forked from cvlab-stonybrook/DM-Count
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_helper.py
211 lines (185 loc) · 9.86 KB
/
train_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import time
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import numpy as np
from datetime import datetime
from datasets.crowd import Crowd_qnrf, Crowd_nwpu, Crowd_sh
from models import vgg19
from losses.ot_loss import OT_Loss
from utils.pytorch_utils import Save_Handle, AverageMeter
import utils.log_utils as log_utils
def train_collate(batch):
transposed_batch = list(zip(*batch))
images = torch.stack(transposed_batch[0], 0)
points = transposed_batch[1] # the number of points is not fixed, keep it as a list of tensor
gt_discretes = torch.stack(transposed_batch[2], 0)
return images, points, gt_discretes
class Trainer(object):
def __init__(self, args):
self.args = args
def setup(self):
args = self.args
sub_dir = 'input-{}_wot-{}_wtv-{}_reg-{}_nIter-{}_normCood-{}'.format(
args.crop_size, args.wot, args.wtv, args.reg, args.num_of_iter_in_ot, args.norm_cood)
self.save_dir = os.path.join('ckpts', sub_dir)
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
time_str = datetime.strftime(datetime.now(), '%m%d-%H%M%S')
self.logger = log_utils.get_logger(os.path.join(self.save_dir, 'train-{:s}.log'.format(time_str)))
log_utils.print_config(vars(args), self.logger)
if torch.cuda.is_available():
self.device = torch.device("cuda")
self.device_count = torch.cuda.device_count()
assert self.device_count == 1
self.logger.info('using {} gpus'.format(self.device_count))
else:
raise Exception("gpu is not available")
downsample_ratio = 8
if args.dataset.lower() == 'qnrf':
self.datasets = {x: Crowd_qnrf(os.path.join(args.data_dir, x),
args.crop_size, downsample_ratio, x) for x in ['train', 'val']}
elif args.dataset.lower() == 'nwpu':
self.datasets = {x: Crowd_nwpu(os.path.join(args.data_dir, x),
args.crop_size, downsample_ratio, x) for x in ['train', 'val']}
elif args.dataset.lower() == 'sha' or args.dataset.lower() == 'shb':
self.datasets = {'train': Crowd_sh(os.path.join(args.data_dir, 'train_data'),
args.crop_size, downsample_ratio, 'train'),
'val': Crowd_sh(os.path.join(args.data_dir, 'test_data'),
args.crop_size, downsample_ratio, 'val'),
}
else:
raise NotImplementedError
self.dataloaders = {x: DataLoader(self.datasets[x],
collate_fn=(train_collate
if x == 'train' else default_collate),
batch_size=(args.batch_size
if x == 'train' else 1),
shuffle=(True if x == 'train' else False),
num_workers=args.num_workers * self.device_count,
pin_memory=(True if x == 'train' else False))
for x in ['train', 'val']}
self.model = vgg19()
self.model.to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
self.start_epoch = 0
if args.resume:
self.logger.info('loading pretrained model from ' + args.resume)
suf = args.resume.rsplit('.', 1)[-1]
if suf == 'tar':
checkpoint = torch.load(args.resume, self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.start_epoch = checkpoint['epoch'] + 1
elif suf == 'pth':
self.model.load_state_dict(torch.load(args.resume, self.device))
else:
self.logger.info('random initialization')
self.ot_loss = OT_Loss(args.crop_size, downsample_ratio, args.norm_cood, self.device, args.num_of_iter_in_ot,
args.reg)
self.tv_loss = nn.L1Loss(reduction='none').to(self.device)
self.mse = nn.MSELoss().to(self.device)
self.mae = nn.L1Loss().to(self.device)
self.save_list = Save_Handle(max_num=1)
self.best_mae = np.inf
self.best_mse = np.inf
self.best_count = 0
def train(self):
"""training process"""
args = self.args
for epoch in range(self.start_epoch, args.max_epoch + 1):
self.logger.info('-' * 5 + 'Epoch {}/{}'.format(epoch, args.max_epoch) + '-' * 5)
self.epoch = epoch
self.train_eopch()
if epoch % args.val_epoch == 0 and epoch >= args.val_start:
self.val_epoch()
def train_eopch(self):
epoch_ot_loss = AverageMeter()
epoch_ot_obj_value = AverageMeter()
epoch_wd = AverageMeter()
epoch_count_loss = AverageMeter()
epoch_tv_loss = AverageMeter()
epoch_loss = AverageMeter()
epoch_mae = AverageMeter()
epoch_mse = AverageMeter()
epoch_start = time.time()
self.model.train() # Set model to training mode
for step, (inputs, points, gt_discrete) in enumerate(self.dataloaders['train']):
inputs = inputs.to(self.device)
gd_count = np.array([len(p) for p in points], dtype=np.float32)
points = [p.to(self.device) for p in points]
gt_discrete = gt_discrete.to(self.device)
N = inputs.size(0)
with torch.set_grad_enabled(True):
outputs, outputs_normed = self.model(inputs)
# Compute OT loss.
ot_loss, wd, ot_obj_value = self.ot_loss(outputs_normed, outputs, points)
ot_loss = ot_loss * self.args.wot
ot_obj_value = ot_obj_value * self.args.wot
epoch_ot_loss.update(ot_loss.item(), N)
epoch_ot_obj_value.update(ot_obj_value.item(), N)
epoch_wd.update(wd, N)
# Compute counting loss.
count_loss = self.mae(outputs.sum(1).sum(1).sum(1),
torch.from_numpy(gd_count).float().to(self.device))
epoch_count_loss.update(count_loss.item(), N)
# Compute TV loss.
gd_count_tensor = torch.from_numpy(gd_count).float().to(self.device).unsqueeze(1).unsqueeze(
2).unsqueeze(3)
gt_discrete_normed = gt_discrete / (gd_count_tensor + 1e-6)
tv_loss = (self.tv_loss(outputs_normed, gt_discrete_normed).sum(1).sum(1).sum(
1) * torch.from_numpy(gd_count).float().to(self.device)).mean(0) * self.args.wtv
epoch_tv_loss.update(tv_loss.item(), N)
loss = ot_loss + count_loss + tv_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
pred_count = torch.sum(outputs.view(N, -1), dim=1).detach().cpu().numpy()
pred_err = pred_count - gd_count
epoch_loss.update(loss.item(), N)
epoch_mse.update(np.mean(pred_err * pred_err), N)
epoch_mae.update(np.mean(abs(pred_err)), N)
self.logger.info(
'Epoch {} Train, Loss: {:.2f}, OT Loss: {:.2e}, Wass Distance: {:.2f}, OT obj value: {:.2f}, '
'Count Loss: {:.2f}, TV Loss: {:.2f}, MSE: {:.2f} MAE: {:.2f}, Cost {:.1f} sec'
.format(self.epoch, epoch_loss.get_avg(), epoch_ot_loss.get_avg(), epoch_wd.get_avg(),
epoch_ot_obj_value.get_avg(), epoch_count_loss.get_avg(), epoch_tv_loss.get_avg(),
np.sqrt(epoch_mse.get_avg()), epoch_mae.get_avg(),
time.time() - epoch_start))
model_state_dic = self.model.state_dict()
save_path = os.path.join(self.save_dir, '{}_ckpt.tar'.format(self.epoch))
torch.save({
'epoch': self.epoch,
'optimizer_state_dict': self.optimizer.state_dict(),
'model_state_dict': model_state_dic
}, save_path)
self.save_list.append(save_path)
def val_epoch(self):
args = self.args
epoch_start = time.time()
self.model.eval() # Set model to evaluate mode
epoch_res = []
for inputs, count, name in self.dataloaders['val']:
inputs = inputs.to(self.device)
assert inputs.size(0) == 1, 'the batch size should equal to 1 in validation mode'
with torch.set_grad_enabled(False):
outputs, _ = self.model(inputs)
res = count[0].item() - torch.sum(outputs).item()
epoch_res.append(res)
epoch_res = np.array(epoch_res)
mse = np.sqrt(np.mean(np.square(epoch_res)))
mae = np.mean(np.abs(epoch_res))
self.logger.info('Epoch {} Val, MSE: {:.2f} MAE: {:.2f}, Cost {:.1f} sec'
.format(self.epoch, mse, mae, time.time() - epoch_start))
model_state_dic = self.model.state_dict()
if (2.0 * mse + mae) < (2.0 * self.best_mse + self.best_mae):
self.best_mse = mse
self.best_mae = mae
self.logger.info("save best mse {:.2f} mae {:.2f} model epoch {}".format(self.best_mse,
self.best_mae,
self.epoch))
torch.save(model_state_dic, os.path.join(self.save_dir, 'best_model_{}.pth'.format(self.best_count)))
self.best_count += 1