-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathgraph-functions.scad
157 lines (125 loc) · 2.96 KB
/
graph-functions.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
function hadamard(a,b) =
len(a)==len(b)
? [for (i=[0:len(a)-1]) a[i]*b[i]]
: [];
module line(p1,p2,thickness=0.5) {
hull() {
translate(p1) circle(d=thickness);
translate(p2) circle(d=thickness);
}
}
module graph(fn,min,max,step,scale=[1,1],thickness=0.5) {
for(t = [min:step:max-step]) {
hull() {
translate(hadamard(f(fn,t),scale)) circle(d=thickness);
translate(hadamard(f(fn,t+step),scale)) circle(d=thickness);
}
}
}
// shorthand
module le(height) {linear_extrude(height) children(); }
// examples
// sum of sine and cosine
function f(fn,t) =
fn== 1 ? [t,0.5*sin(t)]
: fn== 2 ? [t,0.3*cos(t)]
: fn== 3 ? [t,0.5*sin(t) + 0.3*cos(t)]
: 0;
le(5) graph(1, 0, 720, 1, scale=[0.05, 15]);
le(5) graph(2, 0, 720, 1, scale=[0.05, 15]);
le(10) graph(3, 0, 720, 1, scale=[0.05, 15]);
le(2) line([0,-0.25],[40,-0.25]);
// Rose curves
/*
n=1;d=5;cycles=3;
function f(fn,t) =
fn==1 ? [cos(n/d*t) * cos(t),
cos(n/d*t) * sin(t)]
:0;
le(10) graph(1, 0, cycles*360, 1, scale=[20,20]);
*/
// hormal curve
/*
function f(fn,t) =
fn==1 ? [t, exp(-t*t)]
: 0;
le(10) {
graph(1, -3,3, 0.1, scale=[20,40]);
graph(1, -3,3, 0.1, scale=[20,20]);
}
*/
// cardiod
/*
function f(fn,t) =
fn ==1 ? [2 * cos(t) - cos(2 * t),
2 * sin(t) - sin(2 * t)
]
: 0 ;
cycles=1;
le(10) graph(1,0,cycles*360,1,scale=[10,10],thickness=3);
le(5) rotate([0,0,180]) graph(1,0,cycles*360,1,scale=[10,10],thickness=5);
*/
// falling ladder
/*
length = 100;
le(5)
for(x = [0:length/10:length]) {
y = sqrt(length * length - x*x);
// y = l-x; for a different curve
echo(x,y,sqrt(x*x + y*y));
line([0,x],[y,0]);
}
*/
// lissajous
/*
a=5;b=3;delta=0;
function f(fn,t) =
fn==1 ? [sin(a * t + delta),
sin(b * t )]
: 0 ;
cycles=1;
le(5) graph(1,0,cycles*360,1,scale=[15,15],thickness=2);
*/
// from Wikipedia parametric equation
/*
a=5;b=3;c=2;d=3;j=3;k=2;
function f(fn,t) =
fn==1 ? [cos(a*t) - pow(cos(b*t),j),
sin(c*t) - pow(sin(d*t),k)]
: 0 ;
cycles=1;
le(5) graph(1,0,cycles*360,1,scale=[15,15],thickness=2);
*/
// Epitrochoid
// if c=b then epicycloid
/*
a=3;b=2;c=4.6;
function f(fn,t) =
fn==1 ? [ (a+b) * cos(t) - c* cos((a/b+1)*t),
(a+b) * sin(t) - c* sin((a/b+1)*t)]
:0;
cycles=2;
le(10) graph(1,0,cycles*360,1,scale=[2,2],thickness=2);
*/
// Hypotrochoid
// if c=b then hypocycloid
/*
a=3;b=5;c=5;
function f(fn,t) =
fn==1 ? [ (a-b) * cos(t) - c* cos((a/b-1)*t),
(a-b) * sin(t) - c* sin((a/b-1)*t)]
:0;
cycles=5;
graph(1,0,cycles*360,1,scale=[15,15],thickness=4);
*/
// Tricuspoid
/*
a=2;k=5;j=5;
function f(fn,t) =
fn==1 ? [ a * (j * cos(t) + cos(k*t)),
a* (j * sin(t) - sin(k*t))]
:0;
cycles=1;
$fn=20;
le(5) graph(1,0,cycles*360,1,scale=[2,2],thickness=2);
*/