-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_adv_examples.py
128 lines (111 loc) · 4.38 KB
/
detect_adv_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from __future__ import absolute_import
from __future__ import print_function
import os
import argparse
import numpy as np
from sklearn.preprocessing import scale, MinMaxScaler, StandardScaler
from sklearn.metrics import accuracy_score, precision_score, recall_score
from util import (random_split, block_split, train_lr, compute_roc)
DATASETS = ['mnist', 'cifar', 'svhn']
ATTACKS = ['fgsm', 'bim-a', 'bim-b', 'jsma', 'cw-l2']
CHARACTERISTICS = ['kd', 'bu', 'lid']
PATH_DATA = "data/"
PATH_IMAGES = "plots/"
def load_characteristics(dataset, attack, characteristics):
"""
Load multiple characteristics for one dataset and one attack.
:param dataset:
:param attack:
:param characteristics:
:return:
"""
X, Y = None, None
for characteristic in characteristics:
# print(" -- %s" % characteristics)
file_name = os.path.join(PATH_DATA, "%s_%s_%s.npy" % (characteristic, dataset, attack))
data = np.load(file_name)
if X is None:
X = data[:, :-1]
else:
X = np.concatenate((X, data[:, :-1]), axis=1)
if Y is None:
Y = data[:, -1] # labels only need to load once
return X, Y
def detect(args):
assert args.dataset in DATASETS, \
"Dataset parameter must be either 'mnist', 'cifar' or 'svhn'"
assert args.attack in ATTACKS, \
"Train attack must be either 'fgsm', 'bim-a', 'bim-b', " \
"'jsma', 'cw-l2'"
assert args.test_attack in ATTACKS, \
"Test attack must be either 'fgsm', 'bim-a', 'bim-b', " \
"'jsma', 'cw-l2'"
characteristics = args.characteristics.split(',')
for char in characteristics:
assert char in CHARACTERISTICS, \
"Characteristic(s) to use 'kd', 'bu', 'lid'"
print("Loading train attack: %s" % args.attack)
X, Y = load_characteristics(args.dataset, args.attack, characteristics)
# standarization
scaler = MinMaxScaler().fit(X)
X = scaler.transform(X)
# X = scale(X) # Z-norm
# test attack is the same as training attack
X_train, Y_train, X_test, Y_test = block_split(X, Y)
if args.test_attack != args.attack:
# test attack is a different attack
print("Loading test attack: %s" % args.test_attack)
X_test, Y_test = load_characteristics(args.dataset, args.test_attack, characteristics)
_, _, X_test, Y_test = block_split(X_test, Y_test)
# apply training normalizer
X_test = scaler.transform(X_test)
# X_test = scale(X_test) # Z-norm
print("Train data size: ", X_train.shape)
print("Test data size: ", X_test.shape)
## Build detector
print("LR Detector on [dataset: %s, train_attack: %s, test_attack: %s] with:" %
(args.dataset, args.attack, args.test_attack))
lr = train_lr(X_train, Y_train)
## Evaluate detector
y_pred = lr.predict_proba(X_test)[:, 1]
y_label_pred = lr.predict(X_test)
# AUC
_, _, auc_score = compute_roc(Y_test, y_pred, plot=False)
precision = precision_score(Y_test, y_label_pred)
recall = recall_score(Y_test, y_label_pred)
y_label_pred = lr.predict(X_test)
acc = accuracy_score(Y_test, y_label_pred)
print('Detector ROC-AUC score: %0.4f, accuracy: %.4f, precision: %.4f, recall: %.4f' % (auc_score, acc, precision, recall))
return lr, auc_score, scaler
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-d', '--dataset',
help="Dataset to use; either 'mnist', 'cifar' or 'svhn'",
required=True, type=str
)
parser.add_argument(
'-a', '--attack',
help="Attack to use train the discriminator; either 'fgsm', 'bim-a', 'bim-b', 'jsma' 'cw-l2'",
required=True, type=str
)
parser.add_argument(
'-r', '--characteristics',
help="Characteristic(s) to use any combination in ['kd', 'bu', 'lid'] "
"separated by comma, for example: kd,bu",
required=True, type=str
)
parser.add_argument(
'-t', '--test_attack',
help="Characteristic(s) to cross-test the discriminator.",
required=False, type=str
)
parser.add_argument(
'-b', '--batch_size',
help="The batch size to use for training.",
required=False, type=int
)
parser.set_defaults(batch_size=100)
parser.set_defaults(test_attack=None)
args = parser.parse_args()
detect(args)