-
Notifications
You must be signed in to change notification settings - Fork 5
/
mp_deterministic.py
718 lines (621 loc) · 32.1 KB
/
mp_deterministic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
import inspect
import os
import os.path as osp
import re
from collections import OrderedDict
from inspect import Parameter
from itertools import chain
from typing import Callable, List, Optional, Set, get_type_hints
from uuid import uuid1
import torch
from jinja2 import Template
from torch import Tensor
from torch.utils.hooks import RemovableHandle
from torch_scatter import gather_csr, scatter, segment_csr
from torch_sparse import SparseTensor
from torch_geometric.typing import Adj, Size
from torch_geometric.nn.conv.utils.helpers import expand_left
from torch_geometric.nn.conv.utils.inspector import Inspector, func_body_repr, func_header_repr
from torch_geometric.nn.conv.utils.jit import class_from_module_repr
from torch_geometric.nn.conv.utils.typing import (parse_types, resolve_types, sanitize,
split_types_repr)
class MessagePassing(torch.nn.Module):
r"""Base class for creating message passing layers of the form
.. math::
\mathbf{x}_i^{\prime} = \gamma_{\mathbf{\Theta}} \left( \mathbf{x}_i,
\square_{j \in \mathcal{N}(i)} \, \phi_{\mathbf{\Theta}}
\left(\mathbf{x}_i, \mathbf{x}_j,\mathbf{e}_{j,i}\right) \right),
where :math:`\square` denotes a differentiable, permutation invariant
function, *e.g.*, sum, mean, min, max or mul, and
:math:`\gamma_{\mathbf{\Theta}}` and :math:`\phi_{\mathbf{\Theta}}` denote
differentiable functions such as MLPs.
See `here <https://pytorch-geometric.readthedocs.io/en/latest/notes/
create_gnn.html>`__ for the accompanying tutorial.
Args:
aggr (string, optional): The aggregation scheme to use
(:obj:`"add"`, :obj:`"mean"`, :obj:`"min"`, :obj:`"max"`,
:obj:`"mul"` or :obj:`None`). (default: :obj:`"add"`)
flow (string, optional): The flow direction of message passing
(:obj:`"source_to_target"` or :obj:`"target_to_source"`).
(default: :obj:`"source_to_target"`)
node_dim (int, optional): The axis along which to propagate.
(default: :obj:`-2`)
decomposed_layers (int, optional): The number of feature decomposition
layers, as introduced in the `"Optimizing Memory Efficiency of
Graph Neural Networks on Edge Computing Platforms"
<https://arxiv.org/abs/2104.03058>`_ paper.
Feature decomposition reduces the peak memory usage by slicing
the feature dimensions into separated feature decomposition layers
during GNN aggregation.
This method can accelerate GNN execution on CPU-based platforms
(*e.g.*, 2-3x speedup on the
:class:`~torch_geometric.datasets.Reddit` dataset) for common GNN
models such as :class:`~torch_geometric.nn.models.GCN`,
:class:`~torch_geometric.nn.models.GraphSAGE`,
:class:`~torch_geometric.nn.models.GIN`, etc.
However, this method is not applicable to all GNN operators
available, in particular for operators in which message computation
can not easily be decomposed, *e.g.* in attention-based GNNs.
The selection of the optimal value of :obj:`decomposed_layers`
depends both on the specific graph dataset and available hardware
resources.
A value of :obj:`2` is suitable in most cases.
Although the peak memory usage is directly associated with the
granularity of feature decomposition, the same is not necessarily
true for execution speedups. (default: :obj:`1`)
"""
special_args: Set[str] = {
'edge_index', 'adj_t', 'edge_index_i', 'edge_index_j', 'size',
'size_i', 'size_j', 'ptr', 'index', 'dim_size'
}
def __init__(self, aggr: Optional[str] = "add",
flow: str = "source_to_target", node_dim: int = -2,
decomposed_layers: int = 1):
super().__init__()
self.aggr = aggr
assert self.aggr in ['add', 'sum', 'mean', 'min', 'max', 'mul', None]
self.flow = flow
assert self.flow in ['source_to_target', 'target_to_source']
self.node_dim = node_dim
self.decomposed_layers = decomposed_layers
self.inspector = Inspector(self)
self.inspector.inspect(self.message)
self.inspector.inspect(self.aggregate, pop_first=True)
self.inspector.inspect(self.message_and_aggregate, pop_first=True)
self.inspector.inspect(self.update, pop_first=True)
self.inspector.inspect(self.edge_update)
self.__user_args__ = self.inspector.keys(
['message', 'aggregate', 'update']).difference(self.special_args)
self.__fused_user_args__ = self.inspector.keys(
['message_and_aggregate', 'update']).difference(self.special_args)
self.__edge_user_args__ = self.inspector.keys(
['edge_update']).difference(self.special_args)
# Support for "fused" message passing.
self.fuse = self.inspector.implements('message_and_aggregate')
# Support for GNNExplainer.
self._explain = False
self._edge_mask = None
self._loop_mask = None
self._apply_sigmoid = True
# Hooks:
self._propagate_forward_pre_hooks = OrderedDict()
self._propagate_forward_hooks = OrderedDict()
self._message_forward_pre_hooks = OrderedDict()
self._message_forward_hooks = OrderedDict()
self._aggregate_forward_pre_hooks = OrderedDict()
self._aggregate_forward_hooks = OrderedDict()
self._message_and_aggregate_forward_pre_hooks = OrderedDict()
self._message_and_aggregate_forward_hooks = OrderedDict()
self._edge_update_forward_pre_hooks = OrderedDict()
self._edge_update_forward_hooks = OrderedDict()
def __check_input__(self, edge_index, size):
the_size: List[Optional[int]] = [None, None]
if isinstance(edge_index, Tensor):
assert edge_index.dtype == torch.long
assert edge_index.dim() == 2
assert edge_index.size(0) == 2
if size is not None:
the_size[0] = size[0]
the_size[1] = size[1]
return the_size
elif isinstance(edge_index, SparseTensor):
if self.flow == 'target_to_source':
raise ValueError(
('Flow direction "target_to_source" is invalid for '
'message propagation via `torch_sparse.SparseTensor`. If '
'you really want to make use of a reverse message '
'passing flow, pass in the transposed sparse tensor to '
'the message passing module, e.g., `adj_t.t()`.'))
the_size[0] = edge_index.sparse_size(1)
the_size[1] = edge_index.sparse_size(0)
return the_size
raise ValueError(
('`MessagePassing.propagate` only supports `torch.LongTensor` of '
'shape `[2, num_messages]` or `torch_sparse.SparseTensor` for '
'argument `edge_index`.'))
def __set_size__(self, size: List[Optional[int]], dim: int, src: Tensor):
the_size = size[dim]
if the_size is None:
size[dim] = src.size(self.node_dim)
elif the_size != src.size(self.node_dim):
raise ValueError(
(f'Encountered tensor with size {src.size(self.node_dim)} in '
f'dimension {self.node_dim}, but expected size {the_size}.'))
def __lift__(self, src, edge_index, dim):
if isinstance(edge_index, Tensor):
index = edge_index[dim]
return src.index_select(self.node_dim, index)
elif isinstance(edge_index, SparseTensor):
if dim == 1:
rowptr = edge_index.storage.rowptr()
rowptr = expand_left(rowptr, dim=self.node_dim, dims=src.dim())
return gather_csr(src, rowptr)
elif dim == 0:
col = edge_index.storage.col()
# return src.index_select(self.node_dim, col)
return src[col]
raise ValueError
def __collect__(self, args, edge_index, size, kwargs):
i, j = (1, 0) if self.flow == 'source_to_target' else (0, 1)
out = {}
for arg in args:
if arg[-2:] not in ['_i', '_j']:
out[arg] = kwargs.get(arg, Parameter.empty)
else:
dim = j if arg[-2:] == '_j' else i
data = kwargs.get(arg[:-2], Parameter.empty)
if isinstance(data, (tuple, list)):
assert len(data) == 2
if isinstance(data[1 - dim], Tensor):
self.__set_size__(size, 1 - dim, data[1 - dim])
data = data[dim]
if isinstance(data, Tensor):
self.__set_size__(size, dim, data)
data = self.__lift__(data, edge_index, dim)
out[arg] = data
if isinstance(edge_index, Tensor):
out['adj_t'] = None
out['edge_index'] = edge_index
out['edge_index_i'] = edge_index[i]
out['edge_index_j'] = edge_index[j]
out['ptr'] = None
elif isinstance(edge_index, SparseTensor):
out['adj_t'] = edge_index
out['edge_index'] = None
out['edge_index_i'] = edge_index.storage.row()
out['edge_index_j'] = edge_index.storage.col()
out['ptr'] = edge_index.storage.rowptr()
if out.get('edge_weight', None) is None:
out['edge_weight'] = edge_index.storage.value()
if out.get('edge_attr', None) is None:
out['edge_attr'] = edge_index.storage.value()
if out.get('edge_type', None) is None:
out['edge_type'] = edge_index.storage.value()
out['index'] = out['edge_index_i']
out['size'] = size
out['size_i'] = size[1] if size[1] is not None else size[0]
out['size_j'] = size[0] if size[0] is not None else size[1]
out['dim_size'] = out['size_i']
return out
def propagate(self, edge_index: Adj, size: Size = None, **kwargs):
r"""The initial call to start propagating messages.
Args:
edge_index (Tensor or SparseTensor): A :obj:`torch.LongTensor` or a
:obj:`torch_sparse.SparseTensor` that defines the underlying
graph connectivity/message passing flow.
:obj:`edge_index` holds the indices of a general (sparse)
assignment matrix of shape :obj:`[N, M]`.
If :obj:`edge_index` is of type :obj:`torch.LongTensor`, its
shape must be defined as :obj:`[2, num_messages]`, where
messages from nodes in :obj:`edge_index[0]` are sent to
nodes in :obj:`edge_index[1]`
(in case :obj:`flow="source_to_target"`).
If :obj:`edge_index` is of type
:obj:`torch_sparse.SparseTensor`, its sparse indices
:obj:`(row, col)` should relate to :obj:`row = edge_index[1]`
and :obj:`col = edge_index[0]`.
The major difference between both formats is that we need to
input the *transposed* sparse adjacency matrix into
:func:`propagate`.
size (tuple, optional): The size :obj:`(N, M)` of the assignment
matrix in case :obj:`edge_index` is a :obj:`LongTensor`.
If set to :obj:`None`, the size will be automatically inferred
and assumed to be quadratic.
This argument is ignored in case :obj:`edge_index` is a
:obj:`torch_sparse.SparseTensor`. (default: :obj:`None`)
**kwargs: Any additional data which is needed to construct and
aggregate messages, and to update node embeddings.
"""
decomposed_layers = 1 if self._explain else self.decomposed_layers
for hook in self._propagate_forward_pre_hooks.values():
res = hook(self, (edge_index, size, kwargs))
if res is not None:
edge_index, size, kwargs = res
size = self.__check_input__(edge_index, size)
# Run "fused" message and aggregation (if applicable).
if (isinstance(edge_index, SparseTensor) and self.fuse
and not self._explain):
coll_dict = self.__collect__(self.__fused_user_args__, edge_index,
size, kwargs)
msg_aggr_kwargs = self.inspector.distribute(
'message_and_aggregate', coll_dict)
for hook in self._message_and_aggregate_forward_pre_hooks.values():
res = hook(self, (edge_index, msg_aggr_kwargs))
if res is not None:
edge_index, msg_aggr_kwargs = res
out = self.message_and_aggregate(edge_index, **msg_aggr_kwargs)
for hook in self._message_and_aggregate_forward_hooks.values():
res = hook(self, (edge_index, msg_aggr_kwargs), out)
if res is not None:
out = res
update_kwargs = self.inspector.distribute('update', coll_dict)
out = self.update(out, **update_kwargs)
# Otherwise, run both functions in separation.
elif isinstance(edge_index, Tensor) or not self.fuse:
if decomposed_layers > 1:
user_args = self.__user_args__
decomp_args = {a[:-2] for a in user_args if a[-2:] == '_j'}
decomp_kwargs = {
a: kwargs[a].chunk(decomposed_layers, -1)
for a in decomp_args
}
decomp_out = []
for i in range(decomposed_layers):
if decomposed_layers > 1:
for arg in decomp_args:
kwargs[arg] = decomp_kwargs[arg][i]
coll_dict = self.__collect__(self.__user_args__, edge_index,
size, kwargs)
msg_kwargs = self.inspector.distribute('message', coll_dict)
for hook in self._message_forward_pre_hooks.values():
res = hook(self, (msg_kwargs, ))
if res is not None:
msg_kwargs = res[0] if isinstance(res, tuple) else res
out = self.message(**msg_kwargs)
for hook in self._message_forward_hooks.values():
res = hook(self, (msg_kwargs, ), out)
if res is not None:
out = res
# For `GNNExplainer`, we require a separate message and
# aggregate procedure since this allows us to inject the
# `edge_mask` into the message passing computation scheme.
if self._explain:
edge_mask = self._edge_mask
if self._apply_sigmoid:
edge_mask = edge_mask.sigmoid()
# Some ops add self-loops to `edge_index`. We need to do
# the same for `edge_mask` (but do not train those).
if out.size(self.node_dim) != edge_mask.size(0):
edge_mask = edge_mask[self._loop_mask]
loop = edge_mask.new_ones(size[0])
edge_mask = torch.cat([edge_mask, loop], dim=0)
assert out.size(self.node_dim) == edge_mask.size(0)
out = out * edge_mask.view([-1] + [1] * (out.dim() - 1))
aggr_kwargs = self.inspector.distribute('aggregate', coll_dict)
for hook in self._aggregate_forward_pre_hooks.values():
res = hook(self, (aggr_kwargs, ))
if res is not None:
aggr_kwargs = res[0] if isinstance(res, tuple) else res
out = self.aggregate(out, **aggr_kwargs)
for hook in self._aggregate_forward_hooks.values():
res = hook(self, (aggr_kwargs, ), out)
if res is not None:
out = res
update_kwargs = self.inspector.distribute('update', coll_dict)
out = self.update(out, **update_kwargs)
if decomposed_layers > 1:
decomp_out.append(out)
if decomposed_layers > 1:
out = torch.cat(decomp_out, dim=-1)
for hook in self._propagate_forward_hooks.values():
res = hook(self, (edge_index, size, kwargs), out)
if res is not None:
out = res
return out
def edge_updater(self, edge_index: Adj, **kwargs):
r"""The initial call to compute or update features for each edge in the
graph.
Args:
edge_index (Tensor or SparseTensor): A :obj:`torch.LongTensor` or a
:obj:`torch_sparse.SparseTensor` that defines the underlying
graph connectivity/message passing flow.
See :meth:`propagate` for more information.
**kwargs: Any additional data which is needed to compute or update
features for each edge in the graph.
"""
for hook in self._edge_update_forward_pre_hooks.values():
res = hook(self, (edge_index, kwargs))
if res is not None:
edge_index, kwargs = res
size = self.__check_input__(edge_index, size=None)
coll_dict = self.__collect__(self.__edge_user_args__, edge_index, size,
kwargs)
edge_kwargs = self.inspector.distribute('edge_update', coll_dict)
out = self.edge_update(**edge_kwargs)
for hook in self._edge_update_forward_hooks.values():
res = hook(self, (edge_index, kwargs), out)
if res is not None:
out = res
return out
def message(self, x_j: Tensor) -> Tensor:
r"""Constructs messages from node :math:`j` to node :math:`i`
in analogy to :math:`\phi_{\mathbf{\Theta}}` for each edge in
:obj:`edge_index`.
This function can take any argument as input which was initially
passed to :meth:`propagate`.
Furthermore, tensors passed to :meth:`propagate` can be mapped to the
respective nodes :math:`i` and :math:`j` by appending :obj:`_i` or
:obj:`_j` to the variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`.
"""
return x_j
def aggregate(self, inputs: Tensor, index: Tensor,
ptr: Optional[Tensor] = None,
dim_size: Optional[int] = None) -> Tensor:
r"""Aggregates messages from neighbors as
:math:`\square_{j \in \mathcal{N}(i)}`.
Takes in the output of message computation as first argument and any
argument which was initially passed to :meth:`propagate`.
By default, this function will delegate its call to scatter functions
that support "add", "mean", "min", "max" and "mul" operations as
specified in :meth:`__init__` by the :obj:`aggr` argument.
"""
if ptr is not None:
ptr = expand_left(ptr, dim=self.node_dim, dims=inputs.dim())
return segment_csr(inputs, ptr, reduce=self.aggr)
else:
return scatter(inputs, index, dim=self.node_dim, dim_size=dim_size,
reduce=self.aggr)
def message_and_aggregate(self, adj_t: SparseTensor) -> Tensor:
r"""Fuses computations of :func:`message` and :func:`aggregate` into a
single function.
If applicable, this saves both time and memory since messages do not
explicitly need to be materialized.
This function will only gets called in case it is implemented and
propagation takes place based on a :obj:`torch_sparse.SparseTensor`.
"""
raise NotImplementedError
def update(self, inputs: Tensor) -> Tensor:
r"""Updates node embeddings in analogy to
:math:`\gamma_{\mathbf{\Theta}}` for each node
:math:`i \in \mathcal{V}`.
Takes in the output of aggregation as first argument and any argument
which was initially passed to :meth:`propagate`.
"""
return inputs
def edge_update(self) -> Tensor:
r"""Computes or updates features for each edge in the graph.
This function can take any argument as input which was initially passed
to :meth:`edge_updater`.
Furthermore, tensors passed to :meth:`edge_updater` can be mapped to
the respective nodes :math:`i` and :math:`j` by appending :obj:`_i` or
:obj:`_j` to the variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`.
"""
raise NotImplementedError
def register_propagate_forward_pre_hook(self,
hook: Callable) -> RemovableHandle:
r"""Registers a forward pre-hook on the module.
The hook will be called every time before :meth:`propagate` is invoked.
It should have the following signature:
.. code-block:: python
hook(module, inputs) -> None or modified input
The hook can modify the input.
Input keyword arguments are passed to the hook as a dictionary in
:obj:`inputs[-1]`.
Returns a :class:`torch.utils.hooks.RemovableHandle` that can be used
to remove the added hook by calling :obj:`handle.remove()`.
"""
handle = RemovableHandle(self._propagate_forward_pre_hooks)
self._propagate_forward_pre_hooks[handle.id] = hook
return handle
def register_propagate_forward_hook(self,
hook: Callable) -> RemovableHandle:
r"""Registers a forward hook on the module.
The hook will be called every time after :meth:`propagate` has computed
an output.
It should have the following signature:
.. code-block:: python
hook(module, inputs, output) -> None or modified output
The hook can modify the output.
Input keyword arguments are passed to the hook as a dictionary in
:obj:`inputs[-1]`.
Returns a :class:`torch.utils.hooks.RemovableHandle` that can be used
to remove the added hook by calling :obj:`handle.remove()`.
"""
handle = RemovableHandle(self._propagate_forward_hooks)
self._propagate_forward_hooks[handle.id] = hook
return handle
def register_message_forward_pre_hook(self,
hook: Callable) -> RemovableHandle:
r"""Registers a forward pre-hook on the module.
The hook will be called every time before :meth:`message` is invoked.
See :meth:`register_propagate_forward_pre_hook` for more information.
"""
handle = RemovableHandle(self._message_forward_pre_hooks)
self._message_forward_pre_hooks[handle.id] = hook
return handle
def register_message_forward_hook(self, hook: Callable) -> RemovableHandle:
r"""Registers a forward hook on the module.
The hook will be called every time after :meth:`message` has computed
an output.
See :meth:`register_propagate_forward_hook` for more information.
"""
handle = RemovableHandle(self._message_forward_hooks)
self._message_forward_hooks[handle.id] = hook
return handle
def register_aggregate_forward_pre_hook(self,
hook: Callable) -> RemovableHandle:
r"""Registers a forward pre-hook on the module.
The hook will be called every time before :meth:`aggregate` is invoked.
See :meth:`register_propagate_forward_pre_hook` for more information.
"""
handle = RemovableHandle(self._aggregate_forward_pre_hooks)
self._aggregate_forward_pre_hooks[handle.id] = hook
return handle
def register_aggregate_forward_hook(self,
hook: Callable) -> RemovableHandle:
r"""Registers a forward hook on the module.
The hook will be called every time after :meth:`aggregate` has computed
an output.
See :meth:`register_propagate_forward_hook` for more information.
"""
handle = RemovableHandle(self._aggregate_forward_hooks)
self._aggregate_forward_hooks[handle.id] = hook
return handle
def register_message_and_aggregate_forward_pre_hook(
self, hook: Callable) -> RemovableHandle:
r"""Registers a forward pre-hook on the module.
The hook will be called every time before :meth:`message_and_aggregate`
is invoked.
See :meth:`register_propagate_forward_pre_hook` for more information.
"""
handle = RemovableHandle(self._message_and_aggregate_forward_pre_hooks)
self._message_and_aggregate_forward_pre_hooks[handle.id] = hook
return handle
def register_message_and_aggregate_forward_hook(
self, hook: Callable) -> RemovableHandle:
r"""Registers a forward hook on the module.
The hook will be called every time after :meth:`message_and_aggregate`
has computed an output.
See :meth:`register_propagate_forward_hook` for more information.
"""
handle = RemovableHandle(self._message_and_aggregate_forward_hooks)
self._message_and_aggregate_forward_hooks[handle.id] = hook
return handle
def register_edge_update_forward_pre_hook(
self, hook: Callable) -> RemovableHandle:
r"""Registers a forward pre-hook on the module.
The hook will be called every time before :meth:`edge_update` is
invoked. See :meth:`register_propagate_forward_pre_hook` for more
information.
"""
handle = RemovableHandle(self._edge_update_forward_pre_hooks)
self._edge_update_forward_pre_hooks[handle.id] = hook
return handle
def register_edge_update_forward_hook(self,
hook: Callable) -> RemovableHandle:
r"""Registers a forward hook on the module.
The hook will be called every time after :meth:`edge_update` has
computed an output.
See :meth:`register_propagate_forward_hook` for more information.
"""
handle = RemovableHandle(self._edge_update_forward_hooks)
self._edge_update_forward_hooks[handle.id] = hook
return handle
@torch.jit.unused
def jittable(self, typing: Optional[str] = None):
r"""Analyzes the :class:`MessagePassing` instance and produces a new
jittable module.
Args:
typing (string, optional): If given, will generate a concrete
instance with :meth:`forward` types based on :obj:`typing`,
*e.g.*: :obj:`"(Tensor, Optional[Tensor]) -> Tensor"`.
"""
source = inspect.getsource(self.__class__)
# Find and parse `propagate()` types to format `{arg1: type1, ...}`.
if hasattr(self, 'propagate_type'):
prop_types = {
k: sanitize(str(v))
for k, v in self.propagate_type.items()
}
else:
match = re.search(r'#\s*propagate_type:\s*\((.*)\)', source)
if match is None:
raise TypeError(
'TorchScript support requires the definition of the types '
'passed to `propagate()`. Please specificy them via\n\n'
'propagate_type = {"arg1": type1, "arg2": type2, ... }\n\n'
'or via\n\n'
'# propagate_type: (arg1: type1, arg2: type2, ...)\n\n'
'inside the `MessagePassing` module.')
prop_types = split_types_repr(match.group(1))
prop_types = dict([re.split(r'\s*:\s*', t) for t in prop_types])
# Find and parse `edge_updater` types to format `{arg1: type1, ...}`.
if 'edge_update' in self.__class__.__dict__.keys():
if hasattr(self, 'edge_updater_type'):
edge_updater_types = {
k: sanitize(str(v))
for k, v in self.edge_updater.items()
}
else:
match = re.search(r'#\s*edge_updater_types:\s*\((.*)\)',
source)
if match is None:
raise TypeError(
'TorchScript support requires the definition of the '
'types passed to `edge_updater()`. Please specificy '
'them via\n\n edge_updater_types = {"arg1": type1, '
'"arg2": type2, ... }\n\n or via\n\n'
'# edge_updater_types: (arg1: type1, arg2: type2, ...)'
'\n\ninside the `MessagePassing` module.')
edge_updater_types = split_types_repr(match.group(1))
edge_updater_types = dict(
[re.split(r'\s*:\s*', t) for t in edge_updater_types])
else:
edge_updater_types = {}
type_hints = get_type_hints(self.__class__.update)
prop_return_type = type_hints.get('return', 'Tensor')
if str(prop_return_type)[:6] == '<class':
prop_return_type = prop_return_type.__name__
type_hints = get_type_hints(self.__class__.edge_update)
edge_updater_return_type = type_hints.get('return', 'Tensor')
if str(edge_updater_return_type)[:6] == '<class':
edge_updater_return_type = edge_updater_return_type.__name__
# Parse `__collect__()` types to format `{arg:1, type1, ...}`.
collect_types = self.inspector.types(
['message', 'aggregate', 'update'])
# Parse `__collect__()` types to format `{arg:1, type1, ...}`,
# specific to the argument used for edge updates.
edge_collect_types = self.inspector.types(['edge_update'])
# Collect `forward()` header, body and @overload types.
forward_types = parse_types(self.forward)
forward_types = [resolve_types(*types) for types in forward_types]
forward_types = list(chain.from_iterable(forward_types))
keep_annotation = len(forward_types) < 2
forward_header = func_header_repr(self.forward, keep_annotation)
forward_body = func_body_repr(self.forward, keep_annotation)
if keep_annotation:
forward_types = []
elif typing is not None:
forward_types = []
forward_body = 8 * ' ' + f'# type: {typing}\n{forward_body}'
root = os.path.dirname(osp.realpath(__file__))
with open(osp.join(root, 'message_passing.jinja'), 'r') as f:
template = Template(f.read())
uid = uuid1().hex[:6]
cls_name = f'{self.__class__.__name__}Jittable_{uid}'
jit_module_repr = template.render(
uid=uid,
module=str(self.__class__.__module__),
cls_name=cls_name,
parent_cls_name=self.__class__.__name__,
prop_types=prop_types,
prop_return_type=prop_return_type,
fuse=self.fuse,
collect_types=collect_types,
user_args=self.__user_args__,
edge_user_args=self.__edge_user_args__,
forward_header=forward_header,
forward_types=forward_types,
forward_body=forward_body,
msg_args=self.inspector.keys(['message']),
aggr_args=self.inspector.keys(['aggregate']),
msg_and_aggr_args=self.inspector.keys(['message_and_aggregate']),
update_args=self.inspector.keys(['update']),
edge_collect_types=edge_collect_types,
edge_update_args=self.inspector.keys(['edge_update']),
edge_updater_types=edge_updater_types,
edge_updater_return_type=edge_updater_return_type,
check_input=inspect.getsource(self.__check_input__)[:-1],
lift=inspect.getsource(self.__lift__)[:-1],
)
# Instantiate a class from the rendered JIT module representation.
cls = class_from_module_repr(cls_name, jit_module_repr)
module = cls.__new__(cls)
module.__dict__ = self.__dict__.copy()
module.jittable = None
return module
def __repr__(self) -> str:
if hasattr(self, 'in_channels') and hasattr(self, 'out_channels'):
return (f'{self.__class__.__name__}({self.in_channels}, '
f'{self.out_channels})')
return f'{self.__class__.__name__}()'