-
Notifications
You must be signed in to change notification settings - Fork 35
/
train_nth_farthest.py
272 lines (207 loc) · 8.21 KB
/
train_nth_farthest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
Implementation of 'Nth Farthest' task
as defined in Santoro, Faulkner and Raposo et. al., 2018
(Relational recurrent neural networks, https://arxiv.org/abs/1806.01822)
Note: The training data is re-generated each epoch as in the
Sonnet implementation. This avoids overfitting but means that the
experiments may take longer.
Author: Jessica Yung
August 2018
Relational Memory Core implementation mostly written by Sang-gil Lee, adapted by Jessica Yung.
"""
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from argparse import ArgumentParser
from relational_rnn_general import RelationalMemory
parser = ArgumentParser()
# Model parameters.
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parse_args = parser.parse_args()
if torch.cuda.is_available():
if not parse_args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
device = torch.device("cuda" if parse_args.cuda else "cpu")
# network params
learning_rate = 1e-4
num_epochs = 10000000
dtype = torch.float
mlp_size = 256
# data params
num_vectors = 8
num_dims = 16
batch_size = 1600
num_batches = 6 # set batches per epoch because we are generating data from scratch each time
num_test_examples = 3200
####################
# Generate data
####################
# For each example
input_size = num_dims + num_vectors * 3
def one_hot_encode(array, num_dims=8):
one_hot = np.zeros((len(array), num_dims))
for i in range(len(array)):
one_hot[i, array[i]] = 1
return one_hot
def get_example(num_vectors, num_dims):
input_size = num_dims + num_vectors * 3
n = np.random.choice(num_vectors, 1) # nth farthest from target vector
labels = np.random.choice(num_vectors, num_vectors, replace=False)
m_index = np.random.choice(num_vectors, 1) # m comes after the m_index-th vector
m = labels[m_index]
# Vectors sampled from U(-1,1)
vectors = np.random.rand(num_vectors, num_dims) * 2 - 1
target_vector = vectors[m_index]
dist_from_target = np.linalg.norm(vectors - target_vector, axis=1)
X_single = np.zeros((num_vectors, input_size))
X_single[:, :num_dims] = vectors
labels_onehot = one_hot_encode(labels, num_dims=num_vectors)
X_single[:, num_dims:num_dims + num_vectors] = labels_onehot
nm_onehot = np.reshape(one_hot_encode([n, m], num_dims=num_vectors), -1)
X_single[:, num_dims + num_vectors:] = np.tile(nm_onehot, (num_vectors, 1))
y_single = labels[np.argsort(dist_from_target)[-(n + 1)]]
return X_single, y_single
def get_examples(num_examples, num_vectors, num_dims, device):
X = np.zeros((num_examples, num_vectors, input_size))
y = np.zeros(num_examples)
for i in range(num_examples):
X_single, y_single = get_example(num_vectors, num_dims)
X[i, :] = X_single
y[i] = y_single
X = torch.Tensor(X).to(device)
y = torch.LongTensor(y).to(device)
return X, y
X_test, y_test = get_examples(num_test_examples, num_vectors, num_dims, device)
class RMCArguments:
def __init__(self):
self.memslots = 8
self.numheads = 8
self.headsize = int(2048 / (self.numheads * self.memslots))
self.input_size = input_size # dimensions per timestep
self.numblocks = 1
self.forgetbias = 1.
self.inputbias = 0.
self.attmlplayers = 2
self.batch_size = batch_size
self.clip = 0.1
args = RMCArguments()
####################
# Build model
####################
class RRNN(nn.Module):
def __init__(self, mlp_size):
super(RRNN, self).__init__()
self.mlp_size = mlp_size
self.memory_size_per_row = args.headsize * args.numheads * args.memslots
self.relational_memory = RelationalMemory(mem_slots=args.memslots, head_size=args.headsize,
input_size=args.input_size,
num_heads=args.numheads, num_blocks=args.numblocks,
forget_bias=args.forgetbias, input_bias=args.inputbias)
# Map from memory to logits (categorical predictions)
self.mlp = nn.Sequential(
nn.Linear(self.memory_size_per_row, self.mlp_size),
nn.ReLU(),
nn.Linear(self.mlp_size, self.mlp_size),
nn.ReLU(),
nn.Linear(self.mlp_size, self.mlp_size),
nn.ReLU(),
nn.Linear(self.mlp_size, self.mlp_size),
nn.ReLU()
)
self.out = nn.Linear(self.mlp_size, num_vectors)
self.softmax = nn.Softmax(dim=1)
def forward(self, input, memory):
logit, memory = self.relational_memory(input, memory)
mlp = self.mlp(logit)
out = self.out(mlp)
out = self.softmax(out)
return out, memory
model = RRNN(mlp_size).to(device)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model built, total trainable params: " + str(total_params))
def get_batch(X, y, batch_num, batch_size=32, batch_first=True):
if not batch_first:
raise NotImplementedError
start = batch_num * batch_size
end = (batch_num + 1) * batch_size
return X[start:end], y[start:end]
loss_fn = torch.nn.CrossEntropyLoss()
optimiser = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimiser, 'min', factor=0.5, patience=5, min_lr=8e-5)
# num_batches = int(len(X_train) / batch_size)
num_test_batches = int(len(X_test) / batch_size)
memory = model.relational_memory.initial_state(args.batch_size, trainable=True).to(device)
hist = np.zeros(num_epochs)
hist_acc = np.zeros(num_epochs)
test_hist = np.zeros(num_epochs)
test_hist_acc = np.zeros(num_epochs)
def accuracy_score(y_pred, y_true):
return np.array(y_pred == y_true).sum() * 1.0 / len(y_true)
####################
# Train model
####################
for t in range(num_epochs):
epoch_loss = np.zeros(num_batches)
epoch_acc = np.zeros(num_batches)
epoch_test_loss = np.zeros(num_test_batches)
epoch_test_acc = np.zeros(num_test_batches)
for i in range(num_batches):
data, targets = get_examples(batch_size, num_vectors, num_dims, device)
model.zero_grad()
# forward pass
# replace "_" with "memory" if you want to make the RNN stateful
y_pred, _ = model(data, memory)
loss = loss_fn(y_pred, targets)
loss = torch.mean(loss)
y_pred = torch.argmax(y_pred, dim=1)
acc = accuracy_score(y_pred, targets)
epoch_loss[i] = loss
epoch_acc[i] = acc
# Zero out gradient, else they will accumulate between epochs
optimiser.zero_grad()
# backward pass
loss.backward()
# this helps prevent exploding gradient in RNNs
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
# update parameters
optimiser.step()
# test examples
for i in range(num_test_batches):
with torch.no_grad():
data, targets = get_batch(X_test, y_test, i, batch_size=batch_size)
ytest_pred, _ = model(data, memory)
test_loss = loss_fn(ytest_pred, targets)
test_loss = torch.mean(test_loss)
ytest_pred = torch.argmax(ytest_pred, dim=1)
test_acc = accuracy_score(ytest_pred, targets)
epoch_test_loss[i] = test_loss
epoch_test_acc[i] = test_acc
loss = np.mean(epoch_loss)
acc = np.mean(epoch_acc)
test_loss = np.mean(epoch_test_loss)
test_acc = np.mean(epoch_test_acc)
hist[t] = loss
hist_acc[t] = acc
test_hist[t] = test_loss
test_hist_acc[t] = test_acc
if t % 10 == 0:
print("Epoch {} train loss: {}".format(t, loss))
print("Epoch {} test loss: {}".format(t, test_loss))
print("Epoch {} train acc: {:.2f}".format(t, acc))
print("Epoch {} test acc: {:.2f}".format(t, test_acc))
####################
# Plot losses
####################
plt.plot(hist, label="Training loss")
plt.plot(test_hist, label="Test loss")
plt.legend()
plt.title("Cross entropy loss")
plt.show()
# Plot accuracy
plt.plot(hist_acc, label="Training accuracy")
plt.plot(test_hist_acc, label="Test accuracy")
plt.title("Accuracy")
plt.legend()
plt.show()