-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrun.py
32 lines (27 loc) · 1.41 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import argparse
from utils.train import train
import torch
import torch.distributed as dist
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--exp_name", default="DDP_warmup", type=str, help="name of experiment")
parser.add_argument("-l", "--learning_rate", default=1e-1, type=float, help="learning rate")
parser.add_argument("-b", "--batch_size", default=1024, type=int, help="batch size")
parser.add_argument("-e", "--epochs", default=500, type=int, help="epochs")
parser.add_argument("-w", "--warmup_epochs", default=10, type=int, help="epochs for warmup")
parser.add_argument("-t", "--warmup_type", default="linear", type=str, help="warmup type")
parser.add_argument("-s", "--seed_num", default=42, type=int, help="number of random seed")
parser.add_argument("-d", "--data_path", default="./datasets/", type=str, help="path of dataset")
parser.add_argument("-p", "--model_path", default="./experiment_model/", type=str, help="path of model")
parser.add_argument("--local_rank", type=int, help="local rank for DistributedDataParallel")
args = parser.parse_args()
return args
def main():
args = parse_args()
# Multi GPU
print(f"Running DDP on rank: {args.local_rank}")
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend="nccl", init_method="env://")
train(args)
if __name__=="__main__":
main()