-
Notifications
You must be signed in to change notification settings - Fork 3
/
sphere_on_surface_dipole_source_wigner_symbols_benchmark.py
247 lines (208 loc) · 9.34 KB
/
sphere_on_surface_dipole_source_wigner_symbols_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# This is an exemplary script to run SMUTHI from within python.
#
# It evaluates the scattering response of a Si or Au NP on Au
# substrate. The system is excited by a dipole source. This is a good
# approximation to the exitation of a plasmon with a scanning
# tunneling microscope (STM).
import matplotlib.pyplot as plt
import numpy as np
import smuthi.simulation
import smuthi.initial_field
import smuthi.layers
import smuthi.particles
import smuthi.coordinates
import smuthi.cuda_sources
import smuthi.scattered_field
import smuthi.graphical_output
from smuthi.optical_constants import read_refractive_index_from_yaml as GetIndex
import sys
import os
smuthi.cuda_sources.enable_gpu() # Enable GPU acceleration (if available)
#index_glass = 1.55 +1e-15j
index_glass = 1.55# +1e-15j
#spacer = 10 #nm
spacer = 5 #nm
samples = [
["c-5-STM00-v0", 2.73, 26.36],
# ["e-4-STM02-20", 4.63, 16.27],
# ["c-3-STM02-30", 4.01, 26.73],
# ["b-2-STM02-50", 6.13, 43.1],
# ["a-1-STM02-40", 5.56, 47.16]
]
def GetTopTSCS(WL, index_chrome, index_gold,l_max, neff_max, sample):
#smuthi.layers.set_precision(1000)
# Initialize the layer system object
# The coordinate system is such that the interface between the
# first two layers defines the plane z=0.
thickness_chrome = sample[1]
thickness_gold = sample[2]
two_layers = smuthi.layers.LayerSystem(
thicknesses=[0, thickness_gold, thickness_chrome, 0], # ambient, substrate
refractive_indices=[1.0, index_gold, index_chrome, index_glass ]) # like glass, air
# Define the scattering particles
particle_grid = []
sphere = smuthi.particles.Sphere(position=[0, 0, -spacer/2.0],
refractive_index=index_glass,
radius=spacer/2.0,
l_max=l_max) # choose l_max with regard to particle size and material
# higher means more accurate but slower
particle_grid.append(sphere)
sphere = smuthi.particles.Sphere(position=[0, 0, -spacer -core_r*2 -spacer*2 - stm_r],
refractive_index=index_gold,
radius=stm_r,
l_max=l_max) # choose l_max with regard to particle size and material
# higher means more accurate but slower
particle_grid.append(sphere)
# Define contour for Sommerfeld integral
alpha = np.linspace(0, 2*np.pi, 100)
smuthi.coordinates.set_default_k_parallel(vacuum_wavelength=WL,
neff_resolution=1e-2
, neff_max = neff_max
# ,neff_waypoints=[0,0.9-0.15j, 8.7-0.15j, 8.7, neff_max]
)
# smuthi.coordinates.set_default_k_parallel(vacuum_wavelength=WL,
# neff_resolution=1e-2,
# neff_waypoints=[0,0.9-0.15j, 1.1-0.15j, 1.2, neff_max] )
dipole_source = smuthi.initial_field.DipoleSource(vacuum_wavelength=WL,
dipole_moment=dipole_moment,
position=[0, 0, -spacer -core_r*2 -spacer],
# position=[0, 0, -spacer],
azimuthal_angles=alpha)
# Initialize and run simulation
simulation = smuthi.simulation.Simulation(layer_system=two_layers,
particle_list=particle_grid,
initial_field=dipole_source,
solver_type='LU',
# solver_type='gmres',
solver_tolerance=1e-5,
store_coupling_matrix=True,
coupling_matrix_lookup_resolution=None,
# store_coupling_matrix=False,
# coupling_matrix_lookup_resolution=5,
coupling_matrix_interpolator_kind='cubic'
,log_to_file=False
,log_to_terminal=False
)
simulation.run()
#polar = np.linspace(0, 0.228857671*np.pi, 100) # 0.21*pi rad == 37.8 grad
polar = np.linspace(0, 0.21*np.pi, 100) # 0.21*pi rad == 37.8 grad
total_far_field, initial_far_field, scattered_far_field = smuthi.scattered_field.total_far_field(
initial_field=dipole_source, particle_list=particle_grid, layer_system=two_layers
, polar_angles=polar
)
diss_pow = dipole_source.dissipated_power(particle_grid, two_layers)
assert abs(diss_pow.imag / diss_pow) < 1e-8
diss_pow = diss_pow.real
top_pow, bottom_pow = 0, 0
P0 = dipole_source.dissipated_power_homogeneous_background(layer_system=two_layers)
top_pow = sum(total_far_field.integral()).real #sum both polarizations
return WL, top_pow, diss_pow, P0 , diss_pow/P0
output_directory = 'smuthi_output/dipole_source'
if not os.path.exists(output_directory):
os.makedirs(output_directory)
def main(l_max, neff_max,plt, sample):
WLs = np.linspace(from_WL, to_WL, total_points)
#index_Si = GetIndex('data/a-Si-Pierce-Palik.yml', WLs, "nm")
index_Si = GetIndex('data/Si-Green-2008.yml', WLs, "nm")
#index_Au = GetIndex('data/Au-Rakic-LD.yml', WLs, "nm")
#index_Au = GetIndex('data/Au-Johnson.yml', WLs, "nm")
#index_Au = GetIndex('data/Au-McPeak.yml', WLs, "nm")
index_Au = GetIndex('data/Au-Olmon-ev.yml', WLs, "nm")
index_Cr = GetIndex('data/Cr-Johnson.yml', WLs, "nm")
val = []
for i in range(len(WLs)):
# for i in range(1):
# i=-1
# use_gold=True
# index_NP = index_Au[i][1]
use_gold=False
index_NP = index_Si[i][1]
index_gold = index_Au[i][1]
index_chrome = index_Cr[i][1]
print("===> Params: l_max =", l_max, "neff_max =", neff_max, " WL", WLs[i]," (",from_WL,"-",to_WL,
") ",core_r,"-> Au", index_gold,"-> Cr", index_chrome)
valAu= GetTopTSCS(WLs[i], index_chrome, index_gold,l_max, neff_max, sample)
sys.stdout = sys.__stdout__ # Restore output after muting it in simulation
print(valAu)
# index_NP = index_Si[i][1]
# valSi = GetTopTSCS(WLs[i], index_NP, index_gold)
# val.append(np.hstack((valAu, valSi)))
val.append(np.hstack((valAu)))
val = np.array(val)
c = 3*10**5 # speed of light, nm*THz
#return 1top_pow, 2bottom_pow , 3absorbption , 4diss_pow, P0 , diss_pow/P0
plt.plot( val[:,0], val[:,1]/val[:,3])
#plt.ylim(0, 1.75e-8)
plt.legend([r"transmitted/$P_{vac}$"])
#plt.xlabel(r'THz')
plt.xlabel(r'$\lambda, nm$')
plt.ylabel(r'Share')
gold = "Si"
if use_gold:
gold = "Au"
sign_t = sample[0]+"_Cr"+str(sample[1])+"nm_Au"+str(sample[2])+"nm_spacer"+str(spacer)+"_"+str(from_WL)+"-dipole_lmax"+str(int(l_max))+"_sign"+sign+"_points"+str(total_points)+"_neff"+ str(neff_max)
plt.title(#gold+' r = '+str(core_r)+"STM Au r="+str(stm_r)+"\n"+
sign_t+"\n", fontsize = 10)
plt.savefig(output_directory+"/dipole_tr-normP0_"+sign_t+".png")
plt.clf()
np.savetxt(output_directory+"/data_"+sign_t+".txt",val)
plt.close('all')
#neff_max=10
#neff_list = [10,25,50]
neff_list = [5]
#neff_list = [5,10,20]
#neff_list = [25]
#neff_list = [10,50,70,100,200]
#neff_list = [50,70]
#neff_list = [100]
#l_max_list = [11,15,17,21,25]
#l_max_list = [3]
l_max_list = [7,9]
#l_max_list = [17]
dipole_moment=[0, 0, 1]
sign = str(dipole_moment[0])+str(dipole_moment[1])+str(dipole_moment[2])
core_r = 100.0
stm_r = 20.0
#total_points = 11
total_points = 81
total_points = 2
#from_WL = 400 # nm
from_WL = 800 # nm
to_WL = 1000 # nm,
#from_WL = 450 # nm
#to_WL = 650 # nm,
#plt.figure(figsize=(6,4))
#from_WL = 570
#to_WL = 1665 # nm, 180 THz
for neff_max in neff_list:
for sample in samples:
for l_max in l_max_list:
main(l_max, neff_max,plt, sample)
print("----")
# l_max = 5
# main(l_max, neff_max,plt)
#plt.close()
# final = np.vstack((WLs,Q_sca)).T
# np.savetxt(output_directory+"/Q_sca_spectra.csv",final,header="WL,nm Q_sca ")
plt.clf()
plt.close('all')
for neff_max in neff_list:
plt.figure(figsize=(6,4))
for sample in samples:
for l_max in l_max_list:
sign_t = sample[0]+"_Cr"+str(sample[1])+"nm_Au"+str(sample[2])+"nm_spacer"+str(spacer)+"_"+str(from_WL)+"-dipole_lmax"+str(int(l_max))+"_sign"+sign+"_points"+str(total_points)+"_neff"+ str(neff_max)
val = np.loadtxt(output_directory+"/data_"+sign_t+".txt")
#main(l_max, neff_max,plt, sample)
plt.plot( val[:,0], val[:,1]/val[:,3])
#plt.ylim(0, 1.75e-8)
#plt.legend([r"transmitted/$P_{vac}$"])
#plt.xlabel(r'THz')
plt.xlabel(r'$\lambda, nm$')
plt.ylabel(r'Share')
print("----")
sign_t = "spacer"+str(spacer)+"_"+str(from_WL)+"-dipole_lmax"+str(int(l_max))+"_sign"+sign+"_points"+str(total_points)+"_neff"+ str(neff_max)
plt.title(#gold+' r = '+str(core_r)+"STM Au r="+str(stm_r)+"\n"+
sign_t+"\n", fontsize = 10)
plt.savefig(output_directory+"/dipole_tr-normP0_"+sign_t+".png")
plt.clf()
plt.close