-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathkepbls.py
executable file
·371 lines (289 loc) · 13.2 KB
/
kepbls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import sys, time, math, re
import numpy as np
from copy import copy
from scipy import stats
from astropy.io import fits as pyfits
from matplotlib import pyplot as plt
import kepio, kepmsg, kepkey
def kepbls(infile,outfile,datacol,errcol,minper,maxper,mindur,maxdur,nsearch,
nbins,plot,clobber,verbose,logfile,status,cmdLine=False):
# startup parameters
np.seterr(all="ignore")
status = 0
labelsize = 32
ticksize = 18
xsize = 16
ysize = 8
lcolor = '#0000ff'
lwidth = 1.0
fcolor = '#ffff00'
falpha = 0.2
# log the call
hashline = '----------------------------------------------------------------------------'
kepmsg.log(logfile,hashline,verbose)
call = 'KEPBLS -- '
call += 'infile='+infile+' '
call += 'outfile='+outfile+' '
call += 'datacol='+str(datacol)+' '
call += 'errcol='+str(errcol)+' '
call += 'minper='+str(minper)+' '
call += 'maxper='+str(maxper)+' '
call += 'mindur='+str(mindur)+' '
call += 'maxdur='+str(maxdur)+' '
call += 'nsearch='+str(nsearch)+' '
call += 'nbins='+str(nbins)+' '
plotit = 'n'
if (plot): plotit = 'y'
call += 'plot='+plotit+ ' '
overwrite = 'n'
if (clobber): overwrite = 'y'
call += 'clobber='+overwrite+ ' '
chatter = 'n'
if (verbose): chatter = 'y'
call += 'verbose='+chatter+' '
call += 'logfile='+logfile
kepmsg.log(logfile,call+'\n',verbose)
# start time
kepmsg.clock('KEPBLS started at',logfile,verbose)
# is duration greater than one bin in the phased light curve?
if nbins * maxdur / 24.0 / maxper <= 1.0:
message = ('WARNING -- KEPBLS: ' + str(maxdur) +
' hours transit duration < 1 phase bin when P = ')
message += str(maxper) + ' days'
kepmsg.warn(logfile,message)
# test log file
logfile = kepmsg.test(logfile)
# clobber output file
if clobber: status = kepio.clobber(outfile,logfile,verbose)
if kepio.fileexists(outfile):
message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes'
status = kepmsg.err(logfile,message,verbose)
# open input file
if status == 0:
instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
if status == 0:
tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
# fudge non-compliant FITS keywords with no values
if status == 0:
instr = kepkey.emptykeys(instr,file,logfile,verbose)
# read table structure
if status == 0:
table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
# filter input data table
if status == 0:
work1 = np.array([table.field('time'), table.field(datacol), table.field(errcol)])
work1 = np.rot90(work1,3)
work1 = work1[~np.isnan(work1).any(1)]
# read table columns
if status == 0:
intime = work1[:,2] + bjdref
indata = work1[:,1]
inerr = work1[:,0]
# test whether the period range is sensible
if status == 0:
tr = intime[-1] - intime[0]
if maxper > tr:
message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data'
status = kepmsg.err(logfile,message,verbose)
# prepare time series
if status == 0:
work1 = intime - intime[0]
work2 = indata - np.mean(indata)
# start period search
if status == 0:
srMax = np.array([],dtype='float32')
transitDuration = np.array([],dtype='float32')
transitPhase = np.array([],dtype='float32')
dPeriod = (maxper - minper) / nsearch
trialPeriods = np.arange(minper,maxper+dPeriod,dPeriod,dtype='float32')
complete = 0
print(' ')
for trialPeriod in trialPeriods:
fracComplete = float(complete) / float(len(trialPeriods) - 1) * 100.0
txt = '\r'
txt += 'Trial period = '
txt += str(int(trialPeriod))
txt += ' days ['
txt += str(int(fracComplete))
txt += '% complete]'
txt += ' ' * 20
sys.stdout.write(txt)
sys.stdout.flush()
complete += 1
srMax = np.append(srMax,0.0)
transitDuration = np.append(transitDuration,np.nan)
transitPhase = np.append(transitPhase,np.nan)
trialFrequency = 1.0 / trialPeriod
# minimum and maximum transit durations in quantized phase units
duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod),2)
duration2 = max(int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1,duration1 + 1)
# 30 minutes in quantized phase units
halfHour = int(0.02083333 / trialPeriod * nbins + 1)
# compute folded time series with trial period
work4 = np.zeros((nbins),dtype='float32')
work5 = np.zeros((nbins),dtype='float32')
phase = np.array(((work1 * trialFrequency) - np.floor(work1 * trialFrequency)) * float(nbins),dtype='int')
ptuple = np.array([phase, work2, inerr])
ptuple = np.rot90(ptuple,3)
phsort = np.array(sorted(ptuple,key=lambda ph: ph[2]))
for i in range(nbins):
elements = np.nonzero(phsort[:,2] == float(i))[0]
work4[i] = np.mean(phsort[elements,1])
work5[i] = math.sqrt(np.sum(np.power(phsort[elements,0], 2)) / len(elements))
# extend the work arrays beyond nbins by wrapping
work4 = np.append(work4,work4[:duration2])
work5 = np.append(work5,work5[:duration2])
# calculate weights of folded light curve points
sigmaSum = np.nansum(np.power(work5,-2))
omega = np.power(work5,-2) / sigmaSum
# calculate weighted phased light curve
s = omega * work4
# iterate through trial period phase
for i1 in range(nbins):
# iterate through transit durations
for duration in range(duration1,duration2+1,int(halfHour)):
# calculate maximum signal residue
i2 = i1 + duration
sr1 = np.sum(np.power(s[i1:i2],2))
sr2 = np.sum(omega[i1:i2])
sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2)))
if sr > srMax[-1]:
srMax[-1] = sr
transitDuration[-1] = float(duration)
transitPhase[-1] = float((i1 + i2) / 2)
# normalize maximum signal residue curve
bestSr = np.max(srMax)
bestTrial = np.nonzero(srMax == bestSr)[0][0]
srMax /= bestSr
transitDuration *= trialPeriods / 24.0
BJD0 = np.array(transitPhase * trialPeriods / nbins,dtype='float64') + intime[0] - 2454833.0
print('\n')
# clean up x-axis unit
if status == 0:
ptime = copy(trialPeriods)
xlab = 'Trial Period (days)'
# clean up y-axis units
if status == 0:
pout = copy(srMax)
ylab = 'Normalized Signal Residue'
# data limits
xmin = ptime.min()
xmax = ptime.max()
ymin = pout.min()
ymax = pout.max()
xr = xmax - xmin
yr = ymax - ymin
ptime = np.insert(ptime,[0],[ptime[0]])
ptime = np.append(ptime,[ptime[-1]])
pout = np.insert(pout,[0],[0.0])
pout = np.append(pout,0.0)
# plot light curve
if status == 0 and plot:
plt.figure(figsize=[xsize,ysize])
plt.clf()
# plot data
ax = plt.axes([0.06,0.10,0.93,0.87])
# force tick labels to be absolute rather than relative
plt.gca().xaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.gca().yaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
# rotate y labels by 90 deg
labels = ax.get_yticklabels()
plt.setp(labels, 'rotation', 90)
# plot curve
if status == 0 and plot:
plt.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
plt.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
plt.xlabel(xlab, {'color' : 'k'})
plt.ylabel(ylab, {'color' : 'k'})
plt.grid()
# plot ranges
if status == 0 and plot:
plt.xlim(xmin-xr*0.01,xmax+xr*0.01)
if ymin >= 0.0:
plt.ylim(ymin-yr*0.01,ymax+yr*0.01)
else:
plt.ylim(1.0e-10,ymax+yr*0.01)
# render plot
if status == 0 and plot:
plt.ion()
plt.show()
# append new BLS data extension to the output file
if status == 0:
col1 = pyfits.Column(name='PERIOD',format='E',unit='days',array=trialPeriods)
col2 = pyfits.Column(name='BJD0',format='D',unit='BJD - 2454833',array=BJD0)
col3 = pyfits.Column(name='DURATION',format='E',unit='hours',array=transitDuration)
col4 = pyfits.Column(name='SIG_RES',format='E',array=srMax)
cols = pyfits.ColDefs([col1,col2,col3,col4])
instr.append(pyfits.BinTableHDU.from_columns(cols))
instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period'
instr[-1].header.cards['TTYPE2'].comment = 'column title: trial mid-transit zero-point'
instr[-1].header.cards['TTYPE3'].comment = 'column title: trial transit duration'
instr[-1].header.cards['TTYPE4'].comment = 'column title: normalized signal residue'
instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
instr[-1].header.cards['TFORM2'].comment = 'column type: float64'
instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
instr[-1].header.cards['TUNIT1'].comment = 'column units: days'
instr[-1].header.cards['TUNIT2'].comment = 'column units: BJD - 2454833'
instr[-1].header.cards['TUNIT3'].comment = 'column units: hours'
instr[-1].header['EXTNAME' ] = ('BLS','extension name')
instr[-1].header['PERIOD' ] = (trialPeriods[bestTrial],'most significant trial period [d]')
instr[-1].header['BJD0' ] = (BJD0[bestTrial] + 2454833.0,'time of mid-transit [BJD]')
instr[-1].header['TRANSDUR'] = (transitDuration[bestTrial],'transit duration [hours]')
instr[-1].header['SIGNRES' ] = (srMax[bestTrial] * bestSr,'maximum signal residue')
# history keyword in output file
if status == 0:
status = kepkey.history(call,instr[0],outfile,logfile,verbose)
instr.writeto(outfile)
# close input file
if status == 0:
status = kepio.closefits(instr,logfile,verbose)
# print best trial period results
if status == 0:
print(' Best trial period = %.5f days' % trialPeriods[bestTrial])
print(' Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] + 2454833.0))
print(' Transit duration = %.5f hours' % transitDuration[bestTrial])
print(' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr))
# end time
if status == 0:
message = 'KEPBLS completed at'
else:
message = '\nKEPBLS aborted at'
kepmsg.clock(message,logfile,verbose)
# main
if '--shell' in sys.argv:
import argparse
parser = argparse.ArgumentParser(description='Remove or replace data outliers from a time series')
parser.add_argument('--shell', action='store_true', help='Are we running from the shell?')
parser.add_argument('infile', help='Name of input file', type=str)
parser.add_argument('outfile', help='Name of FITS file to output', type=str)
parser.add_argument('--datacol', default='DETSAP_FLUX',
help='Name of data column to plot', type=str)
parser.add_argument('--errcol', default='DETSAP_FLUX_ERR',
help='Name of data error column to plot', type=str)
parser.add_argument('--minper', default=1.0, help='Minimum search period [days]', type=float)
parser.add_argument('--maxper', default=30.0, help='Maximum search period [days]', type=float)
parser.add_argument('--mindur', default=0.5, help='Minimum transit duration [hours]', type=float)
parser.add_argument('--maxdur', default=12.0, help='Maximum transit duration [hours]', type=float)
parser.add_argument('--nsearch', default=1000,
help='Number of test periods between minper and maxper',
type=int)
parser.add_argument('--nbins', default=1000,
help='Number of bins in the folded time series at any test period',
type=int)
parser.add_argument('--plot', action='store_true', help='Plot result?')
parser.add_argument('--clobber', action='store_true', help='Overwrite output file?')
parser.add_argument('--verbose', action='store_true', help='Write to a log file?')
parser.add_argument('--logfile', '-l', help='Name of ascii log file',
default='kepbls.log', dest='logfile', type=str)
parser.add_argument('--status', '-e', help='Exit status (0=good)',
default=0, dest='status', type=int)
args = parser.parse_args()
cmdLine=True
kepbls(args.infile,args.outfile,args.datacol,args.errcol,args.minper,args.maxper,args.mindur,
args.maxdur,args.nsearch,args.nbins,args.plot,args.clobber,args.verbose,args.logfile,
args.status, cmdLine)
else:
from pyraf import iraf
parfile = iraf.osfn("kepler$kepbls.par")
t = iraf.IrafTaskFactory(taskname="kepbls", value=parfile, function=kepbls)