-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTrain.py
375 lines (332 loc) · 16.6 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from Model import DataLoader_torch
from Model import Models
from collections import OrderedDict
import argparse
import os
import pandas as pd
import torch
import torch.nn as nn
import torchvision
import numpy as np
import torch.optim as optim
import datetime
import sklearn
import json
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score
parser = argparse.ArgumentParser(description='ATTENTION DENSENET MODEL')
parser.add_argument('--result_dir', type=str, default='/nfs03/data/TCGA_Brain/Results/TCGA2.5Classifier/')
parser.add_argument('--df_path', type=str, default='/home/gid-xuz/csv/Image_IDH_TCGA_collapse.csv')
parser.add_argument('--gpu', type=str, default='0,1,2,3')
parser.add_argument('--color',action='store_true')
parser.add_argument('--color_off',dest='color',action='store_false')
parser.add_argument('--A', type=int, default=16,help='node number for attention')
parser.add_argument('--balance', default=0.5, type=float,
help='unbalanced positive class weight (default: 0.5, balanced classes)')
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--patch_n', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--n_epoch', type=int, default=100, help='number of epochs')
parser.add_argument('--y_col',type=str,default='IDH')
parser.add_argument('--workers', default=4, type=int, help='number of data loading workers (default: 4)')
parser.add_argument('--optimizer', type=str, default='SGD')
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--spatial_sample', action='store_true')
parser.add_argument('--spatial_sample_off', dest='spatial_sample', action='store_false')
parser.add_argument('--no_age', action='store_true')
parser.add_argument('--add_age', dest='no_age', action='store_false')#concatenate age on embedding
parser.add_argument('--notes',type=str,default='')
parser.add_argument('--balance_training',action='store_true')
parser.add_argument('--balance_training_off',action='store_false',dest='balance_training')
parser.add_argument('--freeze',type=int,default=0,help='layer number to freeze')
parser.add_argument('--CNN',type=str,default='resnet', help='choose from resnet/densenet')
parser.add_argument('--pretrain',type=str, default='imagenet',help = 'put pretrained model path here')
parser.add_argument('--use_scheduler',action='store_true')
parser.add_argument('--use_scheduler_off',dest='use_scheduler',action='store_false')
parser.add_argument('--freeze_batchnorm',action='store_true')
parser.add_argument('--freeze_batchnorm_off',action='store_false',dest='freeze_batchnorm')
parser.add_argument('--freeze_CNN_model',action='store_true')
parser.add_argument('--freeze_CNN_model_off',dest = 'freeze_CNN_model',action='store_false')
parser.add_argument('--pooling', type=str, default='attention', help='aggregation method of model, choose from mean, attention, max')
def main():
#-------Environment
global args
args = parser.parse_args()
#os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
#os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
device0 = torch.device("cuda:0")
device1 = torch.device("cuda:1")
result_path = os.path.join(args.result_dir, str(datetime.datetime.now())[0:19])
print('the result dir is: ', result_path)
os.makedirs(result_path)
if args.pretrain=='imagenet':
model_name = str(args.CNN) + 'Freeze'+str(args.freeze) + 'Emb' + str(args.pooling) + 'lr' + str(args.lr)[2:] + 'epoch'+str(args.n_epoch)+ \
'Opt'+str(args.optimizer)+'patch' + str(args.patch_n) + 'Balweight'+str(args.balance) + 'Balsample'+str(args.balance_training)+\
'imagenet_'+str(args.notes)
else:
model_name = 'Pretrained_' + str(args.CNN) + 'Freeze'+str(args.freeze) + 'Emb' + str(args.pooling) + 'lr' + str(args.lr)[2:] + 'epoch'+str(args.n_epoch)+ \
'Opt'+str(args.optimizer)+'patch' + str(args.patch_n) + 'Balweight'+str(args.balance) + 'Balsample'+str(args.balance_training)+\
'_'+str(args.notes)
fconv = open(os.path.join(result_path, model_name)+'.csv', 'w')
fconv.write('epoch,metric,value\n')
fconv.close()
#--------CNN
print('Building Model and Optimizer')
if args.CNN=='resnet':
CNN_model = Models.ResNet18(Freeze_Num=args.freeze)
if args.no_age:
attention_model = Models.attention(D=args.A,L=1000)
else:
attention_model = Models.attention(D=args.A,L=1001)
elif args.CNN=='densenet':
CNN_model = Models.DenseNet(Freeze_Num=args.freeze)
if args.no_age:
attention_model = Models.attention(D=args.A,L=1024)
else:
attention_model = Models.attention(D=args.A,L=1025)
else:
raise Exception('choose from resnet and densenet')
if args.pretrain!='imagenet':
print('Using custom pretrained weights')
file_list = os.listdir(args.pretrain)
model0_name = [file for file in file_list if 'vlossCNN' in file][0]
model1_name = [file for file in file_list if 'vlossAT' in file][0]
model0_path = os.path.join(args.pretrain, model0_name)
model1_path = os.path.join(args.pretrain, model1_name)
state_dict = torch.load(model0_path).state_dict()
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
CNN_model.load_state_dict(new_state_dict)
if args.no_age:
attention_model.load_state_dict(torch.load(model1_path).state_dict())
CNN_model = torch.nn.DataParallel(CNN_model,output_device=1)
CNN_model.to(device0)
attention_model.to(device1)
# freeze CNN model if needed
if args.freeze_CNN_model:
CNN_model.eval()
for param in CNN_model.parameters():
param.requires_grad = False
#optimizer
if args.freeze_CNN_model:
param_list = [{'params': attention_model.parameters()}]
else:
param_list = [{'params': CNN_model.parameters()},
{'params': attention_model.parameters()}]
optimizer = optim.SGD(param_list, lr=args.lr, momentum=args.momentum,weight_decay=args.weight_decay)
if args.optimizer=='Adam':
optimizer = optim.Adam(param_list, lr=args.lr, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[args.n_epoch/3, args.n_epoch/3*2], gamma=0.1)
#--------INPUT
df=pd.read_csv(args.df_path)
train_index = df[df['Train_Test']=='Train'].index
val_index = df[df['Train_Test']=='Validation'].index
df_train=df[df['Train_Test']=='Train'].reset_index(drop=True)
df_vali=df[df['Train_Test']=='Validation'].reset_index(drop=True)
if args.no_age:
loadage=False
else:
loadage=True
train_dset = DataLoader_torch.Classification_Generator(df_train, y_col=args.y_col,patch_n=args.patch_n,p=0.5,
ColorAugmentation=args.color,spatial_sample=False,loadage=loadage)
vali_dset = DataLoader_torch.Classification_Generator(df_vali, patch_n=args.patch_n,y_col=args.y_col,p=0,
ColorAugmentation=False,spatial_sample=False,loadage=loadage)
train_loader = torch.utils.data.DataLoader(
train_dset,batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
vali_dset,batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
###sampler
if args.balance_training:
class_sample_count = np.array([len(np.where(df_train[args.y_col] == t)[0]) for t in np.unique(df_train[args.y_col])])
weight = 1. / class_sample_count
weight = pd.DataFrame(weight.flatten(), index=list(np.unique(df_train[args.y_col])))
sample_weights=np.array([weight.loc[t][0] for t in df_train[args.y_col]])
sample_weights = torch.from_numpy(sample_weights)
sample_weights = sample_weights.double()
sampler = torch.utils.data.WeightedRandomSampler(weights = sample_weights, num_samples = int(class_sample_count.min()*2),replacement=False)
train_loader = torch.utils.data.DataLoader(
train_dset,batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True,sampler=sampler)
print('Balance Training Weighted Sampler Used')
print(weight)
#--------Loop Epoch
print('Start Training:')
lowest_val_loss = 100.
highest_val_acc = 0.
for epoch in range(1,args.n_epoch+1):
loss,acc= train(epoch,model=[CNN_model,attention_model],
train_loader=train_loader,optimizer=optimizer,
device0=device0,device1=device1,
freeze_bn=args.freeze_batchnorm,freeze_CNN_model=args.freeze_CNN_model,
withage=loadage)
vloss, vacc, vauc = validation(epoch,model=[CNN_model,attention_model],
val_loader=val_loader,
device0=device0,device1=device1,
withage=loadage)
print('finished one validation')
#save log
fconv = open(os.path.join(result_path, model_name)+'.csv', 'a')
fconv.write('{},loss,{}\n'.format(epoch, loss))
fconv.write('{},acc,{}\n'.format(epoch, acc))
fconv.write('{},val_loss,{}\n'.format(epoch, vloss))
fconv.write('{},val_acc,{}\n'.format(epoch, vacc))
fconv.write('{},val_auc,{}\n'.format(epoch, vauc))
fconv.close()
if args.use_scheduler:
scheduler.step()
#save best model
if vloss < lowest_val_loss:
lowest_val_loss=vloss
torch.save(CNN_model, os.path.join(result_path, model_name) + '_vlossCNN.pt')
torch.save(attention_model, os.path.join(result_path, model_name) + '_vlossAT.pt')
if vacc > highest_val_acc:
highest_val_acc=vacc
torch.save(CNN_model, os.path.join(result_path, model_name) + '_vaccCNN.pt')
torch.save(attention_model, os.path.join(result_path, model_name) + '_vaccAT.pt')
def train(epoch, model, train_loader, optimizer, device0, device1, freeze_bn, freeze_CNN_model, withage=False):
print('Epoch' + str(epoch) + 'starts:')
model0, model1 = model
if not freeze_CNN_model:
model0.train()
model1.train()
if freeze_bn:
freeze_batchnorm(model0)
train_loss = 0.
train_acc = 0.
if withage:
for batch_idx, (data, label, age) in enumerate(train_loader):
age = torch.from_numpy(np.array([[age]])).to(device1)
# reset gradients
optimizer.zero_grad()
#prepare data
bag_label = label[0].to(device1).float()
data = data.squeeze(0).float()
#accumulate embedding
embed=[]
for minibatch_ind in range(0,len(data),20):
data0 = data[minibatch_ind:min(len(data),minibatch_ind+20),...]
data0 = data0.to(device0)
embed0 = model0(data0)
embed.append(embed0)
embed = torch.cat(embed,dim=0)
age = torch.tile(age, (embed.size()[0], 1)).float()
embed = torch.cat((embed,age),dim=1)
# calculate loss and metrics
ypred, yhat, _ = model1(embed, pooling=args.pooling)
loss = Models.Loss(y_pred=ypred,y_true=bag_label,balance=args.balance).to(device1)
train_loss += loss.item()
acc= Models.ACC(yhat,bag_label)
train_acc += acc
# backward pass
loss.backward()
# step
optimizer.step()
if batch_idx % 20 == 0:
print('Train Epoch: {}/{}'.format(batch_idx, len(train_loader.dataset)))
else:
for batch_idx, (data, label) in enumerate(train_loader):
# reset gradients
optimizer.zero_grad()
#prepare data
bag_label = label[0].to(device1).float()
data = data.squeeze(0).float()
#accumulate embedding
embed=[]
for minibatch_ind in range(0,len(data),20):
data0 = data[minibatch_ind:min(len(data),minibatch_ind+20),...]
data0 = data0.to(device0)
embed0 = model0(data0)
embed.append(embed0)
embed = torch.cat(embed,dim=0)
# calculate loss and metrics
ypred, yhat, _ = model1(embed, pooling=args.pooling)
loss = Models.Loss(y_pred=ypred,y_true=bag_label,balance=args.balance).to(device1)
train_loss += loss.item()
acc= Models.ACC(yhat,bag_label)
train_acc += acc
# backward pass
loss.backward()
# step
optimizer.step()
if batch_idx % 20 == 0:
print('Train Epoch: {}/{}'.format(batch_idx, len(train_loader.dataset)))
# calculate loss and error for epoch
train_loss /= len(train_loader)
train_acc /= len(train_loader)
print('Epoch: {}, Loss: {:.4f}, Train accuracy: {:.4f}'.format(epoch, train_loss, train_acc))
return train_loss, train_acc
def validation(epoch, model, val_loader, device0, device1,withage=False):
# switch model to evaluation mode
model0, model1 = model
model0.eval()
model1.eval()
vali_loss = 0.
vali_acc = 0.
auc_ytrue=[]
auc_ypred=[]
with torch.no_grad():
if withage:
for batch_idx, (data, label, age) in enumerate(val_loader):
age = torch.from_numpy(np.array([[age]])).to(device1)
bag_label = label[0].to(device1).float()
auc_ytrue.append(label[0].float())
data = data.squeeze(0).float()
#accumulate embedding
embed = []
for minibatch_ind in range(0,len(data),30):
data0 = data[minibatch_ind:min(len(data),minibatch_ind+30),...]
data0 = data0.to(device0)
embed0 = model0(data0) # extract patch level feature
embed.append(embed0)
embed = torch.cat(embed,dim=0)
age = torch.tile(age, (embed.size()[0], 1)).float()
embed = torch.cat((embed,age),dim=1)
# calculate loss and metrics
ypred, yhat, _ = model1(embed, pooling=args.pooling)
loss = Models.Loss(y_pred=ypred,y_true=bag_label,balance=args.balance).to(device1)
vali_loss += loss.item()
acc= Models.ACC(y_pred=yhat, y_true=bag_label)
vali_acc += acc
auc_ypred.append(ypred)
else:
for batch_idx, (data, label) in enumerate(val_loader):
bag_label = label[0].to(device1).float()
auc_ytrue.append(label[0].float())
data = data.squeeze(0).float()
#accumulate embedding
embed = []
for minibatch_ind in range(0,len(data),30):
data0 = data[minibatch_ind:min(len(data),minibatch_ind+30),...]
data0 = data0.to(device0)
embed0 = model0(data0) # extract patch level feature
embed.append(embed0)
embed = torch.cat(embed,dim=0)
# calculate loss and metrics
ypred, yhat, _ = model1(embed, pooling=args.pooling)
loss = Models.Loss(y_pred=ypred,y_true=bag_label,balance=args.balance).to(device1)
vali_loss += loss.item()
acc= Models.ACC(y_pred=yhat, y_true=bag_label)
vali_acc += acc
auc_ypred.append(ypred)
# calculate loss and error for epoch
vali_loss /= len(val_loader)
vali_acc /= len(val_loader)
vali_auc = roc_auc_score(y_true=auc_ytrue,y_score=auc_ypred)
print('Epoch: {}, Validation Loss: {:.4f}, Validation accuracy: {:.4f}, Validation auc: {:.4f}'.format(epoch, vali_loss, vali_acc, vali_auc))
return vali_loss, vali_acc, vali_auc
#freeze batchnorm
def freeze_batchnorm(model):
for module in model.modules():
if isinstance(module, nn.BatchNorm2d):
if hasattr(module, 'weight'):
module.weight.requires_grad_(False)
if hasattr(module, 'bias'):
module.bias.requires_grad_(False)
module.eval()
if __name__ == "__main__":
main()