We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
When I trained my model with pretrained-model, the variables are zeros like this :
model restore from pretrained mode, path is : /home/..//data/pretrained_weights/resnet_50.ckpt resnet_v1_50/conv1/weights:0 resnet_v1_50/conv1/BatchNorm/gamma:0 resnet_v1_50/conv1/BatchNorm/beta:0 resnet_v1_50/conv1/BatchNorm/moving_mean:0 resnet_v1_50/conv1/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/weights:0 resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0 resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0 resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/weights:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/weights:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/weights:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/weights:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/weights:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/weights:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/weights:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/weights:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0 resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/weights:0 resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0 resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0 resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0 resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/weights:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/weights:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/weights:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0 resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/weights:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/weights:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/weights:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0 resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/weights:0 resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0 resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0 resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0 resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0 resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/weights:0 resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0 resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0 ... ... ...
The text was updated successfully, but these errors were encountered:
No branches or pull requests
When I trained my model with pretrained-model, the variables are zeros like this :
model restore from pretrained mode, path is : /home/..//data/pretrained_weights/resnet_50.ckpt
resnet_v1_50/conv1/weights:0
resnet_v1_50/conv1/BatchNorm/gamma:0
resnet_v1_50/conv1/BatchNorm/beta:0
resnet_v1_50/conv1/BatchNorm/moving_mean:0
resnet_v1_50/conv1/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/weights:0
resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/weights:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/weights:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/weights:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/weights:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/weights:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/weights:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/weights:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv2/BatchNorm/moving_variance:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/weights:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/beta:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_mean:0
resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/weights:0
resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma:0
resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/beta:0
resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_mean:0
resnet_v1_50/block2/unit_1/bottleneck_v1/shortcut/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/weights:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/gamma:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/beta:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/weights:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/gamma:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/beta:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/weights:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/gamma:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/beta:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean:0
resnet_v1_50/block2/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/weights:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/gamma:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/beta:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_mean:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv1/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/weights:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/gamma:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/beta:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_mean:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv2/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/weights:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/gamma:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/beta:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean:0
resnet_v1_50/block2/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/weights:0
resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/gamma:0
resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/beta:0
resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_mean:0
resnet_v1_50/block2/unit_3/bottleneck_v1/conv1/BatchNorm/moving_variance:0
resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/weights:0
resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/BatchNorm/gamma:0
resnet_v1_50/block2/unit_3/bottleneck_v1/conv2/BatchNorm/beta:0
...
...
...
The text was updated successfully, but these errors were encountered: