-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathP1185.cpp
116 lines (103 loc) · 2.58 KB
/
P1185.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*
* hint:
* 对于含有 m(m>1) 层二叉树的图来说:
* * 图形宽度为 3*2^(m-1)-1
* * 图形高度为 3*2^(m-2)
* * 根节点横坐标(同图形高度)为 3*2^(m-2)
* * 总共节点数最大为 2^m-1
* * 第 m 行结点个数最大为 2^(m-1)
*/
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#define MAXW 1600
#define MAXH 800
#define MAXCNT 1050
using namespace std;
int m, n, len, width, height;
bool bt[MAXCNT] = {};
char graph[MAXH][MAXW];
void create_bt(int level)
{
len = pow(2, level) - 1;
memset(bt+1, true, len);
}
void delete_node(int no)
{
if (bt[no] == true)
{
bt[no] = false;
if (no * 2 <= len)
delete_node(no * 2);
if (no * 2 + 1 <= len)
delete_node(no * 2 + 1);
}
}
/*
now:当前节点在静态表示的二叉树中的位置
x:当前结点在绘制图形当中的横坐标
y:当前结点在绘制图形当中的纵坐标
edgelen:当前结点与子节点间的边的长度
*/
void create_graph(int now, int x, int y, int edgelen)
{
// root
if (bt[now])
graph[x][y] = 'o';
// left
if (bt[now*2])
{
for (int i = 1; i <= edgelen; i++)
graph[x+i][y-i] = '/';
if (edgelen == 2)
create_graph(now*2, x+edgelen+1, y-edgelen-1, 1);
else if (edgelen == 1)
graph[x+edgelen+1][y-edgelen-1] = 'o';
else
create_graph(now*2, x+edgelen+1, y-edgelen-1, (edgelen+1)/2-1);
}
// right
if (bt[now*2+1])
{
for (int i = 1; i <= edgelen; i++)
graph[x+i][y+i] = '\\';
if (edgelen == 2)
create_graph(now*2+1, x+edgelen+1, y+edgelen+1, 1);
else if (edgelen == 1)
graph[x+edgelen+1][y+edgelen+1] = 'o';
else
create_graph(now*2+1, x+edgelen+1, y+edgelen+1, (edgelen+1)/2-1);
}
}
int main()
{
// init
fill(graph[0], graph[0]+ MAXW * MAXH, ' ');
// input & create the binary tree
scanf("%d %d",&m,&n);
create_bt(m);
while(n--)
{
int i, j, no;
scanf("%d %d",&i,&j);
no = pow(2, i-1) - 1 + j;
delete_node(no);
}
// calculate some important variables
width = 3 * pow(2, m-1) - 1;
height = 3 * pow(2, m-2);
int root_edge = height / 2 - 1;
if (m == 2) root_edge = 1;
// draw tree graph
create_graph(1, 1, height, root_edge);
// output
for (int i = 1; i <= height; i++)
{
for (int j = 1; j <= width; j++)
printf("%c", graph[i][j]);
printf("\n");
}
return 0;
}