-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathmodel.py
639 lines (573 loc) · 26 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
import os
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
import torch
import torch.nn.functional as F
import tqdm
import numpy as np
import safetensors
from PIL import Image
from torchvision import transforms
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import StableDiffusionPipeline
from argparse import ArgumentParser
import inspect
from utils.model_utils import get_img, slerp, do_replace_attn
from utils.lora_utils import train_lora, load_lora
from utils.alpha_scheduler import AlphaScheduler
class StoreProcessor():
def __init__(self, original_processor, value_dict, name):
self.original_processor = original_processor
self.value_dict = value_dict
self.name = name
self.value_dict[self.name] = dict()
self.id = 0
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
# Is self attention
if encoder_hidden_states is None:
self.value_dict[self.name][self.id] = hidden_states.detach()
self.id += 1
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
return res
class LoadProcessor():
def __init__(self, original_processor, name, img0_dict, img1_dict, alpha, beta=0, lamd=0.6):
super().__init__()
self.original_processor = original_processor
self.name = name
self.img0_dict = img0_dict
self.img1_dict = img1_dict
self.alpha = alpha
self.beta = beta
self.lamd = lamd
self.id = 0
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
# Is self attention
if encoder_hidden_states is None:
if self.id < 50 * self.lamd:
map0 = self.img0_dict[self.name][self.id]
map1 = self.img1_dict[self.name][self.id]
cross_map = self.beta * hidden_states + \
(1 - self.beta) * ((1 - self.alpha) * map0 + self.alpha * map1)
# cross_map = self.beta * hidden_states + \
# (1 - self.beta) * slerp(map0, map1, self.alpha)
# cross_map = slerp(slerp(map0, map1, self.alpha),
# hidden_states, self.beta)
# cross_map = hidden_states
# cross_map = torch.cat(
# ((1 - self.alpha) * map0, self.alpha * map1), dim=1)
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=cross_map,
attention_mask=attention_mask,
**kwargs)
else:
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
self.id += 1
# if self.id == len(self.img0_dict[self.name]):
if self.id == len(self.img0_dict[self.name]):
self.id = 0
else:
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
return res
class DiffMorpherPipeline(StableDiffusionPipeline):
def __init__(self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
image_encoder=None,
requires_safety_checker: bool = True,
):
sig = inspect.signature(super().__init__)
params = sig.parameters
if 'image_encoder' in params:
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
safety_checker, feature_extractor, image_encoder, requires_safety_checker)
else:
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
safety_checker, feature_extractor, requires_safety_checker)
self.img0_dict = dict()
self.img1_dict = dict()
def inv_step(
self,
model_output: torch.FloatTensor,
timestep: int,
x: torch.FloatTensor,
eta=0.,
verbose=False
):
"""
Inverse sampling for DDIM Inversion
"""
if verbose:
print("timestep: ", timestep)
next_step = timestep
timestep = min(timestep - self.scheduler.config.num_train_timesteps //
self.scheduler.num_inference_steps, 999)
alpha_prod_t = self.scheduler.alphas_cumprod[
timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_step]
beta_prod_t = 1 - alpha_prod_t
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
pred_dir = (1 - alpha_prod_t_next)**0.5 * model_output
x_next = alpha_prod_t_next**0.5 * pred_x0 + pred_dir
return x_next, pred_x0
@torch.no_grad()
def invert(
self,
image: torch.Tensor,
prompt,
num_inference_steps=50,
num_actual_inference_steps=None,
guidance_scale=1.,
eta=0.0,
**kwds):
"""
invert a real image into noise map with determinisc DDIM inversion
"""
DEVICE = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
batch_size = image.shape[0]
if isinstance(prompt, list):
if batch_size == 1:
image = image.expand(len(prompt), -1, -1, -1)
elif isinstance(prompt, str):
if batch_size > 1:
prompt = [prompt] * batch_size
# text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
return_tensors="pt"
)
text_embeddings = self.text_encoder(text_input.input_ids.to(DEVICE))[0]
print("input text embeddings :", text_embeddings.shape)
# define initial latents
latents = self.image2latent(image)
# unconditional embedding for classifier free guidance
if guidance_scale > 1.:
max_length = text_input.input_ids.shape[-1]
unconditional_input = self.tokenizer(
[""] * batch_size,
padding="max_length",
max_length=77,
return_tensors="pt"
)
unconditional_embeddings = self.text_encoder(
unconditional_input.input_ids.to(DEVICE))[0]
text_embeddings = torch.cat(
[unconditional_embeddings, text_embeddings], dim=0)
print("latents shape: ", latents.shape)
# interative sampling
self.scheduler.set_timesteps(num_inference_steps)
print("Valid timesteps: ", reversed(self.scheduler.timesteps))
# print("attributes: ", self.scheduler.__dict__)
latents_list = [latents]
pred_x0_list = [latents]
for i, t in enumerate(tqdm.tqdm(reversed(self.scheduler.timesteps), desc="DDIM Inversion")):
if num_actual_inference_steps is not None and i >= num_actual_inference_steps:
continue
if guidance_scale > 1.:
model_inputs = torch.cat([latents] * 2)
else:
model_inputs = latents
# predict the noise
noise_pred = self.unet(
model_inputs, t, encoder_hidden_states=text_embeddings).sample
if guidance_scale > 1.:
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
noise_pred = noise_pred_uncon + guidance_scale * \
(noise_pred_con - noise_pred_uncon)
# compute the previous noise sample x_t-1 -> x_t
latents, pred_x0 = self.inv_step(noise_pred, t, latents)
latents_list.append(latents)
pred_x0_list.append(pred_x0)
return latents
@torch.no_grad()
def ddim_inversion(self, latent, cond):
timesteps = reversed(self.scheduler.timesteps)
with torch.autocast(device_type='cuda', dtype=torch.float32):
for i, t in enumerate(tqdm.tqdm(timesteps, desc="DDIM inversion")):
cond_batch = cond.repeat(latent.shape[0], 1, 1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.unet(
latent, t, encoder_hidden_states=cond_batch).sample
pred_x0 = (latent - sigma_prev * eps) / mu_prev
latent = mu * pred_x0 + sigma * eps
# if save_latents:
# torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
# torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
return latent
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
x: torch.FloatTensor,
):
"""
predict the sample of the next step in the denoise process.
"""
prev_timestep = timestep - \
self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep > 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
pred_dir = (1 - alpha_prod_t_prev)**0.5 * model_output
x_prev = alpha_prod_t_prev**0.5 * pred_x0 + pred_dir
return x_prev, pred_x0
@torch.no_grad()
def image2latent(self, image):
DEVICE = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
if type(image) is Image:
image = np.array(image)
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0)
# input image density range [-1, 1]
latents = self.vae.encode(image.to(DEVICE))['latent_dist'].mean
latents = latents * 0.18215
return latents
@torch.no_grad()
def latent2image(self, latents, return_type='np'):
latents = 1 / 0.18215 * latents.detach()
image = self.vae.decode(latents)['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).astype(np.uint8)
elif return_type == "pt":
image = (image / 2 + 0.5).clamp(0, 1)
return image
def latent2image_grad(self, latents):
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents)['sample']
return image # range [-1, 1]
@torch.no_grad()
def cal_latent(self, num_inference_steps, guidance_scale, unconditioning, img_noise_0, img_noise_1, text_embeddings_0, text_embeddings_1, lora_0, lora_1, alpha, use_lora, fix_lora=None):
# latents = torch.cos(alpha * torch.pi / 2) * img_noise_0 + \
# torch.sin(alpha * torch.pi / 2) * img_noise_1
# latents = (1 - alpha) * img_noise_0 + alpha * img_noise_1
# latents = latents / ((1 - alpha) ** 2 + alpha ** 2)
latents = slerp(img_noise_0, img_noise_1, alpha, self.use_adain)
text_embeddings = (1 - alpha) * text_embeddings_0 + \
alpha * text_embeddings_1
self.scheduler.set_timesteps(num_inference_steps)
if use_lora:
if fix_lora is not None:
self.unet = load_lora(self.unet, lora_0, lora_1, fix_lora)
else:
self.unet = load_lora(self.unet, lora_0, lora_1, alpha)
for i, t in enumerate(tqdm.tqdm(self.scheduler.timesteps, desc=f"DDIM Sampler, alpha={alpha}")):
if guidance_scale > 1.:
model_inputs = torch.cat([latents] * 2)
else:
model_inputs = latents
if unconditioning is not None and isinstance(unconditioning, list):
_, text_embeddings = text_embeddings.chunk(2)
text_embeddings = torch.cat(
[unconditioning[i].expand(*text_embeddings.shape), text_embeddings])
# predict the noise
noise_pred = self.unet(
model_inputs, t, encoder_hidden_states=text_embeddings).sample
if guidance_scale > 1.0:
noise_pred_uncon, noise_pred_con = noise_pred.chunk(
2, dim=0)
noise_pred = noise_pred_uncon + guidance_scale * \
(noise_pred_con - noise_pred_uncon)
# compute the previous noise sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, return_dict=False)[0]
return latents
@torch.no_grad()
def get_text_embeddings(self, prompt, guidance_scale, neg_prompt, batch_size):
DEVICE = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
# text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
return_tensors="pt"
)
text_embeddings = self.text_encoder(text_input.input_ids.cuda())[0]
if guidance_scale > 1.:
if neg_prompt:
uc_text = neg_prompt
else:
uc_text = ""
unconditional_input = self.tokenizer(
[uc_text] * batch_size,
padding="max_length",
max_length=77,
return_tensors="pt"
)
unconditional_embeddings = self.text_encoder(
unconditional_input.input_ids.to(DEVICE))[0]
text_embeddings = torch.cat(
[unconditional_embeddings, text_embeddings], dim=0)
return text_embeddings
def __call__(
self,
img_0=None,
img_1=None,
img_path_0=None,
img_path_1=None,
prompt_0="",
prompt_1="",
save_lora_dir="./lora",
load_lora_path_0=None,
load_lora_path_1=None,
lora_steps=200,
lora_lr=2e-4,
lora_rank=16,
batch_size=1,
height=512,
width=512,
num_inference_steps=50,
num_actual_inference_steps=None,
guidance_scale=1,
attn_beta=0,
lamd=0.6,
use_lora=True,
use_adain=True,
use_reschedule=True,
output_path="./results",
num_frames=50,
fix_lora=None,
progress=tqdm,
unconditioning=None,
neg_prompt=None,
save_intermediates=False,
**kwds):
# if isinstance(prompt, list):
# batch_size = len(prompt)
# elif isinstance(prompt, str):
# if batch_size > 1:
# prompt = [prompt] * batch_size
self.scheduler.set_timesteps(num_inference_steps)
self.use_lora = use_lora
self.use_adain = use_adain
self.use_reschedule = use_reschedule
self.output_path = output_path
if img_0 is None:
img_0 = Image.open(img_path_0).convert("RGB")
# else:
# img_0 = Image.fromarray(img_0).convert("RGB")
if img_1 is None:
img_1 = Image.open(img_path_1).convert("RGB")
# else:
# img_1 = Image.fromarray(img_1).convert("RGB")
if self.use_lora:
print("Loading lora...")
if not load_lora_path_0:
weight_name = f"{output_path.split('/')[-1]}_lora_0.ckpt"
load_lora_path_0 = save_lora_dir + "/" + weight_name
if not os.path.exists(load_lora_path_0):
train_lora(img_0, prompt_0, save_lora_dir, None, self.tokenizer, self.text_encoder,
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
print(f"Load from {load_lora_path_0}.")
if load_lora_path_0.endswith(".safetensors"):
lora_0 = safetensors.torch.load_file(
load_lora_path_0, device="cpu")
else:
lora_0 = torch.load(load_lora_path_0, map_location="cpu")
if not load_lora_path_1:
weight_name = f"{output_path.split('/')[-1]}_lora_1.ckpt"
load_lora_path_1 = save_lora_dir + "/" + weight_name
if not os.path.exists(load_lora_path_1):
train_lora(img_1, prompt_1, save_lora_dir, None, self.tokenizer, self.text_encoder,
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
print(f"Load from {load_lora_path_1}.")
if load_lora_path_1.endswith(".safetensors"):
lora_1 = safetensors.torch.load_file(
load_lora_path_1, device="cpu")
else:
lora_1 = torch.load(load_lora_path_1, map_location="cpu")
else:
lora_0 = lora_1 = None
text_embeddings_0 = self.get_text_embeddings(
prompt_0, guidance_scale, neg_prompt, batch_size)
text_embeddings_1 = self.get_text_embeddings(
prompt_1, guidance_scale, neg_prompt, batch_size)
img_0 = get_img(img_0)
img_1 = get_img(img_1)
if self.use_lora:
self.unet = load_lora(self.unet, lora_0, lora_1, 0)
img_noise_0 = self.ddim_inversion(
self.image2latent(img_0), text_embeddings_0)
if self.use_lora:
self.unet = load_lora(self.unet, lora_0, lora_1, 1)
img_noise_1 = self.ddim_inversion(
self.image2latent(img_1), text_embeddings_1)
print("latents shape: ", img_noise_0.shape)
original_processor = list(self.unet.attn_processors.values())[0]
def morph(alpha_list, progress, desc):
images = []
if attn_beta is not None:
if self.use_lora:
self.unet = load_lora(
self.unet, lora_0, lora_1, 0 if fix_lora is None else fix_lora)
attn_processor_dict = {}
for k in self.unet.attn_processors.keys():
if do_replace_attn(k):
if self.use_lora:
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
self.img0_dict, k)
else:
attn_processor_dict[k] = StoreProcessor(original_processor,
self.img0_dict, k)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
self.unet.set_attn_processor(attn_processor_dict)
latents = self.cal_latent(
num_inference_steps,
guidance_scale,
unconditioning,
img_noise_0,
img_noise_1,
text_embeddings_0,
text_embeddings_1,
lora_0,
lora_1,
alpha_list[0],
False,
fix_lora
)
first_image = self.latent2image(latents)
first_image = Image.fromarray(first_image)
if save_intermediates:
first_image.save(f"{self.output_path}/{0:02d}.png")
if self.use_lora:
self.unet = load_lora(
self.unet, lora_0, lora_1, 1 if fix_lora is None else fix_lora)
attn_processor_dict = {}
for k in self.unet.attn_processors.keys():
if do_replace_attn(k):
if self.use_lora:
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
self.img1_dict, k)
else:
attn_processor_dict[k] = StoreProcessor(original_processor,
self.img1_dict, k)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
self.unet.set_attn_processor(attn_processor_dict)
latents = self.cal_latent(
num_inference_steps,
guidance_scale,
unconditioning,
img_noise_0,
img_noise_1,
text_embeddings_0,
text_embeddings_1,
lora_0,
lora_1,
alpha_list[-1],
False,
fix_lora
)
last_image = self.latent2image(latents)
last_image = Image.fromarray(last_image)
if save_intermediates:
last_image.save(
f"{self.output_path}/{num_frames - 1:02d}.png")
for i in progress.tqdm(range(1, num_frames - 1), desc=desc):
alpha = alpha_list[i]
if self.use_lora:
self.unet = load_lora(
self.unet, lora_0, lora_1, alpha if fix_lora is None else fix_lora)
attn_processor_dict = {}
for k in self.unet.attn_processors.keys():
if do_replace_attn(k):
if self.use_lora:
attn_processor_dict[k] = LoadProcessor(
self.unet.attn_processors[k], k, self.img0_dict, self.img1_dict, alpha, attn_beta, lamd)
else:
attn_processor_dict[k] = LoadProcessor(
original_processor, k, self.img0_dict, self.img1_dict, alpha, attn_beta, lamd)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
self.unet.set_attn_processor(attn_processor_dict)
latents = self.cal_latent(
num_inference_steps,
guidance_scale,
unconditioning,
img_noise_0,
img_noise_1,
text_embeddings_0,
text_embeddings_1,
lora_0,
lora_1,
alpha_list[i],
False,
fix_lora
)
image = self.latent2image(latents)
image = Image.fromarray(image)
if save_intermediates:
image.save(f"{self.output_path}/{i:02d}.png")
images.append(image)
images = [first_image] + images + [last_image]
else:
for k, alpha in enumerate(alpha_list):
latents = self.cal_latent(
num_inference_steps,
guidance_scale,
unconditioning,
img_noise_0,
img_noise_1,
text_embeddings_0,
text_embeddings_1,
lora_0,
lora_1,
alpha_list[k],
self.use_lora,
fix_lora
)
image = self.latent2image(latents)
image = Image.fromarray(image)
if save_intermediates:
image.save(f"{self.output_path}/{k:02d}.png")
images.append(image)
return images
with torch.no_grad():
if self.use_reschedule:
alpha_scheduler = AlphaScheduler()
alpha_list = list(torch.linspace(0, 1, num_frames))
images_pt = morph(alpha_list, progress, "Sampling...")
images_pt = [transforms.ToTensor()(img).unsqueeze(0)
for img in images_pt]
alpha_scheduler.from_imgs(images_pt)
alpha_list = alpha_scheduler.get_list()
print(alpha_list)
images = morph(alpha_list, progress, "Reschedule..."
)
else:
alpha_list = list(torch.linspace(0, 1, num_frames))
print(alpha_list)
images = morph(alpha_list, progress, "Sampling...")
return images