-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathModelInference.py
179 lines (138 loc) · 5.59 KB
/
ModelInference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from __future__ import annotations
from typing import Dict, List, Iterable, Any
import pandas as pd
import numpy as np
from .SimpleDataset import SimpleDataset
# import dill
from catboost import CatBoostRegressor
from sklearn.model_selection import train_test_split
from lightgbm import LGBMRegressor
import catboost
import lightgbm
from sklearn.metrics import mean_squared_error
# from fastai.tabular.all import *
import warnings
import lightgbm as lgb
warnings.filterwarnings("ignore")
class ModelInference:
def __init__(
self,
features: Dict[str, Any],
ticker: str,
model_id: str,
timeframe: str,
api_data: Any, # Заглушка для api
# balance: float,
# max_balance_for_trading: float,
# min_balance_for_trading: float,
# part_of_balance_for_buy: float=None,
# sum_for_buy_rur: float=None,
# sum_for_buy_num: float=None,
# part_of_balance_for_sell: float=None,
# sum_for_sell_rur: float=None,
# sum_for_sell_num: float=None,
# sell_all: bool=False,
notebook: bool = False,
):
self.features = features
self.ticker = ticker
self.user_id = model_id
self.timeframe = timeframe
self.api_data = api_data
# self.balance = balance
# self.max_balance = max_balance_for_trading
# self.min_balance = min_balance_for_trading
# self.cur_volume_rur = 0
# self.cur_volume_num = 0
# self.num_for_trade = 0
# self.part_of_balance_for_buy = part_of_balance_for_buy
# self.sum_for_buy_rur = sum_for_buy_rur
# self.sum_for_buy_num = sum_for_buy_num
# self.part_of_balance_for_sell = part_of_balance_for_sell
# self.sum_for_sell_rur = sum_for_sell_rur
# self.sum_for_sell_num = sum_for_sell_num
# self.sell_all = sell_all
# self.sum_volume = 0
# self.price = 0
self.sygnals = []
self.notebook = notebook
def get_pred_one_candle(
self, seed=42, candles=200, date_col: str = "date", target_col: str = "target"
):
model_path = f'{self.user_id}_{self.ticker}_{self.timeframe}_{self.features["model"]}.bin'
test_data = SimpleDataset.create_dataset(
features=self.features,
ticker=self.ticker,
timeframe=self.timeframe,
candles=candles,
notebook=self.notebook,
)
test_data = test_data.drop(columns=[date_col, target_col]).tail(1)
if self.features["model"] == "catboost":
model = CatBoostRegressor(eval_metric="RMSE", random_seed=seed)
model.load_model(model_path)
self.preds = model.predict(test_data)
if self.features["model"] == "lightgbm":
model = lgb.Booster(model_file=model_path)
self.preds = model.predict(test_data)
# if self.features['model'] == 'tabular_learner':
# model = load_learner(model_path, cpu=True, pickle_module=dill)
# test_dl = model.dls.test_dl(test_data)
# self.preds, _ = model.get_preds(dl = test_dl)
self.sygnals = (self.preds > self.features["threshold"]) * 1
return test_data, self.sygnals[0]
# def change_parameters(self) -> str:
# if (self.balance < self.min_balance):
# return "min_balance"
# elif (self.balance > self.max_balance):
# return "max_balance"
# else:
# return "done"
# def buy(self, price: float) -> str:
# if (self.part_of_balance_for_buy):
# self.num_for_trade = self.balance * self.part_of_balance_for_buy // price
# elif (self.sum_for_buy_rur):
# self.num_for_trade = self.sum_for_buy_rur // price
# elif (self.sum_for_buy_num):
# self.num_for_trade = self.sum_for_buy_num
# else:
# return "error"
# if (self.balance - self.num_for_trade * price > 0):
# self.cur_volume_num += self.num_for_trade
# self.cur_volume_rur = self.cur_volume_num * price
# self.balance -= self.num_for_trade * price
# self.sum_volume += self.cur_volume_num * price
# else:
# pass
# self.num_for_trade = 0
# return self.change_parameters()
# def sell(self, price: float) -> str:
# if (self.cur_volume_num > 0):
# if (self.part_of_balance_for_sell):
# self.num_for_trade = self.balance * self.part_of_balance_for_sell // price
# elif (self.sum_for_sell_rur):
# self.num_for_trade = self.sum_for_sell_rur // price
# elif (self.sum_for_sell_num):
# self.num_for_trade = self.sum_for_sell_num
# elif (self.sell_all):
# self.num_for_trade = self.cur_volume_num
# else:
# return "error"
# self.cur_volume_num -= self.num_for_trade
# self.cur_volume_rur = self.cur_volume_num * price
# self.balance += self.num_for_trade * price
# self.sum_volume += self.cur_volume_num * price
# self.num_for_trade = 0
# else:
# pass
# return self.change_parameters()
# def change_parameters(self) -> str:
# if (self.balance < self.min_balance):
# return "min_balance"
# elif (self.balance > self.max_balance):
# return "max_balance"
# else:
# return "done"
# def do_one_candle(self):
# candle, signal = self.get_pred_one_candle()
# self.price = candle['close']