forked from hughw19/NOCS_CVPR2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_eval.py
334 lines (262 loc) · 13.6 KB
/
detect_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""
Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation
Detection and evaluation
Modified based on Mask R-CNN(https://github.com/matterport/Mask_RCNN)
Written by He Wang
"""
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='detect', type=str, help="detect/eval")
parser.add_argument('--use_regression', dest='use_regression', action='store_true')
parser.add_argument('--use_delta', dest='use_delta', action='store_true')
parser.add_argument('--ckpt_path', type=str, default='logs/nocs_rcnn_res50_bin32.h5')
parser.add_argument('--data', type=str, help="val/real_test", default='real_test')
parser.add_argument('--gpu', default='0', type=str)
parser.add_argument('--draw', dest='draw', action='store_true', help="whether draw and save detection visualization")
parser.add_argument('--num_eval', type=int, default=-1)
parser.set_defaults(use_regression=False)
parser.set_defaults(draw=False)
parser.set_defaults(use_delta=False)
args = parser.parse_args()
mode = args.mode
data = args.data
ckpt_path = args.ckpt_path
use_regression = args.use_regression
use_delta = args.use_delta
num_eval = args.num_eval
os.environ['CUDA_VISIBLE_DEVICES']=args.gpu
print('Using GPU {}.'.format(args.gpu))
import sys
import datetime
import glob
import time
import numpy as np
from config import Config
import utils
import model as modellib
from dataset import NOCSDataset
import _pickle as cPickle
from train import ScenesConfig
# Root directory of the project
ROOT_DIR = os.getcwd()
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
# Path to COCO trained weights
COCO_MODEL_PATH = os.path.join(MODEL_DIR, "mask_rcnn_coco.h5")
class InferenceConfig(ScenesConfig):
"""Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset.
"""
# Give the configuration a recognizable name
GPU_COUNT = 1
IMAGES_PER_GPU = 1
COORD_USE_REGRESSION = use_regression
if COORD_USE_REGRESSION:
COORD_REGRESS_LOSS = 'Soft_L1'
else:
COORD_NUM_BINS = 32
COORD_USE_DELTA = use_delta
USE_SYMMETRY_LOSS = True
TRAINING_AUGMENTATION = False
if __name__ == '__main__':
config = InferenceConfig()
config.display()
# Training dataset
# dataset directories
camera_dir = os.path.join('data', 'camera')
real_dir = os.path.join('data', 'real')
coco_dir = os.path.join('data', 'coco')
# real classes
coco_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']
synset_names = ['BG', #0
'bottle', #1
'bowl', #2
'camera', #3
'can', #4
'laptop',#5
'mug'#6
]
class_map = {
'bottle': 'bottle',
'bowl':'bowl',
'cup':'mug',
'laptop': 'laptop',
}
coco_cls_ids = []
for coco_cls in class_map:
ind = coco_names.index(coco_cls)
coco_cls_ids.append(ind)
config.display()
assert mode in ['detect', 'eval']
if mode == 'detect':
# Recreate the model in inference mode
model = modellib.MaskRCNN(mode="inference",
config=config,
model_dir=MODEL_DIR)
gt_dir = os.path.join('data','gts', data)
if data == 'val':
dataset_val = NOCSDataset(synset_names, 'val', config)
dataset_val.load_camera_scenes(camera_dir)
dataset_val.prepare(class_map)
dataset = dataset_val
elif data == 'real_test':
dataset_real_test = NOCSDataset(synset_names, 'test', config)
dataset_real_test.load_real_scenes(real_dir)
dataset_real_test.prepare(class_map)
dataset = dataset_real_test
else:
assert False, "Unknown data resource."
# Load trained weights (fill in path to trained weights here)
model_path = ckpt_path
assert model_path != "", "Provide path to trained weights"
print("Loading weights from ", model_path)
model.load_weights(model_path, by_name=True)
image_ids = dataset.image_ids
save_per_images = 10
now = datetime.datetime.now()
save_dir = os.path.join('output', "{}_{:%Y%m%dT%H%M}".format(data, now))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
log_file = os.path.join(save_dir, 'error_log.txt')
f_log = open(log_file, 'w')
if data in ['real_train', 'real_test']:
intrinsics = np.array([[591.0125, 0, 322.525], [0, 590.16775, 244.11084], [0, 0, 1]])
else: ## CAMERA data
intrinsics = np.array([[577.5, 0, 319.5], [0., 577.5, 239.5], [0., 0., 1.]])
elapse_times = []
if mode != 'eval':
for i, image_id in enumerate(image_ids):
print('*'*50)
image_start = time.time()
print('Image id: ', image_id)
image_path = dataset.image_info[image_id]["path"]
print(image_path)
# record results
result = {}
# loading ground truth
image = dataset.load_image(image_id)
depth = dataset.load_depth(image_id)
gt_mask, gt_coord, gt_class_ids, gt_scales, gt_domain_label = dataset.load_mask(image_id)
gt_bbox = utils.extract_bboxes(gt_mask)
result['image_id'] = image_id
result['image_path'] = image_path
result['gt_class_ids'] = gt_class_ids
result['gt_bboxes'] = gt_bbox
result['gt_RTs'] = None
result['gt_scales'] = gt_scales
image_path_parsing = image_path.split('/')
gt_pkl_path = os.path.join(gt_dir, 'results_{}_{}_{}.pkl'.format(data, image_path_parsing[-2], image_path_parsing[-1]))
print(gt_pkl_path)
if (os.path.exists(gt_pkl_path)):
with open(gt_pkl_path, 'rb') as f:
gt = cPickle.load(f)
result['gt_RTs'] = gt['gt_RTs']
if 'handle_visibility' in gt:
result['gt_handle_visibility'] = gt['handle_visibility']
assert len(gt['handle_visibility']) == len(gt_class_ids)
print('got handle visibiity.')
else:
result['gt_handle_visibility'] = np.ones_like(gt_class_ids)
else:
# align gt coord with depth to get RT
if not data in ['coco_val', 'coco_train']:
if len(gt_class_ids) == 0:
print('No gt instance exsits in this image.')
print('\nAligning ground truth...')
start = time.time()
result['gt_RTs'], _, error_message, _ = utils.align(gt_class_ids,
gt_mask,
gt_coord,
depth,
intrinsics,
synset_names,
image_path,
save_dir+'/'+'{}_{}_{}_gt_'.format(data, image_path_parsing[-2], image_path_parsing[-1]))
print('New alignment takes {:03f}s.'.format(time.time() - start))
if len(error_message):
f_log.write(error_message)
result['gt_handle_visibility'] = np.ones_like(gt_class_ids)
## detection
start = time.time()
detect_result = model.detect([image], verbose=0)
r = detect_result[0]
elapsed = time.time() - start
print('\nDetection takes {:03f}s.'.format(elapsed))
result['pred_class_ids'] = r['class_ids']
result['pred_bboxes'] = r['rois']
result['pred_RTs'] = None
result['pred_scores'] = r['scores']
if len(r['class_ids']) == 0:
print('No instance is detected.')
print('Aligning predictions...')
start = time.time()
result['pred_RTs'], result['pred_scales'], error_message, elapses = utils.align(r['class_ids'],
r['masks'],
r['coords'],
depth,
intrinsics,
synset_names,
image_path)
#save_dir+'/'+'{}_{}_{}_pred_'.format(data, image_path_parsing[-2], image_path_parsing[-1]))
print('New alignment takes {:03f}s.'.format(time.time() - start))
elapse_times += elapses
if len(error_message):
f_log.write(error_message)
if args.draw:
draw_rgb = False
utils.draw_detections(image, save_dir, data, image_path_parsing[-2]+'_'+image_path_parsing[-1], intrinsics, synset_names, draw_rgb,
gt_bbox, gt_class_ids, gt_mask, gt_coord, result['gt_RTs'], gt_scales, result['gt_handle_visibility'],
r['rois'], r['class_ids'], r['masks'], r['coords'], result['pred_RTs'], r['scores'], result['pred_scales'])
path_parse = image_path.split('/')
image_short_path = '_'.join(path_parse[-3:])
save_path = os.path.join(save_dir, 'results_{}.pkl'.format(image_short_path))
with open(save_path, 'wb') as f:
cPickle.dump(result, f)
print('Results of image {} has been saved to {}.'.format(image_short_path, save_path))
elapsed = time.time() - image_start
print('Takes {} to finish this image.'.format(elapsed))
print('Alignment average time: ', np.mean(np.array(elapse_times)))
print('\n')
f_log.close()
else:
log_dir = 'output/'
result_pkl_list = glob.glob(os.path.join(log_dir, 'results_*.pkl'))
result_pkl_list = sorted(result_pkl_list)[:num_eval]
assert len(result_pkl_list)
final_results = []
for pkl_path in result_pkl_list:
with open(pkl_path, 'rb') as f:
result = cPickle.load(f)
if not 'gt_handle_visibility' in result:
result['gt_handle_visibility'] = np.ones_like(result['gt_class_ids'])
print('can\'t find gt_handle_visibility in the pkl.')
else:
assert len(result['gt_handle_visibility']) == len(result['gt_class_ids']), "{} {}".format(result['gt_handle_visibility'], result['gt_class_ids'])
if type(result) is list:
final_results += result
elif type(result) is dict:
final_results.append(result)
else:
assert False
aps = utils.compute_degree_cm_mAP(final_results, synset_names, log_dir,
degree_thresholds = [5, 10, 15],#range(0, 61, 1),
shift_thresholds= [5, 10, 15], #np.linspace(0, 1, 31)*15,
iou_3d_thresholds=np.linspace(0, 1, 101),
iou_pose_thres=0.1,
use_matches_for_pose=True)