for each video.
$ mkdir hrnet_kp_out/
$ ls anno_person_box/*/* |while read line;do videoname=$(basename $line .p); \
python3 deep-high-resolution-net.pytorch/tools/test.py --cfg \
deep-high-resolution-net.pytorch/experiments/coco/hrnet/w48_384x288_adam_lr1e-3.yaml \
TEST.MODEL_FILE pose_hrnet_w48_384x288.pth OUTPUT_DIR hrnet_kp_out/${videoname} \
VIDEONAME ${videoname} FRAMEPATH actev_all_video_frames/ TEST.USE_GT_BBOX False \
COCO_JSON person_keypoints_val2017.json TEST.COCO_BBOX_FILE \
anno_person_box_json/${videoname}.json TEST.BATCH_SIZE_PER_GPU 32 \
GPUS "(0,)" CHECK_IMG True;done

# Convert the HRNet output back to pickle files. You have to do this for 3 splits.
# You will see some non-zero fail rate, which is fine. This is due to the fact that
# the ActEV labels have some person bounding box in frames that do not exist.
$ split=val; mkdir -p anno_kp/${split}; ls $PWD/anno_person_box/${split}/* \
|while read line;do videoname=$(basename $line .p); python step6-2_hrnet_output_to_pickle.py \
$line hrnet_kp_out/${videoname} anno_kp/${split}/${videoname}.p;done

# Check for fail rate==1.0 videos. Run them again to fix them.

Here is the person keypoint visualization.

Preprocess

Now all the ingredients are ready. Note that the preprocess.py in this repo is slightly different the Google repo. This is our prepared data (5.0 GB) from these steps. The rest is similar to the steps in previous training and testing. Example:

$ wget https://precognition.team/next/data/072019_prepare_data/scene36_64_id2name_top10.json

# Preprocess
$ python ../preprocess.py traj_2.5fps/ actev_preprocess --obs_len 8 --pred_len 12 \
--add_kp  --kp_path anno_kp/ --add_scene  --scene_feat_path \
actev_all_video_frames_scene_seg_every30_36x64/ --scene_map_path anno_scene/ \
--scene_id2name scene36_64_id2name_top10.json --scene_h 36 --scene_w 64 \
--video_h 1080 --video_w 1920 --add_grid --add_person_box --person_box_path \
anno_person_box/ --add_other_box --other_box_path anno_other_box/ --add_activity \
--activity_path anno_activity/ --person_boxkey2id_p person_boxkey2id.p
# There will be several warnings. In our case it is 6 for training set.

Train

$ python ../train.py actev_preprocess/ next-models/actev_single_model model \
--runId 0 --is_actev --add_kp --add_activity --person_feat_path \
person_appearance_features/ --multi_decoder --batch_size 64

Test

$ python ../test.py actev_preprocess/ next-models/actev_single_model model \
--runId 0 --is_actev --add_kp --add_activity --person_feat_path \
person_appearance_features/ --multi_decoder --batch_size 64 --load_best

Our model got the following results. The small difference from the ones reported in the paper may be due to different keypoint features and appearance features.

Activity mAP ADE FDE
0.199 18.11 37.51

Run Inference on New Videos

To run the trajectory/activity prediction models trained on ActEV on other video datasets, replace Step 2 with the output from a object detection & tracking system.