forked from chrisdxie/uois
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_loader.py
468 lines (350 loc) · 18 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import glob
import cv2
# My libraries
from .util import utilities as util_
from . import data_augmentation
NUM_VIEWS_PER_SCENE = 7
###### Some utilities #####
def worker_init_fn(worker_id):
""" Use this to bypass issue with PyTorch dataloaders using deterministic RNG for Numpy
https://github.com/pytorch/pytorch/issues/5059
"""
np.random.seed(np.random.get_state()[1][0] + worker_id)
def compute_xyz(depth_img, camera_params):
""" Compute ordered point cloud from depth image and camera parameters.
If focal lengths fx,fy are stored in the camera_params dictionary, use that.
Else, assume camera_params contains parameters used to generate synthetic data (e.g. fov, near, far, etc)
@param depth_img: a [H x W] numpy array of depth values in meters
@param camera_params: a dictionary with parameters of the camera used
"""
# Compute focal length from camera parameters
if 'fx' in camera_params and 'fy' in camera_params:
fx = camera_params['fx']
fy = camera_params['fy']
else: # simulated data
aspect_ratio = camera_params['img_width'] / camera_params['img_height']
e = 1 / (np.tan(np.radians(camera_params['fov']/2.)))
t = camera_params['near'] / e; b = -t
r = t * aspect_ratio; l = -r
alpha = camera_params['img_width'] / (r-l) # pixels per meter
focal_length = camera_params['near'] * alpha # focal length of virtual camera (frustum camera)
fx = focal_length; fy = focal_length
if 'x_offset' in camera_params and 'y_offset' in camera_params:
x_offset = camera_params['x_offset']
y_offset = camera_params['y_offset']
else: # simulated data
x_offset = camera_params['img_width']/2
y_offset = camera_params['img_height']/2
indices = util_.build_matrix_of_indices(camera_params['img_height'], camera_params['img_width'])
indices[..., 0] = np.flipud(indices[..., 0]) # pixel indices start at top-left corner. for these equations, it starts at bottom-left
z_e = depth_img
x_e = (indices[..., 1] - x_offset) * z_e / fx
y_e = (indices[..., 0] - y_offset) * z_e / fy
xyz_img = np.stack([x_e, y_e, z_e], axis=-1) # Shape: [H x W x 3]
return xyz_img
############# Synthetic Tabletop Object Dataset #############
class Tabletop_Object_Dataset(Dataset):
""" Data loader for Tabletop Object Dataset
"""
def __init__(self, base_dir, train_or_test, params):
self.base_dir = base_dir
self.params = params
self.train_or_test = train_or_test
# Get a list of all scenes
self.scene_dirs = sorted(glob.glob(self.base_dir + '*/'))
self.len = len(self.scene_dirs) * NUM_VIEWS_PER_SCENE
self.name = 'TableTop'
def __len__(self):
return self.len
def process_rgb(self, rgb_img):
""" Process RGB image
- random color warping
"""
rgb_img = rgb_img.astype(np.float32)
rgb_img = data_augmentation.standardize_image(rgb_img)
return rgb_img
def process_depth(self, depth_img, seg_img):
""" Process depth channel
- change from millimeters to meters
- cast to float32 data type
- add random noise
- compute xyz ordered point cloud
"""
# millimeters -> meters
depth_img = (depth_img / 1000.).astype(np.float32)
# add random noise to depth
if self.params['use_data_augmentation']:
depth_img = data_augmentation.add_noise_to_depth(depth_img, self.params)
depth_img = data_augmentation.dropout_random_ellipses(depth_img, self.params)
# Compute xyz ordered point cloud and add noise
xyz_img = compute_xyz(depth_img, self.params)
if self.params['use_data_augmentation']:
xyz_img = data_augmentation.add_noise_to_xyz(xyz_img, depth_img, self.params)
return xyz_img
def process_label(self, foreground_labels):
""" Process foreground_labels
- Map the foreground_labels to {0, 1, ..., K-1}
@param foreground_labels: a [H x W] numpy array of labels
@return: foreground_labels
direction_labels: a [H x W x 2] numpy array of 2D directions. The i,j^th element has (y,x) direction to object center
"""
# Find the unique (nonnegative) foreground_labels, map them to {0, ..., K-1}
unique_nonnegative_indices = np.unique(foreground_labels)
mapped_labels = foreground_labels.copy()
for k in range(unique_nonnegative_indices.shape[0]):
mapped_labels[foreground_labels == unique_nonnegative_indices[k]] = k
foreground_labels = mapped_labels
# Compute object centers and directions
H, W = foreground_labels.shape
direction_labels = np.stack([np.ones((H,W)), np.zeros((H, W))], axis=-1).astype(np.float32) # Shape: [H x W x 2]
pixel_indices = util_.build_matrix_of_indices(H, W)
for k in np.unique(foreground_labels):
if k in [0, 1]: # background, table
continue
# Get object mask
object_mask = foreground_labels == k
# Get average of all pixel indices in mask
center = np.mean(pixel_indices[object_mask, :], axis=0) # Shape: [2]. y_center, x_center
# Get directions
object_center_directions = (center - pixel_indices).astype(np.float32) # Shape: [H x W x 2]
object_center_directions = object_center_directions / np.maximum(np.linalg.norm(object_center_directions, axis=2, keepdims=True), 1e-10)
# Add it to the labels
direction_labels[object_mask] = object_center_directions[object_mask]
return foreground_labels, direction_labels
def __getitem__(self, idx):
cv2.setNumThreads(0) # some hack to make sure pyTorch doesn't deadlock. Found at https://github.com/pytorch/pytorch/issues/1355
# Get scene directory
scene_idx = idx // NUM_VIEWS_PER_SCENE
scene_dir = self.scene_dirs[scene_idx]
# Get view number
view_num = idx % NUM_VIEWS_PER_SCENE
# Label
foreground_labels_filename = scene_dir + f"segmentation_{view_num:05d}.png"
label_abs_path = '/'.join(foreground_labels_filename.split('/')[-2:]) # Used for evaluation
foreground_labels = util_.imread_indexed(foreground_labels_filename)
foreground_labels, direction_labels = self.process_label(foreground_labels)
# RGB image
rgb_img_filename = scene_dir + f"rgb_{view_num:05d}.jpeg"
rgb_img = cv2.cvtColor(cv2.imread(rgb_img_filename), cv2.COLOR_BGR2RGB)
rgb_img = self.process_rgb(rgb_img)
# Depth image
if self.train_or_test == 'train':
depth_img_filename = scene_dir + f"depth_{view_num:05d}.png"
elif self.train_or_test == 'test':
depth_img_filename = scene_dir + f"depth_noisy_{view_num:05d}.png"
depth_img = cv2.imread(depth_img_filename, cv2.IMREAD_ANYDEPTH) # This reads a 16-bit single-channel image. Shape: [H x W]
xyz_img = self.process_depth(depth_img, foreground_labels)
# Turn these all into torch tensors
rgb_img = data_augmentation.array_to_tensor(rgb_img) # Shape: [3 x H x W]
xyz_img = data_augmentation.array_to_tensor(xyz_img) # Shape: [3 x H x W]
foreground_labels = data_augmentation.array_to_tensor(foreground_labels) # Shape: [H x W]
direction_labels = data_augmentation.array_to_tensor(direction_labels) # Shape: [2 x H x W]
return {'rgb' : rgb_img,
'xyz' : xyz_img,
'foreground_labels' : foreground_labels,
'direction_labels' : direction_labels,
'scene_dir' : scene_dir,
'view_num' : view_num,
'label_abs_path' : label_abs_path,
}
def get_TOD_train_dataloader(base_dir, params, batch_size=8, num_workers=4, shuffle=True):
dataset = Tabletop_Object_Dataset(base_dir + 'training_set/', 'train', params)
return DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
worker_init_fn=worker_init_fn)
def get_TOD_test_dataloader(base_dir, params, batch_size=8, num_workers=4, shuffle=False):
params = params.copy()
params['use_data_augmentation'] = False
dataset = Tabletop_Object_Dataset(base_dir + 'test_set/', 'test', params)
return DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
worker_init_fn=worker_init_fn)
############# RGB Images Dataset (Google Open Images) #############
class RGB_Objects_Dataset(Dataset):
""" Data loader for RGB Objects Dataset
"""
def __init__(self, base_dir, start_list_file, train_or_test, params):
self.base_dir = base_dir
self.params = params
self.train_or_test = train_or_test
# Get a list of all instance labels
f = open(base_dir + start_list_file)
lines = [x.strip() for x in f.readlines()]
self.starts = lines
self.len = len(self.starts)
self.name = 'RGB_Objects'
def __len__(self):
return self.len
def pad_crop_resize(self, img, morphed_label, label):
""" Crop the image around the label mask, then resize to 224x224
"""
H, W, _ = img.shape
# Get tight box around label/morphed label
x_min, y_min, x_max, y_max = util_.mask_to_tight_box(label)
_xmin, _ymin, _xmax, _ymax = util_.mask_to_tight_box(morphed_label)
x_min = min(x_min, _xmin); y_min = min(y_min, _ymin); x_max = max(x_max, _xmax); y_max = max(y_max, _ymax)
# Make bbox square
x_delta = x_max - x_min
y_delta = y_max - y_min
if x_delta > y_delta:
y_max = y_min + x_delta
else:
x_max = x_min + y_delta
sidelength = x_max - x_min
padding_percentage = np.random.beta(self.params['padding_alpha'], self.params['padding_beta'])
padding_percentage = max(padding_percentage, self.params['min_padding_percentage'])
padding = int(round(sidelength * padding_percentage))
if padding == 0:
print(f'Whoa, padding is 0... sidelength: {sidelength}, %: {padding_percentage}')
padding = 25 # just make it 25 pixels
# Pad and be careful of boundaries
x_min = max(x_min - padding, 0)
x_max = min(x_max + padding, W-1)
y_min = max(y_min - padding, 0)
y_max = min(y_max + padding, H-1)
# Crop
if (y_min == y_max) or (x_min == x_max):
print('Whoa... something is wrong:', x_min, y_min, x_max, y_max)
print(morphed_label)
print(label)
img_crop = img[y_min:y_max+1, x_min:x_max+1]
morphed_label_crop = morphed_label[y_min:y_max+1, x_min:x_max+1]
label_crop = label[y_min:y_max+1, x_min:x_max+1]
# Resize
img_crop = cv2.resize(img_crop, (224,224))
morphed_label_crop = cv2.resize(morphed_label_crop, (224,224))
label_crop = cv2.resize(label_crop, (224,224))
return img_crop, morphed_label_crop, label_crop
def transform(self, img, label):
""" Data augmentation for RGB image and label
- RGB
- Image standardization
- Label
- Morphological transformation
- rotation/translation
- adding/cutting
- random ellipses
"""
img = img.astype(np.float32)
# Data augmentation for mask
morphed_label = label.copy()
if np.random.rand() < self.params['rate_of_morphological_transform']:
morphed_label = data_augmentation.random_morphological_transform(morphed_label, self.params)
if np.random.rand() < self.params['rate_of_translation']:
morphed_label = data_augmentation.random_translation(morphed_label, self.params)
if np.random.rand() < self.params['rate_of_rotation']:
morphed_label = data_augmentation.random_rotation(morphed_label, self.params)
sample = np.random.rand()
if sample < self.params['rate_of_label_adding']:
morphed_label = data_augmentation.random_add(morphed_label, self.params)
elif sample < self.params['rate_of_label_adding'] + self.params['rate_of_label_cutting']:
morphed_label = data_augmentation.random_cut(morphed_label, self.params)
if np.random.rand() < self.params['rate_of_ellipses']:
morphed_label = data_augmentation.random_ellipses(morphed_label, self.params)
# Next, crop the mask with some padding, and resize to 224x224. Make sure to preserve the aspect ratio
img_crop, morphed_label_crop, label_crop = self.pad_crop_resize(img, morphed_label, label)
# Data processing for RGB
img_crop = data_augmentation.standardize_image(img_crop)
# Turn into torch tensors
img_crop = data_augmentation.array_to_tensor(img_crop) # Shape: [3 x H x W]
morphed_label_crop = data_augmentation.array_to_tensor(morphed_label_crop) # Shape: [H x W]
label_crop = data_augmentation.array_to_tensor(label_crop) # Shape: [H x W]
return img_crop, morphed_label_crop, label_crop
def __getitem__(self, idx):
cv2.setNumThreads(0) # some hack to make sure pyTorch doesn't deadlock. Found at https://github.com/pytorch/pytorch/issues/1355. Seems to work for me
# Get label filename
label_filename = self.starts[idx]
label = cv2.imread(str(os.path.join(self.base_dir, 'Labels', label_filename))) # Shape: [H x W x 3]
label = label[..., 0] == 255 # Turn it into a {0,1} binary mask with shape: [H x W]
label = label.astype(np.uint8)
# find corresponding image file
img_file = label_filename.split('_')[0] + '.jpg'
img = cv2.imread(str(os.path.join(self.base_dir, 'Images', img_file)))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# These might not be the same size. resize them to the smaller one
if label.shape[0] < img.shape[0]:
new_size = label.shape[::-1] # (W, H)
else:
new_size = img.shape[:2][::-1]
label = cv2.resize(label, new_size)
img = cv2.resize(img, new_size)
img_crop, morphed_label_crop, label_crop = self.transform(img, label)
return {
'rgb' : img_crop,
'initial_masks' : morphed_label_crop,
'labels' : label_crop
}
def get_RGBO_train_dataloader(base_dir, params, batch_size=8, num_workers=4, shuffle=True):
dataset = RGB_Objects_Dataset(base_dir, params['starts_file'], 'train', params)
return DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
worker_init_fn=worker_init_fn)
############# Synthetic RGB Objects Dataset (Tabletop Objects Dataset) #############
class Synthetic_RGB_Objects_Dataset(RGB_Objects_Dataset):
""" Data loader for Synthetic RGB Objects Dataset
"""
def __init__(self, base_dir, train_or_test, params):
self.base_dir = base_dir
self.params = params
self.train_or_test = train_or_test
# Get a list of all scenes
self.scene_dirs = sorted(glob.glob(self.base_dir + '*/'))
self.len = len(self.scene_dirs) * 5 # only 5 images with objects in them
self.name = 'Synth_RGB_Objects'
def __getitem__(self, idx):
cv2.setNumThreads(0) # some hack to make sure pyTorch doesn't deadlock. Found at https://github.com/pytorch/pytorch/issues/1355. Seems to work for me
# Get scene directory
scene_idx = idx // 5
scene_dir = self.scene_dirs[scene_idx]
# Get view number
view_num = idx % 5 + 2 # objects start at rgb_00002.jpg
# Label
foreground_labels_filename = scene_dir + f"segmentation_{view_num:05d}.png"
label_abs_path = '/'.join(foreground_labels_filename.split('/')[-2:]) # Used for evaluation
foreground_labels = util_.imread_indexed(foreground_labels_filename)
# Grab a random object and use that mask
obj_ids = np.unique(foreground_labels)
if obj_ids[0] == 0:
obj_ids = obj_ids[1:] # get rid of background
if obj_ids[0] == 1:
obj_ids = obj_ids[1:] # get rid of table
num_pixels = 1; num_pixel_tries = 0
while num_pixels < 2:
if num_pixel_tries > 100:
print("ERROR. Pixels too small. Choosing a new image.")
print(scene_dir, view_num, num_pixels, obj_ids, np.unique(foreground_labels))
# Choose a new image to use instead
new_idx = np.random.randint(0, self.len)
return self.__getitem__(new_idx)
obj_id = np.random.choice(obj_ids)
label = (foreground_labels == obj_id).astype(np.uint8)
num_pixels = np.count_nonzero(label)
num_pixel_tries += 1
# RGB image
img_filename = scene_dir + f"rgb_{view_num:05d}.jpeg"
img = cv2.cvtColor(cv2.imread(img_filename), cv2.COLOR_BGR2RGB)
# Processing
img_crop, morphed_label_crop, label_crop = self.transform(img, label)
return {
'rgb' : img_crop,
'initial_masks' : morphed_label_crop,
'labels' : label_crop,
'label_abs_path' : label_abs_path,
}
def get_Synth_RGBO_train_dataloader(base_dir, params, batch_size=8, num_workers=4, shuffle=True):
dataset = Synthetic_RGB_Objects_Dataset(base_dir + 'training_set/','train', params)
return DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
worker_init_fn=worker_init_fn)