-
Notifications
You must be signed in to change notification settings - Fork 23
/
demo.py
146 lines (117 loc) · 4.28 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# encoding: utf-8
"""
@author: sherlock
@contact: [email protected]
"""
import argparse
import os
import sys
from os import mkdir
import torch
from torch.backends import cudnn
sys.path.append('.')
from config import cfg
from data import make_data_loader
from engine.inference import inference
from modeling import build_model
from utils.logger import setup_logger
from data.datasets.eval_reid import eval_func
import shutil
import numpy as np
import json
from sklearn.preprocessing import normalize
def main(w):
parser = argparse.ArgumentParser(description="ReID Baseline Inference")
parser.add_argument(
"--config_file", default="configs/tiger.yml", help="path to config file", type=str
)
# parser.add_argument("opts", help="Modify config options using the command-line", default=None,
# nargs=argparse.REMAINDER)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
if args.config_file != "":
cfg.merge_from_file(args.config_file)
# cfg.merge_from_list(args.opts)
cfg.MODEL.PRETRAIN_CHOICE = 'self'
cfg.TEST.WEIGHT = w #测试的模型
cfg.MODEL.DEVICE = 'cuda' #----------------->设定为cpu
cfg.IS_DEMO = True #设定为demo
cfg.MODEL.DEVICE_ID='0'
name1 = w.split('/')[-1].split('_')[0]
name2 = w.split('/')[-1].split('_')[1]
if name1 == 'se':
cfg.MODEL.NAME = name1 + '_' + name2
if '-' in name2:
cfg.MODEL.BODYNAME = 'resnet34-bsize'
cfg.INPUT.SIZE_TEST = [256, 512]
else:
cfg.MODEL.BODYNAME = 'resnet34'
cfg.INPUT.SIZE_TEST = [128, 256]
else:
cfg.MODEL.NAME = name1
if '-' in name1:
cfg.MODEL.BODYNAME = 'resnet34-bsize'
cfg.INPUT.SIZE_TEST = [256, 512]
else:
cfg.MODEL.BODYNAME = 'resnet34'
cfg.INPUT.SIZE_TEST = [128, 256]
print(cfg.MODEL.NAME)
print(cfg.INPUT.SIZE_TEST)
# cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
mkdir(output_dir)
# logger = setup_logger("reid_baseline", output_dir, 0)
# logger.info("Using {} GPUS".format(num_gpus))
# logger.info(args)
# if args.config_file != "":
# logger.info("Loaded configuration file {}".format(args.config_file))
# with open(args.config_file, 'r') as cf:
# config_str = "\n" + cf.read()
# logger.info(config_str)
# logger.info("Running with config:\n{}".format(cfg))
if cfg.MODEL.DEVICE == "cuda":
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
cudnn.benchmark = True
train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)
model, eval_model = build_model(cfg, num_classes)
if cfg.MODEL.DEVICE == 'cuda':
model.load_param(cfg.TEST.WEIGHT)
else:
model.load_param(cfg.TEST.WEIGHT, cpu=cfg.MODEL.DEVICE)
return inference(cfg, eval_model, val_loader, num_query) #返回距离矩阵
if __name__ == '__main__':
#多模型融合也K-FLOD
root = './trained_weight/'
#plain_re-id
pic_num = 1764
#wide_re-id
model_pred = os.listdir(root)
print(model_pred)
num_model = len(model_pred)
mat = np.zeros((pic_num, pic_num))
q_path = np.empty((pic_num,))
g_path = np.empty((pic_num,))
for weight in model_pred:
weight = root+ weight
dismat, q_paths, g_paths = main(w=weight)
#对得到的矩阵归一化处理
dismat = normalize(dismat, axis=1, norm='l2')
q_path = q_paths
g_path = g_paths
mat += dismat
mat /= num_model
PATHS = eval_func(distmat=mat, q_paths=q_path, g_paths=g_path, max_rank= pic_num, is_demo=True)
print('#'*100)
print('MAKE SUBMISSION.....')
result = []
for row in PATHS:
r = {}
r['query_id'] = int(row[-1].split('/')[-1].split('.')[0])
ans_id = []
for p in row[:-1]:
ans_id.append(int(p.split('/')[-1].split('.')[0]))
r['ans_ids'] = ans_id
result.append(r)
with open('submition_plain.json', 'w') as f:
json.dump(result, f)