-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.py
41 lines (33 loc) · 1.92 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
### 必须设置的项
model_path = "/root/ld/ld_model_pretrain/Qwen2.5-72B-Instruct-GPTQ-Int4" # 教师模型地址
gen_datas_per_tool = 10 # 每个tool生成多少条react数据
params_dict = { # vllm的生成参数
"n": 1,
"best_of": 1,
"presence_penalty": 1,
"frequency_penalty": 1.0,
"temperature": 0.8,
"top_p": 0.8,
"top_k": -1,
"stop": None,
"stop_token_ids": None,
"ignore_eos": False,
"max_tokens": 4096,
"logprobs": None,
"prompt_logprobs": None,
"skip_special_tokens": True,
}
### 调用get_question函数,获取单链条agent的问题
save_question_json = "/root/ld/ld_project/AutoPlan2/data_demo/question_react.json" # 保存query的json地址
### 调用get_react_data函数,获取简单Agent的训练数据
input_question_json = "/root/ld/ld_project/AutoPlan2/data_demo/question_react_11_06.json" # 用于作为react数据的输入
save_react_qa_json = "/root/ld/ld_project/AutoPlan2/data_demo/react_qa_react_11_06.json" # 用于保存单链条Agent训练数据
inference_batch_size = 8 # 教师模型生成数据时的batch
### 调用get_complex_question函数,获取长链条agent数据
save_complex_question_json = "/root/ld/ld_project/AutoPlan2/data_demo/question_complex_react.json" # 用于保存长链条复杂任务的query
complex_example_json = '/root/ld/ld_project/AutoPlan2/data_demo/plan_example.json' # 用于长链条复杂任务的任务规划示例,请参考示例文件,最少写一个
### 调用get_complex_react_data函数,获取长链条agent训练数据
input_complex_question_json = "/root/ld/ld_project/AutoPlan2/data_demo/plan_example.json" # 用于保存长链条复杂任务的query
save_complex_react_qa_json = '/root/ld/ld_project/AutoPlan2/data_demo/complex_react_qa_11_07.json'
inference_batch_size = 8 # 教师模型生成数据时的batch
except_comple_react_json = '/root/ld/ld_project/AutoPlan2/data_demo/except_react_11_07.json'