Skip to content

Commit 4c2ed76

Browse files
authoredJan 19, 2025··
Create variational_circuit.py
1 parent 6d17d31 commit 4c2ed76

File tree

1 file changed

+78
-0
lines changed

1 file changed

+78
-0
lines changed
 
+78
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,78 @@
1+
# variational_circuit.py
2+
import numpy as np
3+
from qiskit import QuantumCircuit, Aer, execute
4+
from qiskit.visualization import plot_histogram
5+
from qiskit.quantum_info import Statevector
6+
from qiskit.algorithms import VQE
7+
from qiskit.algorithms.optimizers import SLSQP
8+
from qiskit.primitives import Sampler
9+
10+
def create_variational_circuit(num_qubits, params):
11+
"""
12+
Create a parameterized variational circuit.
13+
14+
Parameters:
15+
- num_qubits: Number of qubits in the circuit
16+
- params: List of parameters for the variational gates
17+
18+
Returns:
19+
- QuantumCircuit: The constructed variational circuit
20+
"""
21+
circuit = QuantumCircuit(num_qubits)
22+
23+
# Apply parameterized RY gates
24+
for i in range(num_qubits):
25+
circuit.ry(params[i], i)
26+
27+
# Add entangling gates (CNOTs)
28+
for i in range(num_qubits - 1):
29+
circuit.cx(i, i + 1)
30+
31+
return circuit
32+
33+
def run_variational_algorithm(num_qubits, initial_params):
34+
"""
35+
Run a variational algorithm (e.g., VQE) using the variational circuit.
36+
37+
Parameters:
38+
- num_qubits: Number of qubits in the circuit
39+
- initial_params: Initial parameters for the variational circuit
40+
41+
Returns:
42+
- optimal_value: The minimum eigenvalue found
43+
- optimal_params: The optimal parameters for the variational circuit
44+
"""
45+
# Create a variational circuit
46+
circuit = create_variational_circuit(num_qubits, initial_params)
47+
48+
# Define the optimizer
49+
optimizer = SLSQP(maxiter=100)
50+
51+
# Create a VQE instance
52+
vqe = VQE(circuit, optimizer=optimizer, quantum_instance=Aer.get_backend('aer_simulator'))
53+
54+
# Run VQE
55+
result = vqe.compute_minimum_eigenvalue()
56+
57+
return result.eigenvalue, result.optimal_point
58+
59+
def visualize_results(optimal_value, optimal_params):
60+
"""
61+
Visualize the results of the variational algorithm.
62+
63+
Parameters:
64+
- optimal_value: The minimum eigenvalue found
65+
- optimal_params: The optimal parameters for the variational circuit
66+
"""
67+
print("Minimum Eigenvalue:", optimal_value)
68+
print("Optimal Parameters:", optimal_params)
69+
70+
if __name__ == "__main__":
71+
num_qubits = 2 # Number of qubits for the variational circuit
72+
initial_params = np.random.rand(num_qubits) * np.pi # Random initial parameters
73+
74+
# Run the variational algorithm
75+
optimal_value, optimal_params = run_variational_algorithm(num_qubits, initial_params)
76+
77+
# Visualize the results
78+
visualize_results(optimal_value, optimal_params)

0 commit comments

Comments
 (0)