-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathmemory.py
51 lines (45 loc) · 2.57 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import torch
from env import postprocess_observation, preprocess_observation_
class ExperienceReplay():
def __init__(self, size, symbolic_env, observation_size, action_size, bit_depth, device):
self.device = device
self.symbolic_env = symbolic_env
self.size = size
self.observations = np.empty((size, observation_size) if symbolic_env else (size, 3, 64, 64), dtype=np.float32 if symbolic_env else np.uint8)
self.actions = np.empty((size, action_size), dtype=np.float32)
self.rewards = np.empty((size, ), dtype=np.float32)
self.nonterminals = np.empty((size, 1), dtype=np.float32)
self.idx = 0
self.full = False # Tracks if memory has been filled/all slots are valid
self.steps, self.episodes = 0, 0 # Tracks how much experience has been used in total
self.bit_depth = bit_depth
def append(self, observation, action, reward, done):
if self.symbolic_env:
self.observations[self.idx] = observation.numpy()
else:
self.observations[self.idx] = postprocess_observation(observation.numpy(), self.bit_depth) # Decentre and discretise visual observations (to save memory)
self.actions[self.idx] = action.numpy()
self.rewards[self.idx] = reward
self.nonterminals[self.idx] = not done
self.idx = (self.idx + 1) % self.size
self.full = self.full or self.idx == 0
self.steps, self.episodes = self.steps + 1, self.episodes + (1 if done else 0)
# Returns an index for a valid single sequence chunk uniformly sampled from the memory
def _sample_idx(self, L):
valid_idx = False
while not valid_idx:
idx = np.random.randint(0, self.size if self.full else self.idx - L)
idxs = np.arange(idx, idx + L) % self.size
valid_idx = not self.idx in idxs[1:] # Make sure data does not cross the memory index
return idxs
def _retrieve_batch(self, idxs, n, L):
vec_idxs = idxs.transpose().reshape(-1) # Unroll indices
observations = torch.as_tensor(self.observations[vec_idxs].astype(np.float32))
if not self.symbolic_env:
preprocess_observation_(observations, self.bit_depth) # Undo discretisation for visual observations
return observations.reshape(L, n, *observations.shape[1:]), self.actions[vec_idxs].reshape(L, n, -1), self.rewards[vec_idxs].reshape(L, n), self.nonterminals[vec_idxs].reshape(L, n, 1)
# Returns a batch of sequence chunks uniformly sampled from the memory
def sample(self, n, L):
batch = self._retrieve_batch(np.asarray([self._sample_idx(L) for _ in range(n)]), n, L)
return [torch.as_tensor(item).to(device=self.device) for item in batch]