-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathProcess_ICA_Sawada.m
60 lines (60 loc) · 1.9 KB
/
Process_ICA_Sawada.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function [Y,W,SetupStruc] = Process_ICA_Sawada(s,Transfer,SetupStruc)
K = SetupStruc.ICA_Sawada.K;
hop = SetupStruc.ICA_Sawada.hop;
win = hanning(K,'periodic');
win = win/sqrt(sum(win(1:hop:K).^2));
SetupStruc.ICA_Sawada.win = win; % Preserve 'win' in 'SetupStruc'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = size(s,2);
for i = 1:N
X(:,:,i) = fft(enframe(s(:,i),win,hop)');
end
frame_N = size(X,2);
K_m = K/2+1;
Num = size(Transfer,3);
Y = zeros((frame_N-1)*hop+K,Num);
Y_f = zeros(size(X,1),size(X,2),Num);
Y_P = zeros(frame_N,Num,K_m);
%%%%%%%%%%%%%%%%%%%%%%%%%% Obtain processing matrix 'W'
theta = 10^-4;
W = zeros(Num,N,K_m);
A = zeros(1001,K/2)-1; %%%% Show the decrease of non-linear correlation, ICA max iterations 1000
for i = 2:K_m
X_f = permute(X(i,:,:),[3 2 1]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% PCA and ICA processing
[E,D] = PCA(X_f,1,Num);
V = sqrt(D)\E';
X_f = V*X_f;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Steer = permute(Transfer(i,:,:),[2 3 1]);
% Ori = V*Steer;
% if rcond(Ori)<theta
% Ori = Ori+eye(Num)*min(diag(Ori));
% end
% [Y_,W_ICA,A] = FDICA(X_f,inv(Ori),A,i); %%% 'A', 'i' record the decrease for observation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[Y_,W_ICA,A] = FDICA(X_f,eye(Num),A,i); %%% 'A', 'i' record the decrease for observation
W(:,:,i) = W_ICA*V;
Y_P(:,:,i) = Y_.';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Process the ambiguity of permutation and amplitude
P = Permu_Sawada(W,Y_P,SetupStruc,'all'); %%%% Options: 'DOA','cor', 'all'
for i = 2:K_m
W(:,:,i) = P(:,:,i)*W(:,:,i);
Y_ = permute(Y_P(:,:,i),[2 1 3]);
Y_ = P(:,:,i)*Y_;
Y_f(i,:,:) = Y_.';
if(i~=K_m)
Y_f(K+2-i,:,:) = Y_';
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Recover signals
if(K/hop==2)
win = ones(K,1);
end
for i = 1:Num
Y(:,i) = overlapadd(real(ifft(Y_f(:,:,i)))',win,hop);
end
return;