forked from google-research/bert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_predict.py
400 lines (325 loc) · 15.2 KB
/
run_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import json
import os
import numpy as np
import tensorflow as tf
import modeling
import tokenization
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
## Other parameters
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.gfile.Open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class ParagraphProcess(DataProcessor):
"""自己实现的读取段落训练文件的Processor"""
def __init__(self):
self.language = "zh"
def get_train_examples(self, data_dir):
file_path = os.path.join(data_dir, 'train.csv')
with open(file_path, 'r', encoding='UTF-8') as f:
reader = f.readlines()
examples = []
for index, line in enumerate(reader):
guid = 'train-%d' % index
split_line = line.strip().split('\t')
label = split_line[0]
question = split_line[1]
examples.append(InputExample(guid=guid, text_a=question, label=label))
return examples
def get_dev_examples(self, data_dir):
file_path = os.path.join(data_dir, 'dev.csv')
with open(file_path, 'r', encoding='UTF-8') as f:
reader = f.readlines()
examples = []
for index, line in enumerate(reader):
guid = 'train-%d' % index
split_line = line.strip().split('\t')
label = split_line[0]
question = split_line[1]
examples.append(InputExample(guid=guid, text_a=question, label=label))
return examples
def get_test_examples(self, data_dir):
file_path = os.path.join(data_dir, 'test.csv')
with open(file_path, 'r', encoding='UTF-8') as f:
reader = f.readlines()
examples = []
for index, line in enumerate(reader):
guid = 'train-%d' % index
split_line = line.strip().split('\t')
label = split_line[0]
question = split_line[1]
examples.append(InputExample(guid=guid, text_a=question, label=label))
return examples
def get_labels(self):
return ['0', '1', '2', '3']
def convert_single_example(ex_index, example, label_list, max_seq_length,
tokenizer):
"""Converts a single `InputExample` into a single `InputFeatures`.
将句子A或者句子A与句子B转成每个词的ID,并添加上[CLS][SEP]标签
input_ids为每个词的ID,句子长度小于max_length,后边补O
input_mask每个词对应1,其余的为0,表示为哪个是真正的词,哪个不是词是填充的0
segment_ids句子ID"""
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id)
return feature
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
# In the demo, we are doing a simple classification task on the entire
# segment.
#
# If you want to use the token-level output, use model.get_sequence_output()
# instead.
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
processor = ParagraphProcess()
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
label_list = processor.get_labels()
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
index2label = {i: label_list[i] for i in range(len(label_list))}
batch_size = 1
num_labels = len(label_list)
gpu_config = tf.ConfigProto()
gpu_config.gpu_options.allow_growth = True
sess = tf.Session(config=gpu_config)
global graph
input_ids, input_mask, label_ids, segment_ids = None, None, None, None
graph = tf.get_default_graph()
with graph.as_default():
input_ids_p = tf.placeholder(tf.int32, [batch_size, FLAGS.max_seq_length], name=input_ids)
input_mask_p = tf.placeholder(tf.int32, [batch_size, FLAGS.max_seq_length], name=input_mask)
label_ids_p = tf.placeholder(tf.int32, [batch_size], name=label_ids)
segment_ids_p = tf.placeholder(tf.int32, [FLAGS.max_seq_length], name=segment_ids)
total_loss, pre_example_loss, logtis, probabilities = create_model(bert_config=bert_config,
is_training=False,
input_ids=input_ids_p,
input_mask=input_mask_p,
segment_ids=segment_ids_p,
labels=label_ids_p,
num_labels=num_labels,
use_one_hot_embeddings=False)
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(FLAGS.init_checkpoint))
# 预测方法
def predict(content):
label = '0'
example = InputExample(guid=0, text_a=content, label=label)
feature = convert_single_example(0, example, label_list, FLAGS.max_seq_length, tokenizer)
input_ids = np.reshape([feature.input_ids], (1, FLAGS.max_seq_length))
input_mask = np.reshape([feature.input_mask], (1, FLAGS.max_seq_length))
segment_ids = np.reshape([feature.segment_ids], (FLAGS.max_seq_length))
label_ids = [feature.label_id]
global graph
with graph.as_default():
feed_dic = {input_ids_p: input_ids, input_mask_p: input_mask, segment_ids_p: segment_ids,
label_ids_p: label_ids}
possibility = sess.run([probabilities], feed_dic)
possibility = possibility[0][0]
label_index = np.argmax(possibility)
label_predict = index2label[label_index]
data = {'label': label_predict}
data = json.dumps(data)
return data
if __name__ == "__main__":
flags.mark_flag_as_required("init_checkpoint")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("max_seq_length")
content = '0\t本院认为,原、被告虽经人介绍相识,但双方系自愿登记结婚,具有一定的婚前感情基础。双方婚后生育了一个女孩,建立起了一定的夫妻感情。夫妻在共同生活中发生一些矛盾在所难免,只要双方相互关心、相互尊重,珍惜夫妻感情中好的一面,并真正顾念子女的健康成长,仍有和好的希望。原被告的夫妻感情并未确已破裂,原告要求离婚不符合法定离婚条件,依法不予准许。据此,依照《中华人民共和国婚姻法》第三十二条之规定,判决如下:'
result = predict(content)
print(result)