-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain_embeddings.py
204 lines (154 loc) · 5.99 KB
/
train_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
Template to use Relational RNN module
to predict a scalar from a sequence of embeddings,
e.g. a sentence.
Input: fixed-length sequence of `num_words` words,
each represented by a `num_embedding_dims` dimensional embedding.
Output: A scalar.
Author: Jessica Yung
August 2018
Relational Memory Core implementation mostly written by Sang-gil Lee, adapted by Jessica Yung.
"""
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from relational_rnn_general import RelationalMemory
# network params
learning_rate = 1e-3
num_epochs = 50
# dtype = torch.float
# data params
# Input = seq of `num_words` words, embedding for each word has `num_embedding_dims` dims
num_words = 10
num_embedding_dims = 5
input_size = num_embedding_dims
# Predicting a scalar
output_size = 1
num_examples = 20
test_size = 0.2
num_train = int((1 - test_size) * num_examples)
batch_size = 4
####################
# Generate data
####################
X = torch.rand((num_examples, num_words, num_embedding_dims))
# Predicting a scalar per example
y = torch.rand((num_examples, output_size))
X_train = X[:num_train]
X_test = X[num_train:]
y_train = y[:num_train]
y_test = y[num_train:]
class RMCArguments:
def __init__(self):
self.memslots = 1
self.headsize = 3
self.numheads = 4
self.input_size = input_size # dimensions per timestep
self.numheads = 4
self.numblocks = 1
self.forgetbias = 1.
self.inputbias = 0.
self.attmlplayers = 3
self.batch_size = batch_size
self.clip = 0.1
args = RMCArguments()
device = torch.device("cpu")
####################
# Build model
####################
class RRNN(nn.Module):
def __init__(self, batch_size):
super(RRNN, self).__init__()
self.memory_size_per_row = args.headsize * args.numheads
self.relational_memory = RelationalMemory(mem_slots=args.memslots, head_size=args.headsize,
input_size=args.input_size,
num_heads=args.numheads, num_blocks=args.numblocks,
forget_bias=args.forgetbias,
input_bias=args.inputbias)
# Map from memory to logits (categorical predictions)
self.out = nn.Linear(self.memory_size_per_row, output_size)
def forward(self, input, memory):
logit, memory = self.relational_memory(input, memory)
out = self.out(logit)
return out, memory
model = RRNN(batch_size).to(device)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model built, total trainable params: " + str(total_params))
def get_batch(X, y, batch_num, device, batch_size=32, batch_first=True):
if not batch_first:
raise NotImplementedError
start = batch_num * batch_size
end = (batch_num + 1) * batch_size
return X[start:end].to(device), y[start:end].to(device)
loss_fn = torch.nn.MSELoss()
optimiser = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimiser, 'min', factor=0.5, patience=5)
num_batches = int(len(X_train) / batch_size)
num_test_batches = int(len(X_test) / batch_size)
memory = model.relational_memory.initial_state(args.batch_size, trainable=True).to(device)
hist = np.zeros(num_epochs)
def accuracy_score(y_pred, y_true):
return np.array(y_pred == y_true).sum() * 1.0 / len(y_true)
####################
# Train model
####################
for t in range(num_epochs):
epoch_loss = np.zeros(num_batches)
# epoch_acc = np.zeros(num_batches)
epoch_test_loss = np.zeros(num_test_batches)
# epoch_test_acc = np.zeros(num_test_batches)
for i in range(num_batches):
data, targets = get_batch(X_train, y_train, i, device=device, batch_size=batch_size)
model.zero_grad()
# forward pass
# replace "_" with "memory" if you want to make the RNN stateful
y_pred, memory = model(data, memory)
loss = loss_fn(y_pred, targets)
loss = torch.mean(loss)
# y_pred = torch.argmax(y_pred, dim=1)
# acc = accuracy_score(y_pred, targets)
epoch_loss[i] = loss
# epoch_acc[i] = acc
# Zero out gradient, else they will accumulate between epochs
optimiser.zero_grad()
# backward pass
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
# update parameters
optimiser.step()
# test examples
hist[t] = np.mean(epoch_loss).item()
if t % 10 == 0:
print("train: ", y_pred.squeeze().detach().cpu().numpy(), targets.squeeze().detach().cpu().numpy())
for i in range(num_test_batches):
with torch.no_grad():
data, targets = get_batch(X_test, y_test, i, device=device, batch_size=batch_size)
ytest_pred, memory = model(data, memory)
test_loss = loss_fn(ytest_pred, targets)
test_loss = torch.mean(test_loss)
# ytest_pred = torch.argmax(ytest_pred, dim=1)
# test_acc = accuracy_score(ytest_pred, targets)
epoch_test_loss[i] = loss
# epoch_test_acc[i] = acc
if t % 10 == 0:
# print(epoch_test_loss)
# print(epoch_test_acc)
print("Epoch {} train loss: {}".format(t, np.mean(epoch_test_loss).item()))
print("Epoch {} test loss: {}".format(t, np.mean(epoch_test_loss).item()))
# print("Epoch {} train acc: {:.2f}".format(t, np.mean(epoch_acc).item()))
# print("Epoch {} test acc: {:.2f}".format(t, np.mean(epoch_test_acc).item()))
print("test: ", ytest_pred.squeeze().detach().cpu().numpy(), targets.squeeze().detach().cpu().numpy())
####################
# Plot losses
####################
plt.plot(hist, label="Training loss")
plt.legend()
plt.show()
"""
# TODO: visualise preds
plt.plot(y_pred.detach().numpy(), label="Preds")
plt.plot(y_train.detach().numpy(), label="Data")
plt.legend()
plt.show()
"""