forked from cvg/Hierarchical-Localization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
match_features.py
239 lines (209 loc) · 7.96 KB
/
match_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
from typing import Union, Optional, Dict, List, Tuple
from pathlib import Path
import pprint
from queue import Queue
from threading import Thread
from functools import partial
from tqdm import tqdm
import h5py
import torch
from . import matchers, logger
from .utils.base_model import dynamic_load
from .utils.parsers import names_to_pair, names_to_pair_old, parse_retrieval
'''
A set of standard configurations that can be directly selected from the command
line using their name. Each is a dictionary with the following entries:
- output: the name of the match file that will be generated.
- model: the model configuration, as passed to a feature matcher.
'''
confs = {
'superglue': {
'output': 'matches-superglue',
'model': {
'name': 'superglue',
'weights': 'outdoor',
'sinkhorn_iterations': 50,
},
},
'superglue-fast': {
'output': 'matches-superglue-it5',
'model': {
'name': 'superglue',
'weights': 'outdoor',
'sinkhorn_iterations': 5,
},
},
'NN-superpoint': {
'output': 'matches-NN-mutual-dist.7',
'model': {
'name': 'nearest_neighbor',
'do_mutual_check': True,
'distance_threshold': 0.7,
},
},
'NN-ratio': {
'output': 'matches-NN-mutual-ratio.8',
'model': {
'name': 'nearest_neighbor',
'do_mutual_check': True,
'ratio_threshold': 0.8,
}
},
'NN-mutual': {
'output': 'matches-NN-mutual',
'model': {
'name': 'nearest_neighbor',
'do_mutual_check': True,
},
},
'adalam': {
'output': 'matches-adalam',
'model': {
'name': 'adalam'
},
}
}
class WorkQueue():
def __init__(self, work_fn, num_threads=1):
self.queue = Queue(num_threads)
self.threads = [
Thread(target=self.thread_fn, args=(work_fn,))
for _ in range(num_threads)
]
for thread in self.threads:
thread.start()
def join(self):
for thread in self.threads:
self.queue.put(None)
for thread in self.threads:
thread.join()
def thread_fn(self, work_fn):
item = self.queue.get()
while item is not None:
work_fn(item)
item = self.queue.get()
def put(self, data):
self.queue.put(data)
class FeaturePairsDataset(torch.utils.data.Dataset):
def __init__(self, pairs, feature_path_q, feature_path_r):
self.pairs = pairs
self.feature_path_q = feature_path_q
self.feature_path_r = feature_path_r
def __getitem__(self, idx):
name0, name1 = self.pairs[idx]
data = {}
with h5py.File(self.feature_path_q, 'r') as fd:
grp = fd[name0]
for k, v in grp.items():
data[k+'0'] = torch.from_numpy(v.__array__()).float()
# some matchers might expect an image but only use its size
data['image0'] = torch.empty((1,)+tuple(grp['image_size'])[::-1])
with h5py.File(self.feature_path_r, 'r') as fd:
grp = fd[name1]
for k, v in grp.items():
data[k+'1'] = torch.from_numpy(v.__array__()).float()
data['image1'] = torch.empty((1,)+tuple(grp['image_size'])[::-1])
return data
def __len__(self):
return len(self.pairs)
def writer_fn(inp, match_path):
pair, pred = inp
with h5py.File(str(match_path), 'a', libver='latest') as fd:
if pair in fd:
del fd[pair]
grp = fd.create_group(pair)
matches = pred['matches0'][0].cpu().short().numpy()
grp.create_dataset('matches0', data=matches)
if 'matching_scores0' in pred:
scores = pred['matching_scores0'][0].cpu().half().numpy()
grp.create_dataset('matching_scores0', data=scores)
def main(conf: Dict,
pairs: Path, features: Union[Path, str],
export_dir: Optional[Path] = None,
matches: Optional[Path] = None,
features_ref: Optional[Path] = None,
overwrite: bool = False) -> Path:
if isinstance(features, Path) or Path(features).exists():
features_q = features
if matches is None:
raise ValueError('Either provide both features and matches as Path'
' or both as names.')
else:
if export_dir is None:
raise ValueError('Provide an export_dir if features is not'
f' a file path: {features}.')
features_q = Path(export_dir, features+'.h5')
if matches is None:
matches = Path(
export_dir, f'{features}_{conf["output"]}_{pairs.stem}.h5')
if features_ref is None:
features_ref = features_q
match_from_paths(conf, pairs, matches, features_q, features_ref, overwrite)
return matches
def find_unique_new_pairs(pairs_all: List[Tuple[str]], match_path: Path = None):
'''Avoid to recompute duplicates to save time.'''
pairs = set()
for i, j in pairs_all:
if (j, i) not in pairs:
pairs.add((i, j))
pairs = list(pairs)
if match_path is not None and match_path.exists():
with h5py.File(str(match_path), 'r', libver='latest') as fd:
pairs_filtered = []
for i, j in pairs:
if (names_to_pair(i, j) in fd or
names_to_pair(j, i) in fd or
names_to_pair_old(i, j) in fd or
names_to_pair_old(j, i) in fd):
continue
pairs_filtered.append((i, j))
return pairs_filtered
return pairs
@torch.no_grad()
def match_from_paths(conf: Dict,
pairs_path: Path,
match_path: Path,
feature_path_q: Path,
feature_path_ref: Path,
overwrite: bool = False) -> Path:
logger.info('Matching local features with configuration:'
f'\n{pprint.pformat(conf)}')
if not feature_path_q.exists():
raise FileNotFoundError(f'Query feature file {feature_path_q}.')
if not feature_path_ref.exists():
raise FileNotFoundError(f'Reference feature file {feature_path_ref}.')
match_path.parent.mkdir(exist_ok=True, parents=True)
assert pairs_path.exists(), pairs_path
pairs = parse_retrieval(pairs_path)
pairs = [(q, r) for q, rs in pairs.items() for r in rs]
pairs = find_unique_new_pairs(pairs, None if overwrite else match_path)
if len(pairs) == 0:
logger.info('Skipping the matching.')
return
device = 'cuda' if torch.cuda.is_available() else 'cpu'
Model = dynamic_load(matchers, conf['model']['name'])
model = Model(conf['model']).eval().to(device)
dataset = FeaturePairsDataset(pairs, feature_path_q, feature_path_ref)
loader = torch.utils.data.DataLoader(
dataset, num_workers=1, batch_size=1, shuffle=False, pin_memory=True)
writer_queue = WorkQueue(partial(writer_fn, match_path=match_path), 5)
for idx, data in enumerate(tqdm(loader, smoothing=.1)):
data = {k: v if k.startswith('image')
else v.to(device, non_blocking=True) for k, v in data.items()}
pred = model(data)
pair = names_to_pair(*pairs[idx])
writer_queue.put((pair, pred))
writer_queue.join()
logger.info('Finished exporting matches.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pairs', type=Path, required=True)
parser.add_argument('--export_dir', type=Path)
parser.add_argument('--features', type=str,
default='feats-superpoint-n4096-r1024')
parser.add_argument('--matches', type=Path)
parser.add_argument('--conf', type=str, default='superglue',
choices=list(confs.keys()))
args = parser.parse_args()
main(confs[args.conf], args.pairs, args.features, args.export_dir)