|
| 1 | +# variational_circuit.py |
| 2 | +import numpy as np |
| 3 | +from qiskit import QuantumCircuit, Aer, execute |
| 4 | +from qiskit.visualization import plot_histogram |
| 5 | +from qiskit.quantum_info import Statevector |
| 6 | +from qiskit.algorithms import VQE |
| 7 | +from qiskit.algorithms.optimizers import SLSQP |
| 8 | +from qiskit.primitives import Sampler |
| 9 | + |
| 10 | +def create_variational_circuit(num_qubits, params): |
| 11 | + """ |
| 12 | + Create a parameterized variational circuit. |
| 13 | + |
| 14 | + Parameters: |
| 15 | + - num_qubits: Number of qubits in the circuit |
| 16 | + - params: List of parameters for the variational gates |
| 17 | + |
| 18 | + Returns: |
| 19 | + - QuantumCircuit: The constructed variational circuit |
| 20 | + """ |
| 21 | + circuit = QuantumCircuit(num_qubits) |
| 22 | + |
| 23 | + # Apply parameterized RY gates |
| 24 | + for i in range(num_qubits): |
| 25 | + circuit.ry(params[i], i) |
| 26 | + |
| 27 | + # Add entangling gates (CNOTs) |
| 28 | + for i in range(num_qubits - 1): |
| 29 | + circuit.cx(i, i + 1) |
| 30 | + |
| 31 | + return circuit |
| 32 | + |
| 33 | +def run_variational_algorithm(num_qubits, initial_params): |
| 34 | + """ |
| 35 | + Run a variational algorithm (e.g., VQE) using the variational circuit. |
| 36 | + |
| 37 | + Parameters: |
| 38 | + - num_qubits: Number of qubits in the circuit |
| 39 | + - initial_params: Initial parameters for the variational circuit |
| 40 | + |
| 41 | + Returns: |
| 42 | + - optimal_value: The minimum eigenvalue found |
| 43 | + - optimal_params: The optimal parameters for the variational circuit |
| 44 | + """ |
| 45 | + # Create a variational circuit |
| 46 | + circuit = create_variational_circuit(num_qubits, initial_params) |
| 47 | + |
| 48 | + # Define the optimizer |
| 49 | + optimizer = SLSQP(maxiter=100) |
| 50 | + |
| 51 | + # Create a VQE instance |
| 52 | + vqe = VQE(circuit, optimizer=optimizer, quantum_instance=Aer.get_backend('aer_simulator')) |
| 53 | + |
| 54 | + # Run VQE |
| 55 | + result = vqe.compute_minimum_eigenvalue() |
| 56 | + |
| 57 | + return result.eigenvalue, result.optimal_point |
| 58 | + |
| 59 | +def visualize_results(optimal_value, optimal_params): |
| 60 | + """ |
| 61 | + Visualize the results of the variational algorithm. |
| 62 | + |
| 63 | + Parameters: |
| 64 | + - optimal_value: The minimum eigenvalue found |
| 65 | + - optimal_params: The optimal parameters for the variational circuit |
| 66 | + """ |
| 67 | + print("Minimum Eigenvalue:", optimal_value) |
| 68 | + print("Optimal Parameters:", optimal_params) |
| 69 | + |
| 70 | +if __name__ == "__main__": |
| 71 | + num_qubits = 2 # Number of qubits for the variational circuit |
| 72 | + initial_params = np.random.rand(num_qubits) * np.pi # Random initial parameters |
| 73 | + |
| 74 | + # Run the variational algorithm |
| 75 | + optimal_value, optimal_params = run_variational_algorithm(num_qubits, initial_params) |
| 76 | + |
| 77 | + # Visualize the results |
| 78 | + visualize_results(optimal_value, optimal_params) |
0 commit comments