forked from J535D165/FEBRL-fork-v0.4.2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
output.py
576 lines (453 loc) · 21.3 KB
/
output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# =============================================================================
# AUSTRALIAN NATIONAL UNIVERSITY OPEN SOURCE LICENSE (ANUOS LICENSE)
# VERSION 1.3
#
# The contents of this file are subject to the ANUOS License Version 1.3
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at:
#
# https://sourceforge.net/projects/febrl/
#
# Software distributed under the License is distributed on an "AS IS"
# basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
# the License for the specific language governing rights and limitations
# under the License.
#
# The Original Software is: "output.py"
#
# The Initial Developer of the Original Software is:
# Dr Peter Christen (Research School of Computer Science, The Australian
# National University)
#
# Copyright (C) 2002 - 2011 the Australian National University and
# others. All Rights Reserved.
#
# Contributors:
#
# Alternatively, the contents of this file may be used under the terms
# of the GNU General Public License Version 2 or later (the "GPL"), in
# which case the provisions of the GPL are applicable instead of those
# above. The GPL is available at the following URL: http://www.gnu.org/
# If you wish to allow use of your version of this file only under the
# terms of the GPL, and not to allow others to use your version of this
# file under the terms of the ANUOS License, indicate your decision by
# deleting the provisions above and replace them with the notice and
# other provisions required by the GPL. If you do not delete the
# provisions above, a recipient may use your version of this file under
# the terms of any one of the ANUOS License or the GPL.
# =============================================================================
#
# Freely extensible biomedical record linkage (Febrl) - Version 0.4.2
#
# See: http://datamining.anu.edu.au/linkage.html
#
# =============================================================================
"""Module output.py - Functions for output of linkage and deduplication.
This module provides several functions that allow saving the linkage or
deduplication results into files of various formats. It also contains
various output (and input) related auxiliary functions.
The following functions are provided:
GenerateHistogram Convert the summed weight vectors into a (ASCII text
based) histogram and return as a list of text (for
printing into a terminal window), and possibly write
into a text file.
SaveMatchStatusFile Save the matched record identifiers into a CVS file.
SaveMatchDataSet Save the original data set(s) with an additional
field (attribute) that contains match identifiers.
The following auxiliary functions are also provided:
LoadWeightVectorFile Load a CSV file assumed to contain record identifier
tuples and their corresponding weight vectors as
written with a run() method from indexing.py
"""
# =============================================================================
# Import necessary modules (Febrl modules first, then Python standard modules)
import auxiliary
import dataset
import csv
import gzip
import logging
import math
import os
# =============================================================================
def GenerateHistogram(w_vec_dict, bin_width, file_name=None, match_sets=None):
"""Print and/or save a histogram of the weight vectors stored in the given
dictionary, and according to the match sets (if given).
The histogram is rotated 90 degrees clockwise, i.e. up to down instead of
left to right.
This function sums up the number of weight vectors with a matching weight
in a given bin (according to the given bin width).
If given, the match sets must be a tuple containing three sets, the first
being a set with matches, the second with non-matches, and the third with
possible matches, as generated by classifiers in the classification.py
Febrl module.
For each bin, the number of weight vectors in this bin is printed as well,
and if the match sets are given the number of matches, non-matches and
possible matches in this bin.
If a file name is given, the output will be written into this text file.
This function returns a list of containing the histogram as text strings.
"""
MAX_HISTO_WIDTH = 80 # maximum width in characters
auxiliary.check_is_dictionary('w_vec_dict', w_vec_dict)
auxiliary.check_is_number('bin_width', bin_width)
auxiliary.check_is_positive('bin_width', bin_width)
if (file_name != None):
auxiliary.check_is_string('file_name', file_name)
if (match_sets != None):
auxiliary.check_is_tuple('match_sets', match_sets)
if (len(match_sets) != 3):
logging.exception('Match sets must be a tuple containing three sets.')
raise Exception
auxiliary.check_is_set('match_sets[0]', match_sets[0])
auxiliary.check_is_set('match_sets[1]', match_sets[1])
auxiliary.check_is_set('match_sets[2]', match_sets[2])
if (len(w_vec_dict) != (len(match_sets[0]) + len(match_sets[1]) + \
len(match_sets[2]))):
logging.exception('Lengths of weight vector dictionary differs from' + \
'summed lengths of match sets.')
raise Exception
# Check if weight vector dictionary is empty, if so return empty list
#
if (w_vec_dict == {}):
logging.warn('Empty weight vector dictionary given for histogram ' + \
'generation')
return []
# Get a random vector dictionary element to get dimensionality of vectors
#
(rec_id_tuple, w_vec) = w_vec_dict.popitem()
v_dim = len(w_vec)
w_vec_dict[rec_id_tuple] = w_vec # Put back in
histo_dict = {} # A combined histogram dictionary
if (match_sets != None): # Also matches, non-matches and possible matches
match_histo_dict = {}
non_match_histo_dict = {}
poss_match_histo_dict = {}
max_bin_w_count = -1 # Maximal count for one binned weight entry
# Loop over weight vectors - - - - - - - - - - - - - - - - - - - - - - - - -
#
for (rec_id_tuple, w_vec) in w_vec_dict.iteritems():
w_sum = sum(w_vec) # Sum all weight vector elements
binned_w = w_sum - (w_sum % bin_width)
binned_w_count = histo_dict.get(binned_w,0) + 1 # Increase count by one
histo_dict[binned_w] = binned_w_count
if (binned_w_count > max_bin_w_count): # Check if this is new maximum count
max_bin_w_count = binned_w_count
if (match_sets != None):
if (rec_id_tuple in match_sets[0]):
binned_w_count = match_histo_dict.get(binned_w,0) + 1
match_histo_dict[binned_w] = binned_w_count
elif (rec_id_tuple in match_sets[1]):
binned_w_count = non_match_histo_dict.get(binned_w,0) + 1
non_match_histo_dict[binned_w] = binned_w_count
else: # A possible match
binned_w_count = poss_match_histo_dict.get(binned_w,0) + 1
poss_match_histo_dict[binned_w] = binned_w_count
# Sort histogram according to X axis values - - - - - - - - - - - - - - - - -
#
x_vals = histo_dict.keys()
x_vals.sort()
assert sum(histo_dict.values()) == len(w_vec_dict)
if (match_sets == None): # Can use 68 characters for histogram
scale_factor_y = float(MAX_HISTO_WIDTH-19) / max_bin_w_count
elif (len(poss_match_histo_dict) == 0): # No possible matches
scale_factor_y = float(MAX_HISTO_WIDTH-30) / max_bin_w_count
else: # All three set non-empty
scale_factor_y = float(MAX_HISTO_WIDTH-41) / max_bin_w_count
# Generate the histogram as a list of strings - - - - - - - - - - - - - - - -
#
histo_list = []
histo_list.append('Weight histogram:')
histo_list.append('-----------------')
if (match_sets == None):
histo_list.append(' Counts | w_sum |')
histo_list.append('-------------------')
elif (len(poss_match_histo_dict) == 0): # No possible matches
histo_list.append(' Counts |')
histo_list.append(' Match | Non-Match| w_sum |')
histo_list.append('------------------------------')
else:
histo_list.append(' Counts |')
histo_list.append(' Match | Non-Match|Poss-Match| w_sum |')
histo_list.append('-----------------------------------------')
for x_val in x_vals:
this_count = histo_dict[x_val]
if (match_sets == None):
line_str = '%9d | %5.2f |' % (this_count, x_val)
elif (len(poss_match_histo_dict) == 0): # No possible matches
this_match_count = match_histo_dict.get(x_val, 0)
this_non_match_count = non_match_histo_dict.get(x_val, 0)
line_str = '%9d |%9d | %5.2f |' % (this_match_count,
this_non_match_count, x_val)
else:
this_match_count = match_histo_dict.get(x_val, 0)
this_non_match_count = non_match_histo_dict.get(x_val, 0)
this_poss_match_count = poss_match_histo_dict.get(x_val, 0)
line_str = '%9d |%9d |%9d | %5.2f |' % (this_match_count,
this_non_match_count,
this_poss_match_count, x_val)
line_str += '*'*int(this_count*scale_factor_y)
histo_list.append(line_str)
histo_list.append('')
# If a file name is given open it for writing - - - - - - - - - - - - - - - -
#
if (file_name != None):
try:
f = open(file_name, 'w')
except:
logging.exception('Cannot open file "%s" for writing' % (str(file_name)))
raise IOError
for line in histo_list:
f.write(line + os.linesep)
f.close()
logging.info('Histogram written to file: %s' % (file_name))
if (match_sets != None):
print match_histo_dict.items()
print non_match_histo_dict.items()
return histo_list
# -----------------------------------------------------------------------------
def SaveMatchStatusFile(w_vec_dict, match_set, file_name):
"""Save the matched record identifiers into a CVS file.
This function saves the record identifiers of all record pairs that are in
the given match set into a CSV file with four columns:
- First record identifier
- Second record identifier
- Summed matching weight from the corresponding weight vector
- A unique match identifier (generated in the same way as the ones in the
function SaveMatchDataSet below).
"""
auxiliary.check_is_dictionary('w_vec_dict', w_vec_dict)
auxiliary.check_is_set('match_set', match_set)
auxiliary.check_is_string('file_name', file_name)
match_rec_id_list = list(match_set) # Make a list so it can be sorted
match_rec_id_list.sort()
if (len(match_set) > 0):
num_digit = max(1,int(math.ceil(math.log(len(match_set), 10))))
else:
num_digit = 1
mid_count = 1 # Counter for match identifiers
# Try to open the file for writing
#
try:
f = open(file_name, 'w')
except:
logging.exception('Cannot open file "%s" for writing' % (str(file_name)))
raise IOError
for rec_id_tuple in match_rec_id_list:
w_vec = w_vec_dict[rec_id_tuple]
w_sum = sum(w_vec)
mid_count_str = '%s' % (mid_count)
this_mid = 'mid%s' % (mid_count_str.zfill(num_digit))
rec_id1 = rec_id_tuple[0]
rec_id2 = rec_id_tuple[1]
f.write('%s,%s,%f,%s' % (rec_id1, rec_id2, w_sum, this_mid) + os.linesep)
mid_count += 1
f.close()
# -----------------------------------------------------------------------------
def SaveMatchDataSet(match_set, dataset1, id_field1, new_dataset_name1,
dataset2=None, id_field2=None, new_dataset_name2=None):
"""Save the original data set(s) with an additional field (attribute) that
contains match identifiers.
This functions creates unique match identifiers (one for each matched pair
of record identifiers in the given match set), and inserts them into a new
attribute (field) of a data set(s) which will be written.
If the record identifier field is not one of the fields in the input data
set, then additionally such a field will be added to the output data set
(with the name of the record identifier from the input data set).
Currently the output data set(s) to be written will be CSV type data sets.
Match identifiers as or the form 'mid00001', 'mid0002', etc. with the
number of digits depending upon the total number of matches in the match
set. If a record is involved in several matches, then the match
identifiers will be separated by a semi-colon (;).
Only one new data set will be created for deduplication, and two new data
sets for linkage.
For a deduplication, it is assumed that the second data set is set to
None.
"""
auxiliary.check_is_set('match_set', match_set)
auxiliary.check_is_not_none('dataset1', dataset1)
auxiliary.check_is_string('id_field1', id_field1)
auxiliary.check_is_string('new_dataset_name1', new_dataset_name1)
if (dataset2 != None): # A linkage, check second set of parameters
auxiliary.check_is_not_none('dataset2', dataset2)
auxiliary.check_is_string('id_field2', id_field2)
auxiliary.check_is_string('new_dataset_name2', new_dataset_name2)
do_link = True
else:
do_link = False
match_rec_id_list = list(match_set) # Make a list so it can be sorted
match_rec_id_list.sort()
if (len(match_set) > 0):
num_digit = max(1,int(math.ceil(math.log(len(match_set), 10))))
else:
num_digit = 1
mid_count = 1 # Counter for match identifiers
# Generate a dictionary with record identifiers as keys and lists of match
# identifiers as values
#
match_id_dict1 = {} # For first data set
match_id_dict2 = {} # For second data set, not required for deduplication
for rec_id_tuple in match_rec_id_list:
rec_id1, rec_id2 = rec_id_tuple
mid_count_str = '%s' % (mid_count)
this_mid = 'mid%s' % (mid_count_str.zfill(num_digit))
rec_id1_mid_list = match_id_dict1.get(rec_id1, [])
rec_id1_mid_list.append(this_mid)
match_id_dict1[rec_id1] = rec_id1_mid_list
if (do_link == True): # Do the same for second data set
rec_id2_mid_list = match_id_dict2.get(rec_id2, [])
rec_id2_mid_list.append(this_mid)
match_id_dict2[rec_id2] = rec_id2_mid_list
else: # Same dicionary for deduplication
rec_id2_mid_list = match_id_dict1.get(rec_id2, [])
rec_id2_mid_list.append(this_mid)
match_id_dict1[rec_id2] = rec_id2_mid_list
mid_count += 1
# Now initialise new data set(s) for output based on input data set(s) - - -
# First need to generate field list from input data set
#
if (dataset1.dataset_type == 'CSV'):
new_dataset1_field_list = dataset1.field_list[:] # Make a copy of list
last_col_index = new_dataset1_field_list[-1][1]+1
elif (dataset1.dataset_type == 'COL'):
new_dataset1_field_list = []
col_index = 0
for (field, col_width) in dataset1.field_list:
new_dataset1_field_list.append((field, col_index))
col_index += 1
last_col_index = col_index
# Check if the record identifier is not a normal input field (in which case
# it has to be written into the output data set as well)
#
rec_ident_name = dataset1.rec_ident
add_rec_ident = True
for (field_name, field_data) in dataset1.field_list:
if (field_name == rec_ident_name):
add_rec_ident = False
break
if (add_rec_ident == True): # Put record identifier into first column
new_dataset1_field_list.append((rec_ident_name, last_col_index))
last_col_index += 1
# Append match id field
#
new_dataset1_field_list.append((id_field1, last_col_index))
new_dataset1_description = dataset1.description+' with match identifiers'
new_dataset1 = dataset.DataSetCSV(description=new_dataset1_description,
access_mode='write',
rec_ident=dataset1.rec_ident,
header_line=True,
write_header=True,
strip_fields = dataset1.strip_fields,
miss_val = dataset1.miss_val,
field_list = new_dataset1_field_list,
delimiter = dataset1.delimiter,
file_name = new_dataset_name1)
# Read all records, add match identifiers and write into new data set
#
for (rec_id, rec_list) in dataset1.readall():
if (add_rec_ident == True): # Add record identifier
rec_list.append(rec_id)
mid_list = match_id_dict1.get(rec_id, [])
mid_str = ';'.join(mid_list)
rec_list.append(mid_str)
new_dataset1.write({rec_id:rec_list})
new_dataset1.finalise()
if (do_link == True): # Second data set for linkage only - - - - - - - - - -
if (dataset2.dataset_type == 'CSV'):
new_dataset2_field_list = dataset2.field_list[:] # Make a copy of list
last_col_index = new_dataset2_field_list[-1][1]+1
elif (dataset2.dataset_type == 'COL'):
new_dataset2_field_list = []
col_index = 0
for (field, col_width) in dataset2.field_list:
new_dataset2_field_list.append((field, col_index))
col_index += 1
last_col_index = col_index
# Check if the record identifier is not an normal input field (in which
# case it has to be written into the output data set as well)
#
rec_ident_name = dataset2.rec_ident
add_rec_ident = True
for (field_name, field_data) in dataset2.field_list:
if (field_name == rec_ident_name):
add_rec_ident = False
break
if (add_rec_ident == True): # Put record identifier into first column
new_dataset2_field_list.append((rec_ident_name, last_col_index))
last_col_index += 1
# Append match id field
#
new_dataset2_field_list.append((id_field2, last_col_index))
new_dataset2_description = dataset2.description+' with match identifiers'
new_dataset2 = dataset.DataSetCSV(description=new_dataset2_description,
access_mode='write',
rec_ident=dataset2.rec_ident,
header_line=True,
write_header=True,
strip_fields = dataset2.strip_fields,
miss_val = dataset2.miss_val,
field_list = new_dataset2_field_list,
file_name = new_dataset_name2)
# Read all records, add match identifiers and write into new data set
#
for (rec_id, rec_list) in dataset2.readall():
if (add_rec_ident == True): # Add record identifier
rec_list.append(rec_id)
mid_list = match_id_dict2.get(rec_id, [])
mid_str = ';'.join(mid_list)
rec_list.append(mid_str)
new_dataset2.write({rec_id:rec_list})
new_dataset2.finalise()
# =============================================================================
def LoadWeightVectorFile(file_name):
"""Function to load a weight vector dictionary from a file, assumed to be of
type CSV (comma separated values), with the first line being a header line
containing the field comparison names.
Such files were normally written withhin the run() method of index
implementations, see the Febrl module indexing.py.
The first two columns in each line are assumed to be the two record
identifiers which (together as a tuple) will become the keys in the weight
vector dictionary that is returned.
The function first checks if a gzipped version of the file is available
(with file ending '.gz' or '.GZ').
This function returns a list with the field comparison names and a weight
vector dictionary.
"""
auxiliary.check_is_string('file_name', file_name)
if (file_name[-3:] not in ['.gz','.GZ']): # Check for gzipped versions
if (os.access(file_name+'.gz', os.F_OK) == True):
file_name = file_name+'.gz'
elif (os.access(file_name+'.GZ', os.F_OK) == True):
file_name = file_name+'.GZ'
if (file_name.endswith('.gz')) or (file_name.endswith('.GZ')):
try:
in_file = gzip.open(file_name) # Open gzipped file
except:
logging.exception('Cannot open gzipped CSV file "%s" for reading' % \
(file_name))
raise IOError
else: # Open normal file for reading
try: # Try to open the file in read mode
in_file = open(file_name)
except:
logging.exception('Cannot open CSV file "%s" for reading' % \
(file_name))
raise IOError
# Initialise the CSV parser - - - - - - - - - - - - - - - - - - - - - - -
#
csv_parser = csv.reader(in_file)
header_line = csv_parser.next() # Read header line
# Generate field names list
#
field_names_list = header_line[2:] # Remove record identifier names
weight_vec_dict = {} # Fill weight vector dictionary with data from file
for line in csv_parser:
rec_id_tuple = (line[0], line[1])
if (rec_id_tuple in weight_vec_dict): # Check for unique record ids
logging.warn('Record identifier tuple %s already in weight vector ' % \
(str(rec_id_tuple))+'dictionary')
w_vec = []
for w in line[2:]:
w_vec.append(float(w))
weight_vec_dict[rec_id_tuple] = w_vec
in_file.close()
return [field_names_list, weight_vec_dict]
# =============================================================================