-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathKruskal.cpp
132 lines (111 loc) · 2.46 KB
/
Kruskal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// C++ program for Kruskal's algorithm to find Minimum
// Spanning Tree of a given connected, undirected and
// weighted graph
#include<bits/stdc++.h>
using namespace std;
// Creating shortcut for an integer pair
// Structure to represent a graph
struct Graph
{
int V, E;
vector< pair<int, pair<int, int>> > edges;
Graph(int V, int E)
{
this->V = V;
this->E = E;
}
// Utility function to add an edge
void addEdge(int u, int w, int v)
{
edges.push_back({w, {u, v}});
}
int kruskalMST();
};
// To represent Disjoint Sets
struct DisjointSets
{
int *parent, *rnk;
int n;
// Constructor.
DisjointSets(int n)
{
// Allocate memory
this->n = n;
parent = new int[n+1];
rnk = new int[n+1];
for (int i = 0; i <= n; i++)
{
rnk[i] = 0;
parent[i] = i;
}
}
int find(int u)
{
if (u != parent[u])
parent[u] = find(parent[u]);
return parent[u];
}
// Union by rank
void merge(int x, int y)
{
x = find(x), y = find(y);
/* Make tree with smaller height
a subtree of the other tree */
if (rnk[x] > rnk[y])
parent[y] = x;
else // If rnk[x] <= rnk[y]
parent[x] = y;
if (rnk[x] == rnk[y])
rnk[y]++;
}
};
/* Functions returns weight of the MST*/
int Graph::kruskalMST()
{
int mst_wt = 0; // Initialize result
// Sort edges in increasing order on basis of cost
sort(edges.begin(), edges.end());
// Create disjoint sets
DisjointSets ds(V);
// Iterate through all sorted edges
vector< pair<int, pair<int, int>> >::iterator it;
for (it=edges.begin(); it!=edges.end(); it++)
{
int u = it->second.first;
int v = it->second.second;
int set_u = ds.find(u);
int set_v = ds.find(v);
// Check if the selected edge is creating
// a cycle or not (Cycle is created if u
// and v belong to same set)
if (set_u != set_v)
{
cout << u << " - " << v << endl;
mst_wt += it->first;
ds.merge(set_u, set_v);
}
}
return mst_wt;
}
// Driver program to test above functions
int main()
{
/* Let us create above shown weighted
and unidrected graph */
int V = 9, E = 14;
Graph g(V, E);
// making above shown graph
g.addEdge(0, 5, 1);
g.addEdge(0, 10, 3);
g.addEdge(1, 2, 2);
g.addEdge(1, 10, 5);
g.addEdge(1, 5, 4);
g.addEdge(2, 1, 3);
g.addEdge(2, 5, 4);
g.addEdge(2, 3, 0);
g.addEdge(4, 2, 5);
cout << "Edges of MST are \n";
int mst_wt = g.kruskalMST();
cout << "\nWeight of MST is " << mst_wt;
return 0;
}