-
Notifications
You must be signed in to change notification settings - Fork 3
/
cart_pole.py
131 lines (109 loc) · 3.91 KB
/
cart_pole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import gym
import numpy as np
from itertools import count
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from torch.distributions import Categorical
import esn
import utils
parser = argparse.ArgumentParser(description='PyTorch actor-critic example')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor (default: 0.99)')
parser.add_argument('--seed', type=int, default=543, metavar='N',
help='random seed (default: 1)')
parser.add_argument('--render', action='store_true',
help='render the environment')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='interval between training status logs (default: 10)')
args = parser.parse_args()
env = gym.make('CartPole-v0')
env.seed(args.seed)
torch.manual_seed(args.seed)
SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(200, 128)
self.action_head = nn.Linear(128, 2)
self.value_head = nn.Linear(128, 1)
self.saved_actions = []
self.rewards = []
def forward(self, x):
x = F.relu(self.affine1(x))
action_scores = self.action_head(x)
state_values = self.value_head(x)
return F.softmax(action_scores, dim=-1), state_values
input_dim = 4
n_hidden = 200
w_sparsity=0.1
resevior = esn.ESN(
input_dim=input_dim,
hidden_dim=n_hidden,
output_dim=1,
w_sparsity=w_sparsity,
feedbacks=True,
skip_output=True
)
model = Policy()
optimizer = optim.Adam(model.parameters(), lr=3e-4)
eps = np.finfo(np.float32).eps.item()
def select_action(state):
# state = torch.from_numpy(state).float()
probs, state_value = model(state)
m = Categorical(probs)
action = m.sample()
model.saved_actions.append(SavedAction(m.log_prob(action), state_value.view(-1)))
return action.item()
def finish_episode():
R = 0
saved_actions = model.saved_actions
policy_losses = []
value_losses = []
rewards = []
for r in model.rewards[::-1]:
R = r + args.gamma * R
rewards.insert(0, R)
rewards = torch.tensor(rewards)
rewards = (rewards - rewards.mean()) / (rewards.std() + eps)
for (log_prob, value), r in zip(saved_actions, rewards):
reward = r - value.item()
policy_losses.append(-log_prob * reward)
value_losses.append(F.smooth_l1_loss(value, torch.tensor([r])))
optimizer.zero_grad()
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()
loss.backward()
optimizer.step()
del model.rewards[:]
del model.saved_actions[:]
def main():
running_reward = 10
for i_episode in count(1):
state = env.reset()
resevior.reset_hidden()
for t in range(10000): # Don't infinite loop while learning
state = torch.from_numpy(state).float().view(1, 1, -1)
state = resevior(state).detach().view(-1)
state = Variable(state)
action = select_action(state)
state, reward, done, _ = env.step(action)
if args.render:
env.render()
model.rewards.append(reward)
if done:
break
running_reward = running_reward * 0.99 + t * 0.01
finish_episode()
if i_episode % args.log_interval == 0:
print('Episode {}\tLast length: {:5d}\tAverage length: {:.2f}'.format(
i_episode, t, running_reward))
if running_reward > env.spec.reward_threshold:
print("Solved! Running reward is now {} and "
"the last episode runs to {} time steps!".format(running_reward, t))
break
if __name__ == '__main__':
main()