Skip to content

You can learn slam step by step,there are lot of tutorials

Notifications You must be signed in to change notification settings

KMS-TEAM/LTSLAM

 
 

Repository files navigation

X-SLAM

1 Introduction

I hope you can learn slam step by step, you will can learn online X-SLAM documents tutorial. What you choose today determines your tomorrow's life path. Diligence will not make up for your indecision.

You can learn slam knowledge by 哔哩哔哩 bilibili . This video website has a detailed explanation of the code and the corresponding SLAM technology principle. Let's start a happy journey. enjoy....

X-SLAM is an open source C++ demo for learn vision slam and lidar slam. Through open source engineering, we can learn the following knowledge content:

开源社区文档

哔哩哔哩 bilibili 视频教程

1.1 Download LTSLAM source:

git clone https://github.com/quanduyong/LTSLAM.git

1.2 Project directory:

xlsam_ros (2D lidar SLAM)

# step 1 下载 rosbag 数据集
# https://github.com/cartographer-project/cartographer_ros/blob/master/docs/source/data.rst

wget https://storage.googleapis.com/cartographer-public-data/bags/backpack_2d/b2-2015-05-26-13-15-25.bag

# step 2 run
roslaunch xslam_ros demo_slam2d.launch
# step 3 rosbag play

rosbag play b2-2015-05-26-13-15-25.bag

xslam_ros_2d

2 安装x-slam

2.1 推荐:docker方式安装

2.1.1 docker安装

cd docker
./scripts/install_docker.sh

2.1.2 X-SLAM环境部署和安装

cd docker
./build_dev.sh standalone.x86_64.dockerfile

2.1.3 运行X-SLAM的demos案例

X-SLAM的demo有很多,一下简单运行几个demo

docker run -it xslam/ltslam

运行每个模块的demo

  • run ceres

    ./xslam.ceres.helloworld_numeric_diff_test
    
  • run g2o

    ./xslam.g2o.curve_fitting_test
  • run dbow3

     ./xslam.dbow3.loop_closure_detect_test
    
  • run opencv

    ./xslam.opencv.feature_detection.orb_feature_detector_test
    
  • run Sophus

    ./xslam.sophus.basic_test
    

2.2 源码安装(不推荐)

2.2.1 Generate study documents

主要目的实现本地帮助文档doc下,以html网页的格式方便查看

  • 安装Sphinx

    pip install -U sphinx
  • 安装主题

    pip install sphinx_rtd_theme
  • 安装markdown插件

    pip install recommonmark
    pip install myst-parser
    pip install sphinx_markdown_tables

2.2.2 Third party library

(推荐)我已经提供了第三方库源码文件3rdparty目录下,执行以下命令安装,不然会出现版本不匹配问题:

mkdir build && cd build
cmake ..
make -j6 
sudo make install

​ (不推荐)如果你想自己源码安装第三方库请使用以下步骤:

  • 安装Eigen

    git clone https://gitlab.com/libeigen/eigen.git
    cd eigen
    git checkout 3.3.8
    mkdir build && cd build
    cmake ..
    make -j6 
    sudo make install
    
  • 安装Sophus

    git clone https://github.com/strasdat/Sophus.git
    cd Sophus
    mkdir build && cd build
    cmake ..
    make -j6 
    sudo make install
  • 安装abseil

    在abseil项目的CMakeLists.txt的project(absl LANGUAGES CXX) 下添加以下命令:

    add_compile_options(-fPIC)

    git clone https://github.com/abseil/abseil-cpp.git
    cd abseil-cpp
    mkdir build && cd build
    cmake ..
    make -j6 
    sudo make install
  • 安装 DBow3

    git clone https://github.com/rmsalinas/DBow3.git
    cd abseil-cpp
    mkdir build && cd build
    cmake ..
    make -j6 
    sudo make install  
    
  • 安装googletest

    git clone https://github.com/google/googletest.git
    cd googletest
    mkdir build && cd build
    cmake ..
    make -j6 
    sudo make install  
    
  • 安装g2o

    git clone https://github.com/rmsalinas/DBow3.git
    cd abseil-cpp
    git checkout 9b41a4ea
    mkdir build && cd build
    cmake ..
    make -j6 
    sudo make install  
    
  • 安装opencv & opencv_contrib (4.5-x)

    git clone https://github.com/opencv/opencv.git
    git clone https://github.com/opencv/opencv_contrib.git
    
    cd opencv
    mkdir build && cd build
    cmake-gui .. # 选择extra module opencv_contrib
    make -j6 
    sudo make install
    

3 工程编译

cd LTSLAM
mkdir build
cd build 
cmake ..
make -j6

4 如何运行工程demo

在工程的build/bin目录中,你可以看到对应的每个可执行二进制文件

如何运行参考如下:

[bin] ./xslam.opencv.camera_calibration.perspective_correction_test

运行结果如下:

5 Contact Me

我们有微信群和QQ群: 710288823 ,你可以加入我们一起成长,所有代码和教学视频免费。

加入我们吧!!!

6 Github贡献者

  • 123mrchen
  • Ze
  • Minghao HU
  • onwaying

github_gxz

About

You can learn slam step by step,there are lot of tutorials

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 93.6%
  • C 2.8%
  • C++ 2.8%
  • Python 0.6%
  • CMake 0.1%
  • Shell 0.1%