forked from fancyIX/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 3
/
scrypt.cpp
1105 lines (972 loc) · 33.9 KB
/
scrypt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2013 pooler
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#ifdef WIN32
#include <ppl.h>
using namespace Concurrency;
#else
#include <omp.h>
#endif
#include "miner.h"
#include "scrypt/salsa_kernel.h"
#include "scrypt/sha256.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <emmintrin.h>
#ifndef __APPLE__
#include <malloc.h>
#endif
#include <new>
#if _MSC_VER > 1800
#undef _THROW1
#define _THROW1(x) throw(std::bad_alloc)
#endif
// A thin wrapper around the builtin __m128i type
class uint32x4_t
{
public:
#if WIN32
void * operator new(size_t size) _THROW1(_STD bad_alloc) { void *p; if ((p = _aligned_malloc(size, 16)) == 0) { static const std::bad_alloc nomem; _RAISE(nomem); } return (p); }
void operator delete(void *p) { _aligned_free(p); }
void * operator new[](size_t size) _THROW1(_STD bad_alloc) { void *p; if ((p = _aligned_malloc(size, 16)) == 0) { static const std::bad_alloc nomem; _RAISE(nomem); } return (p); }
void operator delete[](void *p) { _aligned_free(p); }
#else
void * operator new(size_t size) throw(std::bad_alloc) { void *p; if (posix_memalign(&p, 16, size) < 0) { static const std::bad_alloc nomem; throw nomem; } return (p); }
void operator delete(void *p) { free(p); }
void * operator new[](size_t size) throw(std::bad_alloc) { void *p; if (posix_memalign(&p, 16, size) < 0) { static const std::bad_alloc nomem; throw nomem; } return (p); }
void operator delete[](void *p) { free(p); }
#endif
uint32x4_t() { };
uint32x4_t(const __m128i init) { val = init; }
uint32x4_t(const uint32_t init) { val = _mm_set1_epi32((int)init); }
uint32x4_t(const uint32_t a, const uint32_t b, const uint32_t c, const uint32_t d) { val = _mm_setr_epi32((int)a,(int)b,(int)c,(int)d); }
inline operator const __m128i() const { return val; }
inline const uint32x4_t operator+(const uint32x4_t &other) const { return _mm_add_epi32(val, other); }
inline const uint32x4_t operator+(const uint32_t other) const { return _mm_add_epi32(val, _mm_set1_epi32((int)other)); }
inline uint32x4_t& operator+=(const uint32x4_t other) { val = _mm_add_epi32(val, other); return *this; }
inline uint32x4_t& operator+=(const uint32_t other) { val = _mm_add_epi32(val, _mm_set1_epi32((int)other)); return *this; }
inline const uint32x4_t operator&(const uint32_t other) const { return _mm_and_si128(val, _mm_set1_epi32((int)other)); }
inline const uint32x4_t operator&(const uint32x4_t &other) const { return _mm_and_si128(val, other); }
inline const uint32x4_t operator|(const uint32x4_t &other) const { return _mm_or_si128(val, other); }
inline const uint32x4_t operator^(const uint32x4_t &other) const { return _mm_xor_si128(val, other); }
inline const uint32x4_t operator<<(const int num) const { return _mm_slli_epi32(val, num); }
inline const uint32x4_t operator>>(const int num) const { return _mm_srli_epi32(val, num); }
inline const uint32_t operator[](const int num) const { return ((uint32_t*)&val)[num]; }
protected:
__m128i val;
};
// non-member overload
inline const uint32x4_t operator+(const uint32_t left, const uint32x4_t &right) { return _mm_add_epi32(_mm_set1_epi32((int)left), right); }
//
// Code taken from sha2.cpp and vectorized, with minimal changes where required
// Not all subroutines are actually used.
//
#define bswap_32x4(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) \
| (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
static __inline uint32x4_t swab32x4(const uint32x4_t &v)
{
return bswap_32x4(v);
}
static const uint32_t sha256_h[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
static const uint32_t sha256_k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
void sha256_initx4(uint32x4_t *statex4)
{
for (int i=0; i<8; ++i)
statex4[i] = sha256_h[i];
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
do { \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1; \
} while (0)
/* Adjusted round function for rotating state */
#define RNDr(S, W, i) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + sha256_k[i])
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
void sha256_transformx4(uint32x4_t *state, const uint32x4_t *block, int swap)
{
uint32x4_t W[64];
uint32x4_t S[8];
uint32x4_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
if (swap) {
for (i = 0; i < 16; i++)
W[i] = swab32x4(block[i]);
} else
memcpy(W, block, 4*64);
for (i = 16; i < 64; i += 2) {
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
}
/* 2. Initialize working variables. */
memcpy(S, state, 4*32);
/* 3. Mix. */
RNDr(S, W, 0);
RNDr(S, W, 1);
RNDr(S, W, 2);
RNDr(S, W, 3);
RNDr(S, W, 4);
RNDr(S, W, 5);
RNDr(S, W, 6);
RNDr(S, W, 7);
RNDr(S, W, 8);
RNDr(S, W, 9);
RNDr(S, W, 10);
RNDr(S, W, 11);
RNDr(S, W, 12);
RNDr(S, W, 13);
RNDr(S, W, 14);
RNDr(S, W, 15);
RNDr(S, W, 16);
RNDr(S, W, 17);
RNDr(S, W, 18);
RNDr(S, W, 19);
RNDr(S, W, 20);
RNDr(S, W, 21);
RNDr(S, W, 22);
RNDr(S, W, 23);
RNDr(S, W, 24);
RNDr(S, W, 25);
RNDr(S, W, 26);
RNDr(S, W, 27);
RNDr(S, W, 28);
RNDr(S, W, 29);
RNDr(S, W, 30);
RNDr(S, W, 31);
RNDr(S, W, 32);
RNDr(S, W, 33);
RNDr(S, W, 34);
RNDr(S, W, 35);
RNDr(S, W, 36);
RNDr(S, W, 37);
RNDr(S, W, 38);
RNDr(S, W, 39);
RNDr(S, W, 40);
RNDr(S, W, 41);
RNDr(S, W, 42);
RNDr(S, W, 43);
RNDr(S, W, 44);
RNDr(S, W, 45);
RNDr(S, W, 46);
RNDr(S, W, 47);
RNDr(S, W, 48);
RNDr(S, W, 49);
RNDr(S, W, 50);
RNDr(S, W, 51);
RNDr(S, W, 52);
RNDr(S, W, 53);
RNDr(S, W, 54);
RNDr(S, W, 55);
RNDr(S, W, 56);
RNDr(S, W, 57);
RNDr(S, W, 58);
RNDr(S, W, 59);
RNDr(S, W, 60);
RNDr(S, W, 61);
RNDr(S, W, 62);
RNDr(S, W, 63);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
static const uint32_t sha256d_hash1[16] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x80000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000100
};
static void sha256dx4(uint32x4_t *hash, uint32x4_t *data)
{
uint32x4_t S[16];
sha256_initx4(S);
sha256_transformx4(S, data, 0);
sha256_transformx4(S, data + 16, 0);
for (int i=8; i<16; ++i)
S[i] = sha256d_hash1[i];
sha256_initx4(hash);
sha256_transformx4(hash, S, 0);
}
static inline void sha256d_preextendx4(uint32x4_t *W)
{
W[16] = s1(W[14]) + W[ 9] + s0(W[ 1]) + W[ 0];
W[17] = s1(W[15]) + W[10] + s0(W[ 2]) + W[ 1];
W[18] = s1(W[16]) + W[11] + W[ 2];
W[19] = s1(W[17]) + W[12] + s0(W[ 4]);
W[20] = W[13] + s0(W[ 5]) + W[ 4];
W[21] = W[14] + s0(W[ 6]) + W[ 5];
W[22] = W[15] + s0(W[ 7]) + W[ 6];
W[23] = W[16] + s0(W[ 8]) + W[ 7];
W[24] = W[17] + s0(W[ 9]) + W[ 8];
W[25] = s0(W[10]) + W[ 9];
W[26] = s0(W[11]) + W[10];
W[27] = s0(W[12]) + W[11];
W[28] = s0(W[13]) + W[12];
W[29] = s0(W[14]) + W[13];
W[30] = s0(W[15]) + W[14];
W[31] = s0(W[16]) + W[15];
}
static inline void sha256d_prehashx4(uint32x4_t *S, const uint32x4_t *W)
{
uint32x4_t t0, t1;
RNDr(S, W, 0);
RNDr(S, W, 1);
RNDr(S, W, 2);
}
static inline void sha256d_msx4(uint32x4_t *hash, uint32x4_t *W,
const uint32_t *midstate, const uint32_t *prehash)
{
uint32x4_t S[64];
uint32x4_t t0, t1;
int i;
S[18] = W[18];
S[19] = W[19];
S[20] = W[20];
S[22] = W[22];
S[23] = W[23];
S[24] = W[24];
S[30] = W[30];
S[31] = W[31];
W[18] += s0(W[3]);
W[19] += W[3];
W[20] += s1(W[18]);
W[21] = s1(W[19]);
W[22] += s1(W[20]);
W[23] += s1(W[21]);
W[24] += s1(W[22]);
W[25] = s1(W[23]) + W[18];
W[26] = s1(W[24]) + W[19];
W[27] = s1(W[25]) + W[20];
W[28] = s1(W[26]) + W[21];
W[29] = s1(W[27]) + W[22];
W[30] += s1(W[28]) + W[23];
W[31] += s1(W[29]) + W[24];
for (i = 32; i < 64; i += 2) {
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
}
for (i=0; i<8; ++i)
S[i] = prehash[i];
RNDr(S, W, 3);
RNDr(S, W, 4);
RNDr(S, W, 5);
RNDr(S, W, 6);
RNDr(S, W, 7);
RNDr(S, W, 8);
RNDr(S, W, 9);
RNDr(S, W, 10);
RNDr(S, W, 11);
RNDr(S, W, 12);
RNDr(S, W, 13);
RNDr(S, W, 14);
RNDr(S, W, 15);
RNDr(S, W, 16);
RNDr(S, W, 17);
RNDr(S, W, 18);
RNDr(S, W, 19);
RNDr(S, W, 20);
RNDr(S, W, 21);
RNDr(S, W, 22);
RNDr(S, W, 23);
RNDr(S, W, 24);
RNDr(S, W, 25);
RNDr(S, W, 26);
RNDr(S, W, 27);
RNDr(S, W, 28);
RNDr(S, W, 29);
RNDr(S, W, 30);
RNDr(S, W, 31);
RNDr(S, W, 32);
RNDr(S, W, 33);
RNDr(S, W, 34);
RNDr(S, W, 35);
RNDr(S, W, 36);
RNDr(S, W, 37);
RNDr(S, W, 38);
RNDr(S, W, 39);
RNDr(S, W, 40);
RNDr(S, W, 41);
RNDr(S, W, 42);
RNDr(S, W, 43);
RNDr(S, W, 44);
RNDr(S, W, 45);
RNDr(S, W, 46);
RNDr(S, W, 47);
RNDr(S, W, 48);
RNDr(S, W, 49);
RNDr(S, W, 50);
RNDr(S, W, 51);
RNDr(S, W, 52);
RNDr(S, W, 53);
RNDr(S, W, 54);
RNDr(S, W, 55);
RNDr(S, W, 56);
RNDr(S, W, 57);
RNDr(S, W, 58);
RNDr(S, W, 59);
RNDr(S, W, 60);
RNDr(S, W, 61);
RNDr(S, W, 62);
RNDr(S, W, 63);
for (i = 0; i < 8; i++)
S[i] += midstate[i];
W[18] = S[18];
W[19] = S[19];
W[20] = S[20];
W[22] = S[22];
W[23] = S[23];
W[24] = S[24];
W[30] = S[30];
W[31] = S[31];
for (i=8; i<16; ++i)
S[i] = sha256d_hash1[i];
S[16] = s1(sha256d_hash1[14]) + sha256d_hash1[ 9] + s0(S[ 1]) + S[ 0];
S[17] = s1(sha256d_hash1[15]) + sha256d_hash1[10] + s0(S[ 2]) + S[ 1];
S[18] = s1(S[16]) + sha256d_hash1[11] + s0(S[ 3]) + S[ 2];
S[19] = s1(S[17]) + sha256d_hash1[12] + s0(S[ 4]) + S[ 3];
S[20] = s1(S[18]) + sha256d_hash1[13] + s0(S[ 5]) + S[ 4];
S[21] = s1(S[19]) + sha256d_hash1[14] + s0(S[ 6]) + S[ 5];
S[22] = s1(S[20]) + sha256d_hash1[15] + s0(S[ 7]) + S[ 6];
S[23] = s1(S[21]) + S[16] + s0(sha256d_hash1[ 8]) + S[ 7];
S[24] = s1(S[22]) + S[17] + s0(sha256d_hash1[ 9]) + sha256d_hash1[ 8];
S[25] = s1(S[23]) + S[18] + s0(sha256d_hash1[10]) + sha256d_hash1[ 9];
S[26] = s1(S[24]) + S[19] + s0(sha256d_hash1[11]) + sha256d_hash1[10];
S[27] = s1(S[25]) + S[20] + s0(sha256d_hash1[12]) + sha256d_hash1[11];
S[28] = s1(S[26]) + S[21] + s0(sha256d_hash1[13]) + sha256d_hash1[12];
S[29] = s1(S[27]) + S[22] + s0(sha256d_hash1[14]) + sha256d_hash1[13];
S[30] = s1(S[28]) + S[23] + s0(sha256d_hash1[15]) + sha256d_hash1[14];
S[31] = s1(S[29]) + S[24] + s0(S[16]) + sha256d_hash1[15];
for (i = 32; i < 60; i += 2) {
S[i] = s1(S[i - 2]) + S[i - 7] + s0(S[i - 15]) + S[i - 16];
S[i+1] = s1(S[i - 1]) + S[i - 6] + s0(S[i - 14]) + S[i - 15];
}
S[60] = s1(S[58]) + S[53] + s0(S[45]) + S[44];
sha256_initx4(hash);
RNDr(hash, S, 0);
RNDr(hash, S, 1);
RNDr(hash, S, 2);
RNDr(hash, S, 3);
RNDr(hash, S, 4);
RNDr(hash, S, 5);
RNDr(hash, S, 6);
RNDr(hash, S, 7);
RNDr(hash, S, 8);
RNDr(hash, S, 9);
RNDr(hash, S, 10);
RNDr(hash, S, 11);
RNDr(hash, S, 12);
RNDr(hash, S, 13);
RNDr(hash, S, 14);
RNDr(hash, S, 15);
RNDr(hash, S, 16);
RNDr(hash, S, 17);
RNDr(hash, S, 18);
RNDr(hash, S, 19);
RNDr(hash, S, 20);
RNDr(hash, S, 21);
RNDr(hash, S, 22);
RNDr(hash, S, 23);
RNDr(hash, S, 24);
RNDr(hash, S, 25);
RNDr(hash, S, 26);
RNDr(hash, S, 27);
RNDr(hash, S, 28);
RNDr(hash, S, 29);
RNDr(hash, S, 30);
RNDr(hash, S, 31);
RNDr(hash, S, 32);
RNDr(hash, S, 33);
RNDr(hash, S, 34);
RNDr(hash, S, 35);
RNDr(hash, S, 36);
RNDr(hash, S, 37);
RNDr(hash, S, 38);
RNDr(hash, S, 39);
RNDr(hash, S, 40);
RNDr(hash, S, 41);
RNDr(hash, S, 42);
RNDr(hash, S, 43);
RNDr(hash, S, 44);
RNDr(hash, S, 45);
RNDr(hash, S, 46);
RNDr(hash, S, 47);
RNDr(hash, S, 48);
RNDr(hash, S, 49);
RNDr(hash, S, 50);
RNDr(hash, S, 51);
RNDr(hash, S, 52);
RNDr(hash, S, 53);
RNDr(hash, S, 54);
RNDr(hash, S, 55);
RNDr(hash, S, 56);
hash[2] += hash[6] + S1(hash[3]) + Ch(hash[3], hash[4], hash[5])
+ S[57] + sha256_k[57];
hash[1] += hash[5] + S1(hash[2]) + Ch(hash[2], hash[3], hash[4])
+ S[58] + sha256_k[58];
hash[0] += hash[4] + S1(hash[1]) + Ch(hash[1], hash[2], hash[3])
+ S[59] + sha256_k[59];
hash[7] += hash[3] + S1(hash[0]) + Ch(hash[0], hash[1], hash[2])
+ S[60] + sha256_k[60]
+ sha256_h[7];
}
//
// Code taken from original scrypt.cpp and vectorized with minimal changes.
//
static const uint32x4_t keypadx4[12] = {
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280
};
static const uint32x4_t innerpadx4[11] = {
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0
};
static const uint32x4_t outerpadx4[8] = {
0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300
};
static const uint32x4_t finalblkx4[16] = {
0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620
};
static inline void HMAC_SHA256_80_initx4(const uint32x4_t *key,
uint32x4_t *tstate, uint32x4_t *ostate)
{
uint32x4_t ihash[8];
uint32x4_t pad[16];
int i;
/* tstate is assumed to contain the midstate of key */
memcpy(pad, key + 16, 4*16);
memcpy(pad + 4, keypadx4, 4*48);
sha256_transformx4(tstate, pad, 0);
memcpy(ihash, tstate, 4*32);
sha256_initx4(ostate);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x5c5c5c5c;
for (; i < 16; i++)
pad[i] = 0x5c5c5c5c;
sha256_transformx4(ostate, pad, 0);
sha256_initx4(tstate);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x36363636;
for (; i < 16; i++)
pad[i] = 0x36363636;
sha256_transformx4(tstate, pad, 0);
}
static inline void PBKDF2_SHA256_80_128x4(const uint32x4_t *tstate,
const uint32x4_t *ostate, const uint32x4_t *salt, uint32x4_t *output)
{
uint32x4_t istate[8], ostate2[8];
uint32x4_t ibuf[16], obuf[16];
int i, j;
memcpy(istate, tstate, 4*32);
sha256_transformx4(istate, salt, 0);
memcpy(ibuf, salt + 16, 4*16);
memcpy(ibuf + 5, innerpadx4, 4*44);
memcpy(obuf + 8, outerpadx4, 4*32);
for (i = 0; i < 4; i++) {
memcpy(obuf, istate, 4*32);
ibuf[4] = i + 1;
sha256_transformx4(obuf, ibuf, 0);
memcpy(ostate2, ostate, 4*32);
sha256_transformx4(ostate2, obuf, 0);
for (j = 0; j < 8; j++)
output[8 * i + j] = swab32x4(ostate2[j]);
}
}
static inline void PBKDF2_SHA256_128_32x4(uint32x4_t *tstate, uint32x4_t *ostate,
const uint32x4_t *salt, uint32x4_t *output)
{
uint32x4_t buf[16];
int i;
sha256_transformx4(tstate, salt, 1);
sha256_transformx4(tstate, salt + 16, 1);
sha256_transformx4(tstate, finalblkx4, 0);
memcpy(buf, tstate, 4*32);
memcpy(buf + 8, outerpadx4, 4*32);
sha256_transformx4(ostate, buf, 0);
for (i = 0; i < 8; i++)
output[i] = swab32x4(ostate[i]);
}
//
// Original scrypt.cpp HMAC SHA256 functions
//
static const uint32_t keypad[12] = {
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280
};
static const uint32_t innerpad[11] = {
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0
};
static const uint32_t outerpad[8] = {
0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300
};
static const uint32_t finalblk[16] = {
0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620
};
static inline void HMAC_SHA256_80_init(const uint32_t *key,
uint32_t *tstate, uint32_t *ostate)
{
uint32_t ihash[8];
uint32_t pad[16];
int i;
/* tstate is assumed to contain the midstate of key */
memcpy(pad, key + 16, 16);
memcpy(pad + 4, keypad, 48);
sha256_transform(tstate, pad, 0);
memcpy(ihash, tstate, 32);
sha256_init(ostate);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x5c5c5c5c;
for (; i < 16; i++)
pad[i] = 0x5c5c5c5c;
sha256_transform(ostate, pad, 0);
sha256_init(tstate);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x36363636;
for (; i < 16; i++)
pad[i] = 0x36363636;
sha256_transform(tstate, pad, 0);
}
static inline void PBKDF2_SHA256_80_128(const uint32_t *tstate,
const uint32_t *ostate, const uint32_t *salt, uint32_t *output)
{
uint32_t istate[8], ostate2[8];
uint32_t ibuf[16], obuf[16];
int i, j;
memcpy(istate, tstate, 32);
sha256_transform(istate, salt, 0);
memcpy(ibuf, salt + 16, 16);
memcpy(ibuf + 5, innerpad, 44);
memcpy(obuf + 8, outerpad, 32);
for (i = 0; i < 4; i++) {
memcpy(obuf, istate, 32);
ibuf[4] = i + 1;
sha256_transform(obuf, ibuf, 0);
memcpy(ostate2, ostate, 32);
sha256_transform(ostate2, obuf, 0);
for (j = 0; j < 8; j++)
output[8 * i + j] = swab32(ostate2[j]);
}
}
static inline void PBKDF2_SHA256_128_32(uint32_t *tstate, uint32_t *ostate,
const uint32_t *salt, uint32_t *output)
{
uint32_t buf[16];
sha256_transform(tstate, salt, 1);
sha256_transform(tstate, salt + 16, 1);
sha256_transform(tstate, finalblk, 0);
memcpy(buf, tstate, 32);
memcpy(buf + 8, outerpad, 32);
sha256_transform(ostate, buf, 0);
for (int i = 0; i < 8; i++)
output[i] = swab32(ostate[i]);
}
static int lastFactor = 0;
static void computeGold(uint32_t* const input, uint32_t *reference, uchar *scratchpad);
static bool init[MAX_GPUS] = { 0 };
// cleanup
void free_scrypt(int thr_id)
{
int dev_id = device_map[thr_id];
if (!init[thr_id])
return;
// trivial way to free all...
cudaSetDevice(dev_id);
cudaDeviceSynchronize();
cudaDeviceReset();
init[thr_id] = false;
}
// Scrypt proof of work algorithm
// using SSE2 vectorized HMAC SHA256 on CPU and
// a salsa core implementation on GPU with CUDA
//
int scanhash_scrypt(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done,
unsigned char *scratchbuf, struct timeval *tv_start, struct timeval *tv_end)
{
int result = 0;
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
static __thread int throughput = 0;
if (!init[thr_id]) {
int dev_id = device_map[thr_id];
cudaSetDevice(dev_id);
cudaDeviceSynchronize();
cudaDeviceReset();
cudaSetDevice(dev_id);
throughput = cuda_throughput(thr_id);
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
init[thr_id] = true;
}
if (throughput == 0)
return -1;
gettimeofday(tv_start, NULL);
uint32_t n = pdata[19];
const uint32_t Htarg = ptarget[7];
// no default set with --cputest
if (opt_nfactor == 0) opt_nfactor = 9;
uint32_t N = (1UL<<(opt_nfactor+1));
uint32_t *scratch = new uint32_t[N*32]; // scratchbuffer for CPU based validation
uint32_t nonce[2];
uint32_t* hash[2] = { cuda_hashbuffer(thr_id,0), cuda_hashbuffer(thr_id,1) };
uint32_t* X[2] = { cuda_transferbuffer(thr_id,0), cuda_transferbuffer(thr_id,1) };
bool sha_on_cpu = (parallel < 2);
bool sha_multithreaded = (parallel == 1);
uint32x4_t* datax4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 20] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 20] : NULL };
uint32x4_t* hashx4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL };
uint32x4_t* tstatex4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL };
uint32x4_t* ostatex4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL };
uint32x4_t* Xx4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 32] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 32] : NULL };
// log n-factor
if (!opt_quiet && lastFactor != opt_nfactor) {
applog(LOG_WARNING, "scrypt factor set to %d (%u)", opt_nfactor, N);
lastFactor = opt_nfactor;
}
uint32_t _ALIGN(64) midstate[8];
sha256_init(midstate);
sha256_transform(midstate, pdata, 0);
if (sha_on_cpu) {
for (int i = 0; i < throughput/4; ++i) {
for (int j = 0; j < 20; j++) {
datax4[0][20*i+j] = uint32x4_t(pdata[j]);
datax4[1][20*i+j] = uint32x4_t(pdata[j]);
}
}
}
else prepare_sha256(thr_id, pdata, midstate);
int cur = 1, nxt = 0;
int iteration = 0;
int num_shares = (4*opt_n_threads) || 1; // opt_n_threads can be 0 with --cputest
int share_workload = ((((throughput + num_shares-1) / num_shares) + 3) / 4) * 4;
do {
nonce[nxt] = n;
if (sha_on_cpu)
{
for (int i = 0; i < throughput/4; i++) {
datax4[nxt][i * 20 + 19] = uint32x4_t(n+0, n+1, n+2, n+3);
n += 4;
}
if (sha_multithreaded)
{
#ifdef WIN32
parallel_for (0, num_shares, [&](int share) {
for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) {
for (int l = 0; l < 8; l++)
tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]);
HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]);
PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]);
}
} );
#else
#pragma omp parallel for
for (int share = 0; share < num_shares; share++) {
for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) {
for (int l = 0; l < 8; l++)
tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]);
HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]);
PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]);
}
}
#endif
}
else /* sha_multithreaded */
{
for (int k = 0; k < throughput/4; k++) {
for (int l = 0; l < 8; l++)
tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]);
HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]);
PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]);
}
}
for (int i = 0; i < throughput/4; i++) {
for (int j = 0; j < 32; j++) {
uint32x4_t &t = Xx4[nxt][i * 32 + j];
X[nxt][(4*i+0)*32+j] = t[0]; X[nxt][(4*i+1)*32+j] = t[1];
X[nxt][(4*i+2)*32+j] = t[2]; X[nxt][(4*i+3)*32+j] = t[3];
}
}
cuda_scrypt_serialize(thr_id, nxt);
cuda_scrypt_HtoD(thr_id, X[nxt], nxt);
cuda_scrypt_core(thr_id, nxt, N);
cuda_scrypt_done(thr_id, nxt);
cuda_scrypt_DtoH(thr_id, X[nxt], nxt, false);
//cuda_scrypt_flush(thr_id, nxt);
if(!cuda_scrypt_sync(thr_id, nxt))
{
result = -1;
break;
}
for (int i = 0; i < throughput/4; i++) {
for (int j = 0; j < 32; j++) {
Xx4[cur][i * 32 + j] = uint32x4_t(
X[cur][(4*i+0)*32+j], X[cur][(4*i+1)*32+j],
X[cur][(4*i+2)*32+j], X[cur][(4*i+3)*32+j]
);
}
}
if (sha_multithreaded)
{
#ifdef WIN32
parallel_for (0, num_shares, [&](int share) {
for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) {
PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]);
}
} );
#else
#pragma omp parallel for
for (int share = 0; share < num_shares; share++) {
for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) {
PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]);
}
}
#endif
} else {
for (int k = 0; k < throughput/4; k++) {
PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]);
}
}
for (int i = 0; i < throughput/4; i++) {
for (int j = 0; j < 8; j++) {
uint32x4_t &t = hashx4[cur][i * 8 + j];
hash[cur][(4*i+0)*8+j] = t[0]; hash[cur][(4*i+1)*8+j] = t[1];
hash[cur][(4*i+2)*8+j] = t[2]; hash[cur][(4*i+3)*8+j] = t[3];
}
}
}
else /* sha_on_cpu */
{
n += throughput;
cuda_scrypt_serialize(thr_id, nxt);
pre_sha256(thr_id, nxt, nonce[nxt], throughput);
cuda_scrypt_core(thr_id, nxt, N);
// cuda_scrypt_flush(thr_id, nxt);
if (!cuda_scrypt_sync(thr_id, nxt)) {
printf("error\n");
result = -1;
break;
}
post_sha256(thr_id, nxt, throughput);
cuda_scrypt_done(thr_id, nxt);
cuda_scrypt_DtoH(thr_id, hash[nxt], nxt, true);
// cuda_scrypt_flush(thr_id, nxt);
if (!cuda_scrypt_sync(thr_id, nxt)) {
printf("error\n");
result = -1;
break;
}
}
if (iteration > 0 || opt_n_threads == 0)
{
for (int i = 0; i < throughput; i++)
{
if (hash[cur][i * 8 + 7] <= Htarg && fulltest(hash[cur] + i * 8, ptarget))
{
// CPU based validation to rule out GPU errors (scalar CPU code)
uint32_t _ALIGN(64) inp[32], ref[32], tstate[8], ostate[8], refhash[8], ldata[20];
memcpy(ldata, pdata, 80); ldata[19] = nonce[cur] + i;
memcpy(tstate, midstate, 32);
HMAC_SHA256_80_init(ldata, tstate, ostate);
PBKDF2_SHA256_80_128(tstate, ostate, ldata, inp);
computeGold(inp, ref, (uchar*)scratch);
bool good = true;
if (sha_on_cpu) {
if (memcmp(&X[cur][i * 32], ref, 32*sizeof(uint32_t)) != 0) good = false;
} else {
PBKDF2_SHA256_128_32(tstate, ostate, ref, refhash);
if (memcmp(&hash[cur][i * 8], refhash, 32) != 0) good = false;
}
if (!good) {
gpulog(LOG_WARNING, thr_id, "result does not validate on CPU! (i=%d, s=%d)", i, cur);
} else {
*hashes_done = n - pdata[19];
work_set_target_ratio(work, refhash);
pdata[19] = nonce[cur] + i;
result = 1;
goto byebye;
}
}
}
}
cur = (cur+1)&1;
nxt = (nxt+1)&1;
++iteration;
//printf("n=%d, thr=%d, max=%d, rest=%d\n", n, throughput, max_nonce, work_restart[thr_id].restart);
} while (n <= max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - pdata[19];
pdata[19] = n;
byebye:
delete[] datax4[0]; delete[] datax4[1]; delete[] hashx4[0]; delete[] hashx4[1];
delete[] tstatex4[0]; delete[] tstatex4[1]; delete[] ostatex4[0]; delete[] ostatex4[1];
delete[] Xx4[0]; delete[] Xx4[1];
delete [] scratch;
gettimeofday(tv_end, NULL);
return result;
}
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
static void xor_salsa8(uint32_t * const B, const uint32_t * const C)
{
uint32_t x0 = (B[ 0] ^= C[ 0]), x1 = (B[ 1] ^= C[ 1]), x2 = (B[ 2] ^= C[ 2]), x3 = (B[ 3] ^= C[ 3]);
uint32_t x4 = (B[ 4] ^= C[ 4]), x5 = (B[ 5] ^= C[ 5]), x6 = (B[ 6] ^= C[ 6]), x7 = (B[ 7] ^= C[ 7]);
uint32_t x8 = (B[ 8] ^= C[ 8]), x9 = (B[ 9] ^= C[ 9]), xa = (B[10] ^= C[10]), xb = (B[11] ^= C[11]);
uint32_t xc = (B[12] ^= C[12]), xd = (B[13] ^= C[13]), xe = (B[14] ^= C[14]), xf = (B[15] ^= C[15]);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */