-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasis.ml
937 lines (876 loc) · 38.1 KB
/
basis.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
module Make (Node:Node.NodeType) =
struct
module Graph = Graph.Make (Node)
module Cat = Cat.Make (Node)
module Term = ANSITerminal
let (-->) = Cat.(-->)
let (@@) = Cat.compose ~check:false
let (===) = Cat.(===)
let (=~=) = Cat.(=~=)
let (++) = Lib.IntSet.union
open Lib.Util
type point = {value : Graph.t ;
next : Cat.arrows Lib.IntMap.t ;
prev : Lib.IntSet.t ;
obs : (Cat.arrows*int) option ;
conflict : Lib.IntSet.t ;
}
type t = {points : point Lib.IntMap.t ; (*corresp int -> point *)
(*set of points that are witnesses (not midpoints) *)
witnesses : Lib.IntSet.t ;
(* i |--> (0 -->i) --extension from root to i*)
extensions : Cat.arrows Lib.IntMap.t ;
max_elements : Lib.IntSet.t ;
mutable fresh : int ;
}
exception Invariant_failure of string * t
let point g =
{value = g ;
next = Lib.IntMap.empty ;
prev = Lib.IntSet.empty ;
obs = None ;
conflict = Lib.IntSet.empty ;
}
let empty h_eps =
{points = Lib.IntMap.add 0 (point h_eps) Lib.IntMap.empty ;
witnesses = Lib.IntSet.empty;
extensions = Lib.IntMap.add 0 (Cat.identity h_eps h_eps) Lib.IntMap.empty ;
max_elements = Lib.IntSet.singleton 0 ;
fresh = 1
}
let dump eb =
Lib.IntMap.iter
(fun i p ->
let next = Lib.IntMap.fold
(fun j _ cont -> (Printf.sprintf "%d" j)::cont)
p.next []
in
Term.printf [] "%d |--> [%s]\n" i (String.concat "," next);
) eb.points
let to_dot show_conflict dict ext_base =
let l =
Lib.IntMap.fold
(fun i p dot_string ->
let str =
match p.obs with
None -> Printf.sprintf "%d [label =\"%d\" , shape = none] ;" i i
| Some (_,obs_id) ->
Printf.sprintf
"%d [label=\"%d [obs: %d]\" , shape = \"%s\"];" i
i
obs_id
(if Lib.IntMap.is_empty p.next then "rectangle" else "oval")
in
let str2 =
String.concat "\n"
(Lib.IntMap.fold
(fun j _ dot_string ->
(Printf.sprintf "%d -> %d ;" i j)::dot_string
) p.next [])
in
let str3 =
String.concat
"\n"
(Lib.IntSet.fold
(fun j dot_string ->
if i < j then
(Printf.sprintf
"%d -> %d [conflict = \"true\" style = \"dotted\", dir = \"none\", constraint = false];" i j)::dot_string
else
dot_string
) p.conflict [])
in
(str^"\n"^str2^"\n"^(if show_conflict then str3 else ""))::dot_string
) ext_base.points []
in
"digraph G{\n"^(String.concat "\n" l)^"\n}"
let add i p ext_p ext_base =
{points = Lib.IntMap.add i p ext_base.points ;
witnesses =
begin
match p.obs with
None -> ext_base.witnesses
| Some _ -> Lib.IntSet.add i ext_base.witnesses
end ;
extensions = Lib.IntMap.add i ext_p ext_base.extensions ;
max_elements = Lib.IntSet.add i ext_base.max_elements ;
fresh = ext_base.fresh
}
let get_fresh ext_base =
let i = ext_base.fresh in
ext_base.fresh <- ext_base.fresh + 1 ;
i
let replace i p ext_base =
if safe() then assert (Lib.IntMap.mem i ext_base.points) ;
{ext_base with points = Lib.IntMap.add i p ext_base.points}
let mem i ext_base = Lib.IntMap.mem i ext_base.points
let is_empty ext_base = (Lib.IntMap.cardinal ext_base.points = 1)
let find i ext_base = Lib.IntMap.find i ext_base.points
let find_extension i ext_base =
if not (mem i ext_base) then
failwith ("Unkown point "^(string_of_int i)^" in extension base")
else
Lib.IntMap.find i ext_base.extensions
(**[is_in_sup i j eb] evaluates to true if [j] is in the sup of [i] in extension base [eb]*)
let is_in_sup i j ext_base =
assert (mem i ext_base && mem j ext_base) ;
let pj = find j ext_base
in
let size_of p = (Graph.size_edge p.value, Graph.size_node p.value) in
let (<<) (u,v) (u',v') = u <= u' && v<= v' in
let sj = size_of pj in
let rec iter_search todo visited =
match todo with
[] -> false
| k::todo' ->
if Lib.IntSet.mem k visited then
iter_search todo' visited
else
let pk = find k ext_base in
if (size_of pk) << sj then
if k = j || Lib.IntMap.mem j pk.next then true
else
iter_search
(Lib.IntMap.fold (fun j' _ todo' -> j'::todo') pk.next todo')
(Lib.IntSet.add k visited)
else (*j cannot be above k*)
iter_search todo' (Lib.IntSet.add k visited)
in
iter_search [i] Lib.IntSet.empty
(*returns the set of pairs (u,v) that would violate Hasse property if i |-->j is added*)
let hasse_violation i j ext_base =
assert (mem i ext_base && mem j ext_base) ;
let pi = find i ext_base in
let size_of p = (Graph.size_edge p.value, Graph.size_node p.value) in
let (<<) (u,v) (u',v') = u <= u' && v<= v' in
let si = size_of pi in
let rec iter_search todo visited violations =
match todo with
[] -> violations
| k::todo' ->
if Lib.IntSet.mem k visited then
iter_search todo' visited violations
else
let pk = find k ext_base in
let violations' =
Lib.IntSet.fold
(fun k' violations ->
let pk' = find k' ext_base in
if size_of pk' << si then
if is_in_sup k' i ext_base then Lib.Int2Set.add (k',k) violations
else violations
else
violations
) pk.prev violations
in
iter_search
(Lib.IntMap.fold (fun j' _ todo' -> j'::todo') pk.next todo')
(Lib.IntSet.add k visited)
violations'
in
iter_search [j] Lib.IntSet.empty Lib.Int2Set.empty
let add_conflict i j ext_base =
if db() then Printf.printf "\t %d...#...%d\n" i j ;
let pi = find i ext_base in
let pj = find j ext_base in
replace i {pi with conflict = Lib.IntSet.add j pi.conflict}
(replace j {pj with conflict = Lib.IntSet.add i pj.conflict} ext_base)
let add_obs i ext obs_id ext_base =
let pi = find i ext_base in
let pi,subst_opt =
match pi.obs with
None ->
(* This pre exisiting point is the first witness*)
({pi with obs = Some (ext,obs_id)},None)
(*point is already associated with an observable*)
| Some (ext_ref,obs_ref) -> (pi,Some (((Cat.invert ext_ref) @@ ext),obs_ref)) (*returns (obs_ref -> new_obs, obs_ref)*)
in
(replace i pi ext_base,subst_opt)
let remove_step i j ext_base =
let pi =
try
find i ext_base
with Not_found -> raise (Invariant_failure (Printf.sprintf "Point %d is not in the base" i,ext_base))
in
let pj =
try
find j ext_base
with Not_found -> raise (Invariant_failure (Printf.sprintf "Point %d is not in the base" j,ext_base))
in
let _ = if db() then
if Lib.IntMap.mem j pi.next then
print_string
(red (Printf.sprintf "\t Removing step %d |-x-> %d\n" i j))
in
let eb =
replace j {pj with prev = Lib.IntSet.remove i pj.prev}
(replace i {pi with next = Lib.IntMap.remove j pi.next} ext_base)
in
if safe () then
begin
let pi = find i eb in
let pj = find j eb in
assert (not (Lib.IntMap.mem j pi.next || Lib.IntSet.mem j pj.prev)) ;
end ;
eb
let add_step i j emb_ij ext_base =
let () =
if db() then Printf.printf "Verifying if %d|->%d should be added...\n" i j
in
let pi =
try find i ext_base
with Not_found -> raise (Invariant_failure (Printf.sprintf "Point %d is not in the base" i,ext_base))
in
(*optim*)
if Lib.IntMap.mem j pi.next || is_in_sup i j ext_base then
begin
if db() then Printf.printf "Point %d is in the future of %d, not adding step.\n" j i ;
ext_base
end
else
let rm_edges = hasse_violation i j ext_base in
if db() then
begin
Printf.printf
"\t Add Step %d |-> %d = %s-%s->%s\n" i j
(Graph.to_string (Cat.src emb_ij))
(Cat.string_of_arrows emb_ij)
(Graph.to_string (Cat.trg emb_ij)) ;
if not (Lib.Int2Set.is_empty rm_edges) then
Printf.printf "this step would generate violations {%s}!\n"
(String.concat "," (List.map (fun (x,y) -> Printf.sprintf "(%d,%d)" x y) (Lib.Int2Set.elements rm_edges)))
end ;
let ext_base =
Lib.Int2Set.fold
(fun (x,y) ext_base ->
remove_step x y ext_base
) rm_edges ext_base
in
(*NB pi might have changed in the ext_base because of previous step*)
let pi,pj = find i ext_base, find j ext_base in
if safe() then assert (not (Lib.Int2Set.mem (i,j) rm_edges)) ;
replace j
{pj with prev = Lib.IntSet.add i pj.prev}
(replace i
{pi with next = Lib.IntMap.add j emb_ij pi.next}
{ext_base with max_elements = Lib.IntSet.remove i ext_base.max_elements})
type comparison =
Iso of Cat.arrows
| Below of Cat.arrows
| Above of Cat.arrows
| Incomp of (Cat.arrows * Cat.arrows * Cat.arrows * bool) (*inf_to_sh,sh_to_base,sh_to_w*)
let compare inf_to_i inf_to_w =
let () =
if db() then
Printf.printf "\t Sharing %s\n" (Cat.string_of_span (inf_to_i,inf_to_w))
in
List.map
(fun ((inf_to_sh,sh_to_base,sh_to_w,conflict) as sharing) ->
let iso_to_w = Cat.is_iso sh_to_w in
let iso_to_base = Cat.is_iso sh_to_base in
if iso_to_w then
if iso_to_base then
let () =
if safe() then
if (inf_to_i =~= inf_to_w) then assert true
else
begin
Term.printf [Term.red]
"Error: %s and %s are not extensionally equivalent!\n"
(Cat.string_of_arrows ~full:true inf_to_i)
(Cat.string_of_arrows ~full:true inf_to_w) ;
assert false
end
in
((*assert (not conflict);*)
Iso (sh_to_base @@ (Cat.invert sh_to_w)))
else
((*assert (not conflict);*)
Below (sh_to_base @@ (Cat.invert sh_to_w)))
else
if not iso_to_base then
Incomp sharing
else
((*assert (not conflict) ;*)
Above (sh_to_w @@ (Cat.invert sh_to_base)))
) (Cat.share inf_to_i inf_to_w)
exception Found_iso of Cat.arrows * int
exception Found_below of int * Cat.arrows * int * Cat.arrows
type inf_path =
{beta : (int*Cat.arrows*Cat.arrows*Cat.arrows) list Lib.IntMap.t ;
alpha: (int*Cat.arrows) Lib.IntMap.t}
let print_inf_path ip =
Lib.IntMap.iter
(fun i inf_list ->
Term.printf [] "Beta(%d) := [%s]\n " i
(String.concat ","
(List.map
(fun (j,_,_,_) ->
Term.sprintf [Term.blue] "%d" j
) inf_list
)
)
) ip.beta ;
Lib.IntMap.iter
(fun i (j,f) ->
Printf.printf "%d ~> %d\n" i j
) ip.alpha
let alias i inf_path =
try Lib.Util.proj_left (Lib.IntMap.find i inf_path.alpha) with Not_found -> i
let add_step_alpha i j a_ij ext_base inf_path =
let i',to_i' =
try Lib.IntMap.find i inf_path.alpha with
Not_found -> (i,Cat.identity (Cat.src a_ij) (Cat.src a_ij))
in
let j',to_j' =
try Lib.IntMap.find j inf_path.alpha with
Not_found -> (j,Cat.identity (Cat.trg a_ij) (Cat.trg a_ij))
in
if safe() then assert (Cat.is_iso to_i') ;
let f = a_ij @@ (Cat.invert to_i') in
let g = to_j' @@ f in
add_step i' j' g ext_base
let find_extension_alpha i ext_base inf_path =
find_extension (alias i inf_path) ext_base
let add_conflict_alpha i j ext_base inf_path =
add_conflict (alias i inf_path) (alias j inf_path) ext_base
let string_of_sharings sharings =
String.concat "," (List.map (fun (to_midpoint,_,_,_) -> Graph.to_string (Cat.trg to_midpoint)) sharings)
let merge j i j_to_i ext_base =
let pi = find i ext_base in
let pj = find j ext_base in
let ext_base = (*removing steps k |-> j and adding k |-> i if needed*)
Lib.IntSet.fold
(fun k ext_base ->
let pk = find k ext_base in
let ext_base =
if not (Lib.IntMap.mem i pk.next) then
let k_to_j = Lib.IntMap.find j pk.next in
add_step k i (j_to_i @@ k_to_j) ext_base
else
ext_base
in
remove_step k j ext_base
) pj.prev ext_base
in
let ext_base =
Lib.IntMap.fold
(fun k j_to_k ext_base ->
let ext_base =
if Lib.IntMap.mem k pi.next then ext_base
else
add_step i k (j_to_k @@ (Cat.invert j_to_i)) ext_base
in
remove_step j k ext_base
) pj.next ext_base
in
{points = Lib.IntMap.remove j ext_base.points ;
max_elements = Lib.IntSet.remove j ext_base.max_elements ;
fresh = ext_base.fresh ;
extensions = Lib.IntMap.remove j ext_base.extensions ;
witnesses = Lib.IntSet.remove j ext_base.witnesses
}
type param = {max_step : int option ; min_sharing : int ; tree_shape : bool ; sparse : bool}
let def_param = {max_step = None ; min_sharing = 1 ; tree_shape = false ; sparse = false}
let rec progress param ext_base dry_run compared inf_path queue step cut max_elements =
(************* DEBUGING INFO ***************)
let () =
if safe () then
let _ =
QueueList.fold (fun (k,_,i) lhs ->
let i' = alias i inf_path in
assert (if (Lib.IntSet.mem i' lhs) then
let () =
Printf.printf
"Queue is not well formed for %d (%d) : \n {%s}\n" i i'
(String.concat
","
(QueueList.fold
(fun (i,_,j) cont ->
("("^(string_of_int i)^"|->"^(string_of_int j)^")")::cont
) queue [])
)
in
(flush stdout ; false)
else true
) ;
Lib.IntSet.add k lhs
) queue Lib.IntSet.empty
in
()
in
let () = if db() then
begin
Printf.printf
"Queue: {%s}\n"
(String.concat
","
(QueueList.fold
(fun (i,_,j) cont ->
("("^(string_of_int i)^"|->"^(string_of_int j)^")")::cont
) queue [])
) ;
Printf.printf
"Compared {%s}\n"
(String.concat ","
(List.map
(fun (x,y) ->
Term.sprintf [Term.yellow] "%d|->%d" x y
) (Lib.Int2Set.elements compared)
)
) ;
flush stdout
end
in
(************* DEBUGING INFO ***************)
let subst i j set =
Lib.IntSet.add i (Lib.IntSet.remove j set)
in
let inc_step ext_base s =
match param.max_step with
None -> s+1
| Some i ->
let n = s+1 in
if n < i then n
else raise (Invariant_failure ("Max step reached",ext_base))
in
let add_alias i i' to_i' alpha ext_base =
if safe () then
assert (alias i inf_path = i) ;
if mem i ext_base then
let () =
assert (param.tree_shape || param.sparse || param.min_sharing > 1)
in
(alpha,merge i i' to_i' ext_base)
else
let i',to_i' =
try
let j,to_j = Lib.IntMap.find i' alpha in (j,to_j @@ to_i')
with Not_found -> (i',to_i')
in
(*super inneficient*)
let alpha =
Lib.IntMap.fold
(fun j (j',to_j') alpha ->
if j'=i then Lib.IntMap.add j (i', to_i' @@ to_j') alpha
else
alpha
) alpha alpha
in
(Lib.IntMap.add i (i',to_i') alpha,ext_base)
in
let alias_inf ((p,root_to_p,p_to_i,p_to_w) as inf) alpha =
try
let p',to_p' = Lib.IntMap.find p alpha in
let from_p' = Cat.invert to_p' in
(p', to_p'@@root_to_p, p_to_i@@from_p', p_to_w@@from_p')
with
Not_found -> inf
in
let update_inf i inf inf_path ext_base =
(*newp might be a hard point while oldp a temporary one*)
let unify_meet ((newp,root_to_newp,newp_to_i,newp_to_w) as nw) old_infs alpha ext_base =
List.fold_left
(fun (is_found,alpha,infs,ext_base) old ->
let ((oldp,root_to_oldp,oldp_to_i,oldp_to_w) as old) =
alias_inf old alpha
in
if is_found then (is_found,alpha,old::infs,ext_base)
else
if newp = oldp then (true,alpha,old::infs,ext_base)
else
if oldp_to_i@@root_to_oldp === newp_to_i@@root_to_newp then
begin
match Cat.aliasing oldp_to_i newp_to_i with
(*commutes but different midpoints*)
None -> (is_found, alpha, old::infs,ext_base)
| Some old_to_new ->
if db () then
assert (Cat.is_iso old_to_new) ;
if newp > oldp then
let alpha,ext_base = add_alias newp oldp (Cat.invert old_to_new) alpha ext_base in
(true,alpha,old::infs,ext_base)
else
let alpha,ext_base = add_alias oldp newp old_to_new alpha ext_base in
(true, alpha, nw::infs,ext_base)
end
else (*new mp is not equivalent to the old one*)
(is_found,alpha,old::infs,ext_base)
) (false,alpha,[],ext_base) old_infs
in
match (try Lib.IntMap.find i inf_path.beta with Not_found -> []) with
(*inf_list is the first comparison between i and the witness*)
[] -> ({inf_path with beta = Lib.IntMap.add i [inf] inf_path.beta},ext_base)
| old_inf_list ->
let alpha,updated_inf_list,ext_base =
let iso_found,alpha,infs,ext_base = unify_meet inf old_inf_list inf_path.alpha ext_base in
if iso_found then (alpha,infs,ext_base)
else (alpha,inf::old_inf_list,ext_base)
in
({alpha=alpha ; beta=Lib.IntMap.add i updated_inf_list inf_path.beta},ext_base)
in
let get_best_inf i ip =
List.map (fun inf -> alias_inf inf ip.alpha) (Lib.IntMap.find i ip.beta)
in
if QueueList.is_empty queue then (inf_path,dry_run,cut,max_elements)
else
let k,step_ki,i =
let k,step_ki,i = QueueList.pop queue in
if safe() then assert (alias k inf_path = k) ;
try
let i',to_i' = Lib.IntMap.find i inf_path.alpha in
(k, to_i' @@ step_ki, i')
with Not_found -> (k,step_ki,i)
in
let pi = find i ext_base in
let is_complete =
Lib.IntSet.fold
(fun j b ->
let j' = alias j inf_path in
if j' = j && j<>k then Lib.Int2Set.mem (j,i) compared && b
else b
) pi.prev true
in
let dry_run',compared',inf_path',queue',step',cut',max_elements'=
(*folding over the list of best infs of k and w*)
List.fold_left
(fun (dry_run,compared,inf_path,queue,step,cut,max_elements) (inf,root_to_inf,inf_to_k,inf_to_w) ->
let () = if safe() then assert (alias inf inf_path = inf) in
let inf_to_i = step_ki @@ inf_to_k in
let () = if db() then (
Printf.printf "Visiting (%d -*-> %d |-> %d )\n" inf k i ;
flush stdout )
in
let comparisons = compare inf_to_i inf_to_w in
List.fold_left (fun (dry_run,compared,inf_path,queue,step,cut,max_elements) cmp ->
match cmp with
(************************** Case inf_to_w factors inf_to_i ********************************)
(*1. best_inf,aliases = (root_to_inf,inf_to_i,inf,inf_to w) +!> best_inf (i) *)
(*2. add inf |-x-> i and w |-> i to dry_run NB: inf |-> w will eventually be added*)
(*3. add i to visited *)
(*NB no todo list to update here*)
| Below w_to_i -> (* w --w_to_i--> i *)
let () = if db() then print_string (blue ("below "^(string_of_int i)^"\n")) in
raise (Found_below (inf,inf_to_w,i,w_to_i))
(*
let dry_run' =
((fun w ext_base inf_path ->
let ext_base = add_step_alpha inf w inf_to_w ext_base inf_path in
add_step_alpha w i w_to_i ext_base inf_path
)::dry_run)
in
let compared' = Lib.Int2Set.add (k,i) compared in
let queue' =
if param.tree_shape then
let () = if db() then Printf.printf "Droping queue because TreeShape option is enabled!\n"
in
QueueList.create ()
else queue
in
(dry_run',compared',inf_path,queue',inc_step ext_base step, cut, max_elements)
*)
(************************** Case inf_to_i factors inf_to_w *******************)
(*1. best_inf,_ = (root_to_i,id_i,i,i_to_w) +!> best_inf (i) *)
(*NB: no new alias here. no dry_run to add*)
(*2. add step i |-> k (for all succ k) to TODO to emulate Depth first*)
(*3. add i to visited *)
| Above i_to_w -> (* i --i_to_w--> w *)
if db() then print_string
((yellow ("above "))
^(string_of_int i)
^" through "^
(Cat.string_of_arrows ~full:true i_to_w)^"\n") ;
if safe() then assert (
if not (alias i inf_path = i) then
(Printf.printf "Something wrong point %d is aliased to %d\n" i (alias i inf_path) ;
false)
else
true
) ;
let queue = if param.tree_shape then QueueList.create () else queue in
let g_i = Cat.src i_to_w in
let inf_path',ext_base =
update_inf i
(i, inf_to_i @@ root_to_inf, Cat.identity g_i g_i, i_to_w)
inf_path
ext_base
in
let queue' =
if not is_complete then (*i.e not adding the step i |--> x if some predecessors of i are still in the queue*)
queue
else
Lib.IntMap.fold
(fun j step_ij cont ->
QueueList.add_hp (i, step_ij, j) cont (*trying to find iso first*)
) pi.next queue
in
let compared' = Lib.Int2Set.add (k,i) compared
in
let max_elements' = if Lib.IntMap.is_empty pi.next then Lib.IntSet.add i max_elements else max_elements in
(dry_run, compared' , inf_path' ,queue', inc_step ext_base step, subst i inf cut, max_elements')
(************************** Case inf_to_w =~= inf_to_i *************************)
(*NB drop dry_run*)
| Iso iso_w_i ->
if db() then print_string (red "iso\n") ;
raise (Found_iso (iso_w_i,i))
(************** Case both inf_to_w and inf_to_i have a common factor ***********)
| Incomp sh_info ->
let to_midpoint,to_base,to_w,conflict = sh_info in
let () = if safe() then assert (Cat.wf to_midpoint) in
let compared' = Lib.Int2Set.add (k,i) compared
in
if db() then print_string
(green (Printf.sprintf
"I found 1 midpoint(s) {%s}!\n" (string_of_sharings [sh_info])
)
);
let pi = find i ext_base in
let queue' =
if param.tree_shape || param.sparse || not is_complete then (*if not complete, the step i |--> x should not be pushed on the queue*)
queue
else
Lib.IntMap.fold
(fun j step_ij cont ->
QueueList.add_lp (i, step_ij, j) cont
) pi.next queue
in
let max_elements' =
if param.tree_shape || param.sparse || Lib.IntMap.is_empty pi.next
then Lib.IntSet.add i max_elements else max_elements
in
(*No better comparison with w exists*)
(*1. best_inf,_ = (root_to_inf,inf_to_i,inf,inf_to_w) +!> best_inf (i)*)
(*2. add i |-> succ i to next_layer if i not visited*)
(*3. if sharing span has no sup add i ..#.. w to dry_run*)
(*4. mark i as visited *)
if (Cat.size to_midpoint < param.min_sharing) || (Cat.is_iso to_midpoint) then
let () = if db() then print_string (green "...that is not worth adding\n") in
let inf_path',ext_base =
update_inf i (inf,root_to_inf,inf_to_i,inf_to_w) inf_path ext_base
in
let dry_run' =
if conflict then
(fun w ext_base inf_path ->
let ext_base = add_step_alpha inf w inf_to_w ext_base inf_path in
add_conflict_alpha i w ext_base inf_path)::dry_run
else
dry_run
in
(dry_run',compared',inf_path',queue',inc_step ext_base step,cut,max_elements')
else
(*Not a trivial midpoint*)
let fresh_id = get_fresh ext_base in (*side effect*)
let () =
if db() then
Term.printf [Term.cyan] "Midpoint %d: %s\n"
fresh_id (Graph.to_string (Cat.trg to_midpoint))
in
let inf_path',ext_base =
update_inf i
(fresh_id,to_midpoint @@ root_to_inf,to_base,to_w)
inf_path
ext_base
in
let dry_run' =
(fun w ext_base inf_path ->
let mp_id,iso_mp = (* fresh_id ---iso_mp--> mp_id *)
try Lib.IntMap.find fresh_id inf_path.alpha
with Not_found -> (fresh_id,Cat.identity (Cat.trg to_midpoint) (Cat.trg to_midpoint))
in
let mp = point (Cat.trg iso_mp) in
let inf_id,iso_inf = (* inf ---iso_inf--> inf_id *)
try Lib.IntMap.find inf inf_path.alpha
with Not_found ->
(inf, Cat.identity (Cat.src to_midpoint) (Cat.src to_midpoint))
in
let inf_to_mp =
let f = to_midpoint @@ (Cat.invert iso_inf) in (*inf_to_mp: inf_id |--> mp_id*)
let () =
if safe () then
begin
assert (Cat.wf iso_mp) ;
assert (Cat.is_iso iso_inf) ;
assert (Cat.wf to_midpoint) ;(*fails*)
assert (Cat.wf f)
end
in
iso_mp @@ f
in
let mp_to_base = to_base @@ (Cat.invert iso_mp) in (* mp_to_base : mp_id |--> i *)
let ext_to_mp =
inf_to_mp @@ (find_extension inf_id ext_base)
in (*ext_to_mp: root |--> mp_id *)
(*adding root --*--> mp_id in the extension base *)
let ext_base =
if mem mp_id ext_base then ext_base
else
add mp_id mp ext_to_mp ext_base
in
let ext_base = add_step mp_id i mp_to_base ext_base
in
(*adding step from inf to midpoint or its alias
(in this case verify that inf is not already below the alias*)
let ext_base = add_step inf_id mp_id inf_to_mp ext_base
in
if conflict then ext_base else add_conflict i w ext_base
)::dry_run
in
(dry_run',compared',inf_path',queue',inc_step ext_base step, subst fresh_id inf cut,max_elements')
) (dry_run,compared,inf_path,queue,step,cut,max_elements) comparisons
) (dry_run,compared,inf_path,queue,step,cut,max_elements) (get_best_inf k inf_path)
in
progress param ext_base dry_run' compared' inf_path' queue' step' cut' max_elements'
let insert param ext_w obs_emb obs_id ext_base =
let p0 = find 0 ext_base in
let id_0 = Cat.identity p0.value p0.value in
try
let beta_0 = Lib.IntMap.add 0 [0,id_0,id_0,ext_w] Lib.IntMap.empty in
let alpha_0 = Lib.IntMap.empty in
let inf_path_0 = {beta = beta_0 ; alpha = alpha_0} in
let queue_0 =
QueueList.add_hp (0,id_0,0) (QueueList.create ())
in
let compared_0 = Lib.Int2Set.empty in
let dry_run_0 = [] in
let inf_path,dry_run,cut,max_elements =
(* May raise Found_iso or Found_below, otherwise returns a dry_run to insert new midpoints*)
progress param ext_base dry_run_0 compared_0 inf_path_0 queue_0 0 (Lib.IntSet.singleton 0) (Lib.IntSet.singleton 0)
in
let () = if db() then print_inf_path inf_path in
(* 1. Adding witness point *)
let w = get_fresh ext_base in
let _ =
if db() then
begin
print_string (blue (Printf.sprintf "Inserting witness with id %d\n" w)) ;
print_string (Printf.sprintf "Cut is {%s}\n"
(String.concat "," (List.map string_of_int (Lib.IntSet.elements cut)))) ;
flush stdout
end
in
let ext_base = add w (point (Cat.trg ext_w)) ext_w ext_base in
let ext_base,opt = add_obs w obs_emb obs_id ext_base in
let () = assert (opt=None) in
(* 2. Executing dry run, i.e inserting midpoints *)
let ext_base =
List.fold_left
(fun ext_base act ->
let eb = act w ext_base inf_path in
eb
) ext_base (List.rev dry_run)
in
if db() then
(Term.printf [Term.Blink ; Term.magenta] "Dry run executed!\n" ;
dump ext_base) ;
(* 3. Connecting witness w to its best predecessors in the base*)
let inf_list =
Lib.IntSet.fold
(fun i inf_list ->
try (Lib.IntMap.find i inf_path.beta)@inf_list with Not_found -> inf_list
) max_elements []
in
let () =
if db() then
Printf.printf "best infs for witness %d are {%s}\n"
w
(String.concat "," (List.map (fun (i,_,_,_) -> string_of_int i) inf_list))
in
let ext_base =
List.fold_left
(fun ext_base (inf,_,_,inf_to_w) ->
if inf=w || not (Lib.IntSet.mem inf cut) then
(if db() then Printf.printf "%d not in cut skipping\n" inf ; ext_base)
else
add_step_alpha inf w inf_to_w ext_base inf_path
) ext_base (List.rev inf_list)
in
(ext_base,opt)
with
Found_iso (iso_w_i,i) -> add_obs i (iso_w_i @@ obs_emb) obs_id ext_base
| Found_below (inf,inf_to_w,i,w_to_i) ->
let w = get_fresh ext_base in
let _ =
if db() then
begin
print_string (blue (Printf.sprintf "Inserting witness with id %d\n" w)) ;
end
in
let ext_base = add w (point (Cat.trg ext_w)) ext_w ext_base in
let ext_base = add_step w i w_to_i (add_step inf w inf_to_w ext_base) in
add_obs w obs_emb obs_id ext_base
let of_sharings tiles_l =
let rec iter_convert z l r tiles ext_base =
match tiles with
[] -> let z,l,r = get_fresh ext_base, get_fresh ext_base, get_fresh ext_base in (ext_base,z,l,r)
| (root_to_inf,tile)::tiles' ->
let ext_base =
if mem z ext_base then ext_base
else
let root = Cat.src root_to_inf in
add z (point root) (Cat.identity root root) ext_base in
let ext_base =
let (inf_to_left,inf_to_right) = Cat.lower_bound tile in
let i = get_fresh ext_base in
let conflict = match Cat.upper_bound tile with None -> true | _ -> false in
let inf = point (Cat.src inf_to_left) in
let left = point (Cat.trg inf_to_left) in
let right = point (Cat.trg inf_to_right) in
let ext_base = add i inf root_to_inf ext_base in
let ext_base = if mem l ext_base then ext_base else add l left (inf_to_left @@ root_to_inf) ext_base in
let ext_base = if mem r ext_base then ext_base else add r right (inf_to_right @@ root_to_inf) ext_base in
let ext_base = if conflict then add_conflict l r ext_base else ext_base in
let ext_base = add_step z i root_to_inf
(add_step i l inf_to_left
(add_step i r inf_to_right ext_base))
in
match Cat.upper_bound tile with
None -> ext_base
| Some (left_to_sup,right_to_sup) ->
let s = get_fresh ext_base in
let sup = point (Cat.trg left_to_sup) in
let ext_base = add s sup ((Cat.arrows_of_tile tile) @@ root_to_inf) ext_base in
add_step l s left_to_sup (add_step r s right_to_sup ext_base)
in
iter_convert z l r tiles' ext_base
in
match tiles_l with
[] -> empty (Graph.empty)
| hd::_ ->
match hd with
[] -> failwith "error"
| (f,_)::_ ->
let inf = Cat.src f in
let eb,_,_,_ =
let eb = empty inf in
let l = get_fresh eb in
let r = get_fresh eb in
List.fold_left
(fun (ext_base,z,l,r) tiles ->
iter_convert z l r tiles ext_base
) (eb,0,l,r) tiles_l
in
eb
let to_dot_corresp ext_base =
let str_list,_ =
Lib.IntMap.fold
(fun i p (str_list,fresh) ->
let f = find_extension i ext_base in
let _G = List.hd ((Cat.src f) --> f) in
match p.obs with
None -> let str,name,fresh = Graph.to_dot_cluster ~sub:_G p.value i fresh in
(str::str_list,fresh)
| _ -> (str_list,fresh)
) ext_base.points ([],0)
in
"digraph G{\n"^(String.concat "\n" str_list)^"\n}"
let to_dot_content ext_base =
let str_list =
Lib.IntMap.fold
(fun i p str_list ->
let f = find_extension i ext_base in
let pairs = List.map (fun (u,v) -> (v,u)) (Cat.fold_arrow f) in
(Graph.to_dot p.value ~highlights:pairs (string_of_int i))::str_list
) ext_base.points []
in
(String.concat "\n" str_list)
end