-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCE.py
214 lines (178 loc) · 7.48 KB
/
CE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
from torchvision.datasets import MNIST
from torchvision import transforms
from datasets import UnbalancedMNIST, BalancedBatchSampler
from networks import EmbeddingNet, ClassificationNet,ResNetEmbeddingNet
from metrics import AccumulatedAccuracyMetric,AverageNonzeroTripletsMetric
from skinDatasetFolder import skinDatasetFolder
from losses import OnlineTripletLoss,OnlineContrastiveLoss
from utils import AllTripletSelector,HardestNegativeTripletSelector, RandomNegativeTripletSelector, SemihardNegativeTripletSelector # Strategies for selecting triplets within a minibatch
from utils import BatchHardTripletSelector,AllPositivePairSelector, HardNegativePairSelector # Strategies for selecting pairs within a minibatch
from trainer import fit
import torch
from torch.optim import lr_scheduler
import torch.optim as optim
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import argparse
import os
def str2bool(v):
"""Convert string to Boolean
Args:
v: True or False but in string
Returns:
True or False in Boolean
Raises:
TyreError
"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='Triplet For MNIST')
parser.add_argument('--dataset_name',default='covid19',
help='Choose dataset [...]')
parser.add_argument('--rescale',default=False,type=str2bool,
help='rescale dataset')
parser.add_argument('--iterNo',default=1,type=int,
help='Use for choosing fold validation')
parser.add_argument('--cuda_device',default=0,type=int,
help='Choose cuda_device:(0,1,2,3,4,5,6,7)')
parser.add_argument('--EmbeddingMode',default=False,type = str2bool ,
help='True for tripletsLoss(embedding) / False for EntropyLoss(classfication)')
parser.add_argument('--dim',default=128,type=int,
help='The dimension of embedding(type int)')
parser.add_argument('--n_classes',default=3,type=int,
help='The number of classes (type int)')
parser.add_argument('--margin',default=0.5,type=float,
help='Margin used in triplet loss (type float)')
parser.add_argument('--logdir',default='result',
help='Path to log tensorboard, pick a UNIQUE name to log')
parser.add_argument('--start_epoch',default=0,type=int
,help='Start epoch (int)')
parser.add_argument('--n_epoch',default=200,type=int,
help='End_epoch (int)')
parser.add_argument('--batch_size',default=16,type=int,
help='Batch size (int)')
parser.add_argument('--n_sample_classes',default=3,type=int,
help='For a batch sampler to work comine #samples_per_class')
parser.add_argument('--n_samples_per_class',default=10,type=int,
help='For a batch sampler to work comine #n_sample_classes')
parser.add_argument('--TripletSelector',default='SemihardNegativeTripletSelector',
help='Triplet selector chosen in ({},{},{},{},{})'
.format('AllTripletSelector',
'HardestNegativeTripletSelector',
'RandomNegativeTripletSelector',
'SemihardNegativeTripletSelector',
'BatchHardTripletSelector'))
args = parser.parse_args()
def extract_embeddings(dataloader, model, dimension):
with torch.no_grad():
model.eval()
embeddings = np.zeros((len(dataloader.dataset), dimension))#num_of_dim
labels = np.zeros(len(dataloader.dataset))
k = 0
for images, target in dataloader:
if cuda:
images = images.cuda()
embeddings[k:k+len(images)] = model.get_embedding(images).data.cpu().numpy()
labels[k:k+len(images)] = target.numpy()
k += len(images)
return embeddings, labels
if __name__ == '__main__':
print(args)
torch.cuda.set_device(args.cuda_device)
logdir = args.logdir
dataset_name = args.dataset_name
Attr_Dict = {
'skin7':{'in_channel':3,
'n_classes':7,
'train_dataset' : skinDatasetFolder(train=True, iterNo=args.iterNo, data_dir='/data/Public/Datasets/Skin7'),
'test_dataset' : skinDatasetFolder(train=False, iterNo=args.iterNo, data_dir='/data/Public/Datasets/Skin7'),
'resDir':'./skin7Res/iterNo{}'.format(args.iterNo)
}
}
num_of_dim = args.dim
n_classes = Attr_Dict[dataset_name]['n_classes']
train_dataset = Attr_Dict[dataset_name]['train_dataset']
test_dataset = Attr_Dict[dataset_name]['test_dataset']
n_sample_classes = args.n_sample_classes
n_samples_per_class = args.n_samples_per_class
train_batch_sampler = BalancedBatchSampler(train_dataset, n_classes=n_sample_classes, n_samples=n_samples_per_class)
test_batch_sampler = BalancedBatchSampler(test_dataset, n_classes=n_sample_classes, n_samples=n_samples_per_class)
cuda = torch.cuda.is_available()
kwargs = {'num_workers': 40, 'pin_memory': True} if cuda else {}
batch_size = args.batch_size
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, **kwargs)
online_train_loader = torch.utils.data.DataLoader(train_dataset, batch_sampler=train_batch_sampler, **kwargs)
online_test_loader = torch.utils.data.DataLoader(test_dataset, batch_sampler=test_batch_sampler, **kwargs)
start_epoch = args.start_epoch
n_epochs = args.n_epoch
log_interval = 50
margin = args.margin
Selector = {
'AllTripletSelector':AllTripletSelector(),
'HardestNegativeTripletSelector':HardestNegativeTripletSelector(margin),
'RandomNegativeTripletSelector':RandomNegativeTripletSelector(margin),
'SemihardNegativeTripletSelector':SemihardNegativeTripletSelector(margin),
'BatchHardTripletSelector':BatchHardTripletSelector(margin)
}
embedding_net = ResNetEmbeddingNet(dataset_name,num_of_dim)
classification_net = ClassificationNet(embedding_net, dimension = num_of_dim ,n_classes = n_classes)
if args.EmbeddingMode:
loader1 = online_train_loader
loader2 = online_test_loader
model = embedding_net
loss_fn = OnlineTripletLoss(margin, Selector[args.TripletSelector])
lr = 1e-4
# optimizer = optim.Adam(model.parameters(), lr=lr)
optimizer = optim.Adam(
model.parameters(),
lr=lr,
betas=(0.9, 0.99),
eps=1e-8,
amsgrad=True)
scheduler = lr_scheduler.StepLR(optimizer, 50, gamma=0.1, last_epoch=-1)
metrics = [AverageNonzeroTripletsMetric()]
logName = 'margin{}_{}d-embedding_{}'.format(margin,num_of_dim,args.TripletSelector)
logName = os.path.join(Attr_Dict[dataset_name]['resDir'],logName)
EmbeddingArgs = (num_of_dim,train_loader,test_loader)
else:
loader1 = train_loader
loader2 = test_loader
model = classification_net
loss_fn = torch.nn.CrossEntropyLoss()
lr = 1e-4
# optimizer = optim.Adam(model.parameters(), lr=lr)
optimizer = optim.Adam(
model.parameters(),
lr=lr,
betas=(0.9, 0.99),
eps=1e-8,
amsgrad=True)
scheduler = lr_scheduler.StepLR(optimizer, 100, gamma=0.1, last_epoch=-1)
metrics = [AccumulatedAccuracyMetric()]
logName = '{}d-CE-no_class_weights'.format(num_of_dim)
logName = os.path.join(Attr_Dict[dataset_name]['resDir'],logName)
EmbeddingArgs = ()
if cuda:
model.cuda()
logfile = os.path.join(logdir,logName)
fit(dataset_name,
logfile,
loader1,
loader2,
model,
loss_fn,
optimizer,
scheduler,
n_epochs,
cuda,
log_interval,
metrics,
start_epoch,
*EmbeddingArgs)