-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
49 lines (39 loc) · 1.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ''
from sean import sean
from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_recall_curve, auc
import json
from time import time
def auc_pr_score(ty,pred):
precision, recall, _ = precision_recall_curve(ty, pred)
return auc(recall, precision)
np.random.seed(123)
def subtask(fn):
f=np.load(fn)
x,tx,ty=f['x'],f['tx'],f['ty']
t0=time()
clf = sean(normalize=True,
submodels=50,
subsample=0.1,
subsample_min=1000,
subsample_max=1000,
featurebag=0.1,
feature_min=2,
feature_max=100,
mixed_features=False,
baggingstyle="mat",
)
y=clf.fit_predict(x,tx)
auc=roc_auc_score(ty,y)
auc2=auc_pr_score(ty,y)
t1=time()
return auc,auc2,t1-t0
if __name__ == '__main__':
dataset="cardio"
auc,auc2,tim=subtask(f"{dataset}.npz")
print(f"Dataset: {dataset}")
print(f"AUC-ROC: {auc:.4f}")
print(f"AUC-PR: {auc2:.4f}")
print(f"Runtime: {tim:.4f}s")