From 240c84df94c519892c06aca5425e3df748fc81d3 Mon Sep 17 00:00:00 2001 From: KOSASIH Date: Mon, 20 Jan 2025 20:43:06 +0700 Subject: [PATCH] Create quantum_clustering.py --- quantum/algorithms/quantum_clustering.py | 132 +++++++++++++++++++++++ 1 file changed, 132 insertions(+) create mode 100644 quantum/algorithms/quantum_clustering.py diff --git a/quantum/algorithms/quantum_clustering.py b/quantum/algorithms/quantum_clustering.py new file mode 100644 index 000000000..0f1da3b85 --- /dev/null +++ b/quantum/algorithms/quantum_clustering.py @@ -0,0 +1,132 @@ +# quantum_clustering.py +import numpy as np +from qiskit import Aer +from qiskit.circuit import QuantumCircuit +from qiskit.algorithms import VQE +from qiskit.algorithms.optimizers import SLSQP +from qiskit.primitives import Sampler +from qiskit.quantum_info import Statevector +from sklearn.cluster import KMeans + +class QuantumKMeans: + def __init__(self, n_clusters=2, max_iter=100, tol=1e-4): + """ + Initialize the Quantum K-Means algorithm. + + Parameters: + - n_clusters: Number of clusters to form. + - max_iter: Maximum number of iterations. + - tol: Tolerance for convergence. + """ + self.n_clusters = n_clusters + self.max_iter = max_iter + self.tol = tol + self.centroids = None + + def _quantum_state_preparation(self, data): + """ + Prepare a quantum state from the data points. + + Parameters: + - data: Input data points. + + Returns: + - QuantumCircuit: The quantum circuit for state preparation. + """ + num_qubits = int(np.ceil(np.log2(len(data)))) + circuit = QuantumCircuit(num_qubits) + + # Normalize data to prepare quantum states + normalized_data = data / np.linalg.norm(data) + for i, amplitude in enumerate(normalized_data): + circuit.initialize(amplitude, i) + + return circuit + + def _quantum_distance_measurement(self, state1, state2): + """ + Measure the distance between two quantum states. + + Parameters: + - state1: First quantum state. + - state2: Second quantum state. + + Returns: + - float: The distance between the two states. + """ + # Use inner product to calculate distance + return 1 - np.abs(np.dot(state1, state2))**2 + + def fit(self, data): + """ + Fit the Quantum K-Means algorithm to the data. + + Parameters: + - data: Input data points (numpy array). + """ + # Initialize centroids randomly + random_indices = np.random.choice(len(data), self.n_clusters, replace=False) + self.centroids = data[random_indices] + + for iteration in range(self.max_iter): + # Prepare quantum states for centroids + centroid_states = [self._quantum_state_preparation(centroid) for centroid in self.centroids] + + # Assign clusters based on distance measurement + labels = [] + for point in data: + point_state = self._quantum_state_preparation(point) + distances = [self._quantum_distance_measurement(point_state, centroid_state) for centroid_state in centroid_states] + labels.append(np.argmin(distances)) + + # Update centroids + new_centroids = np.array([data[np.array(labels) == i].mean(axis=0) for i in range(self.n_clusters)]) + + # Check for convergence + if np.all(np.abs(new_centroids - self.centroids) < self.tol): + break + + self.centroids = new_centroids + + def predict(self, data): + """ + Predict the closest cluster for each data point. + + Parameters: + - data: Input data points (numpy array). + + Returns: + - labels: Cluster labels for each data point. + """ + labels = [] + centroid_states = [self._quantum_state_preparation(centroid) for centroid in self.centroids] + + for point in data: + point_state = self._quantum_state_preparation(point) + distances = [self._quantum_distance_measurement(point_state, centroid_state) for centroid_state in centroid_states] + labels.append(np.argmin(distances)) + + return np.array(labels) + +if __name__ == "__main__": + # Example usage + from sklearn.datasets import make_blobs + import matplotlib.pyplot as plt + + # Generate synthetic data + X, _ = make_blobs(n_samples=100, centers=3, cluster_std=0.60, random_state=0) + + # Initialize and fit Quantum K-Means + qkmeans = QuantumKMeans(n_clusters=3) + qkmeans.fit(X) + + # Predict clusters + labels = qkmeans.predict(X) + + # Plot results + plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis') + plt.scatter(qkmeans.centroids[:, 0], qkmeans.centroids[:, 1], c='red', s=200, alpha=0.75, marker='X') + plt.title('Quantum K-Means Clustering') + plt.xlabel('Feature 1') + plt.ylabel('Feature 2') + plt.show()