From 211533c782d9f97a82431815ee3c96fbd33cdd21 Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Mon, 7 Dec 2020 00:45:24 +0530 Subject: [PATCH 1/9] Create Readme.md --- intern-basics/MPG_Prediction_Model/Readme.md | 1 + 1 file changed, 1 insertion(+) create mode 100644 intern-basics/MPG_Prediction_Model/Readme.md diff --git a/intern-basics/MPG_Prediction_Model/Readme.md b/intern-basics/MPG_Prediction_Model/Readme.md new file mode 100644 index 0000000..e17628d --- /dev/null +++ b/intern-basics/MPG_Prediction_Model/Readme.md @@ -0,0 +1 @@ +Readme file created From cd2240dffaac0ab11693ad8ca3b458183d911c21 Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Mon, 7 Dec 2020 00:46:10 +0530 Subject: [PATCH 2/9] Add files via upload --- .../MPG_Prediction_Model/MPG_Prediction.ipynb | 1579 +++++++++++++++++ .../MPG_Prediction_Model/auto-mpg.data | 398 +++++ intern-basics/MPG_Prediction_Model/model.bin | Bin 0 -> 660212 bytes 3 files changed, 1977 insertions(+) create mode 100644 intern-basics/MPG_Prediction_Model/MPG_Prediction.ipynb create mode 100644 intern-basics/MPG_Prediction_Model/auto-mpg.data create mode 100644 intern-basics/MPG_Prediction_Model/model.bin diff --git a/intern-basics/MPG_Prediction_Model/MPG_Prediction.ipynb b/intern-basics/MPG_Prediction_Model/MPG_Prediction.ipynb new file mode 100644 index 0000000..f2be7b6 --- /dev/null +++ b/intern-basics/MPG_Prediction_Model/MPG_Prediction.ipynb @@ -0,0 +1,1579 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Predicting Fuel Efficiency of Vehicles\n", + "## Selecting and Training Models\n", + "\n", + "1. Select and Train a few Algorithms(Linear Regression, Decision Tree, RandomForest)\n", + "2. Evaluation using Mean Squared Error\n", + "3. Model Evaluation using Cross Validation\n", + "4. Hyperparameter Tuning using GridSearchCV\n", + "5. Check Feature Importance\n", + "6. Evaluate the Final System on test data\n", + "7. Saving the Model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "cols = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin']\n", + "# Reading the .data file using pandas\n", + "df = pd.read_csv('auto-mpg.data', names=cols, na_values = '?',\n", + " comment = '\\t',\n", + " sep = ' ',\n", + " skipinitialspace = True)\n", + "# Make a copy of the dataframe\n", + "data = df.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MPGCylindersDisplacementHorsepowerWeightAccelerationModel YearOrigin
30941.5498.076.02144.014.7802
39136.04135.084.02370.013.0821
1618.06199.097.02774.015.5701
37731.0491.068.01970.017.6823
22033.5485.070.01945.016.8773
\n", + "
" + ], + "text/plain": [ + " MPG Cylinders Displacement Horsepower Weight Acceleration \\\n", + "309 41.5 4 98.0 76.0 2144.0 14.7 \n", + "391 36.0 4 135.0 84.0 2370.0 13.0 \n", + "16 18.0 6 199.0 97.0 2774.0 15.5 \n", + "377 31.0 4 91.0 68.0 1970.0 17.6 \n", + "220 33.5 4 85.0 70.0 1945.0 16.8 \n", + "\n", + " Model Year Origin \n", + "309 80 2 \n", + "391 82 1 \n", + "16 70 1 \n", + "377 82 3 \n", + "220 77 3 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.sample(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Problem Statement** — The data contains the MPG(Mile Per Gallon) variable which is continuous data and tells us about the efficiency of fuel consumption of a vehicle in the 70s and 80s." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 398 entries, 0 to 397\n", + "Data columns (total 8 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 MPG 398 non-null float64\n", + " 1 Cylinders 398 non-null int64 \n", + " 2 Displacement 398 non-null float64\n", + " 3 Horsepower 392 non-null float64\n", + " 4 Weight 398 non-null float64\n", + " 5 Acceleration 398 non-null float64\n", + " 6 Model Year 398 non-null int64 \n", + " 7 Origin 398 non-null int64 \n", + "dtypes: float64(5), int64(3)\n", + "memory usage: 25.0 KB\n" + ] + } + ], + "source": [ + "# Data Information\n", + "data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "MPG 0\n", + "Cylinders 0\n", + "Displacement 0\n", + "Horsepower 6\n", + "Weight 0\n", + "Acceleration 0\n", + "Model Year 0\n", + "Origin 0\n", + "dtype: int64" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Check for all null values\n", + "data.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MPGCylindersDisplacementHorsepowerWeightAccelerationModel YearOrigin
count398.000000398.000000398.000000392.000000398.000000398.000000398.000000398.000000
mean23.5145735.454774193.425879104.4693882970.42462315.56809076.0100501.572864
std7.8159841.701004104.26983838.491160846.8417742.7576893.6976270.802055
min9.0000003.00000068.00000046.0000001613.0000008.00000070.0000001.000000
25%17.5000004.000000104.25000075.0000002223.75000013.82500073.0000001.000000
50%23.0000004.000000148.50000093.5000002803.50000015.50000076.0000001.000000
75%29.0000008.000000262.000000126.0000003608.00000017.17500079.0000002.000000
max46.6000008.000000455.000000230.0000005140.00000024.80000082.0000003.000000
\n", + "
" + ], + "text/plain": [ + " MPG Cylinders Displacement Horsepower Weight \\\n", + "count 398.000000 398.000000 398.000000 392.000000 398.000000 \n", + "mean 23.514573 5.454774 193.425879 104.469388 2970.424623 \n", + "std 7.815984 1.701004 104.269838 38.491160 846.841774 \n", + "min 9.000000 3.000000 68.000000 46.000000 1613.000000 \n", + "25% 17.500000 4.000000 104.250000 75.000000 2223.750000 \n", + "50% 23.000000 4.000000 148.500000 93.500000 2803.500000 \n", + "75% 29.000000 8.000000 262.000000 126.000000 3608.000000 \n", + "max 46.600000 8.000000 455.000000 230.000000 5140.000000 \n", + "\n", + " Acceleration Model Year Origin \n", + "count 398.000000 398.000000 398.000000 \n", + "mean 15.568090 76.010050 1.572864 \n", + "std 2.757689 3.697627 0.802055 \n", + "min 8.000000 70.000000 1.000000 \n", + "25% 13.825000 73.000000 1.000000 \n", + "50% 15.500000 76.000000 1.000000 \n", + "75% 17.175000 79.000000 2.000000 \n", + "max 24.800000 82.000000 3.000000 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAEGCAYAAABbzE8LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAOcElEQVR4nO3dfWxd9XnA8e+TmNLQtKNxWIRMqQFvsGloLbhdWxUm8bYEbc1etKkbWtJSqdrGTGBap05Ijflro9OQIN1KmYZwOtpVdK3GWJIBZSosa1kdSON0ScG8dK0FITVaaZbQxclvf5xjeu352o5f7nOdfD+SlZvje899cnz8zbknucdRSkGS1HrLsgeQpFOVAZakJAZYkpIYYElKYoAlKUnHidx59erVpbu7e5FGkaST065du75fSjlr8vITCnB3dzeDg4MLN5UknQIi4jtTLfcUhCQlMcCSlMQAS1ISAyxJSQywJCUxwJKUxABLUhIDLElJDLAkJTHAkpTEAEtSEgMsSUkMsCQlMcCSlMQAS1ISAyxJSQywJCUxwJKUxABLUpIT+plwp6otW7YwPDzc8ucdGRkBoKurq+XPvdh6enro6+vLHkNKZYBnYXh4mN1793HsjFUtfd7lh38AwEs/Orm+TMsPv5I9gtQWTq7v7EV07IxVHLno2pY+54r92wBa/ryLbfzPJZ3qPAcsSUkMsCQlMcCSlMQAS1ISAyxJSQywJCUxwJKUxABLUhIDLElJDLAkJTHAkpTEAEtSEgMsSUkMsCQlMcCSlMQAS1ISAyxJSQywJCUxwJKUxABLUhIDLElJDLAkJTHAkpTEAEtSEgMsSUkMsCQlMcCSlMQAS1ISAyxJSQywJCUxwJKUxABLUhIDLElJDLAkJTHAkpTEAEtSEgMsSUkMsCQlMcCSlMQAS1ISAyxJSVoS4C1btrBly5ZWPJWkNuL3/vQ6WvEkw8PDrXgaSW3G7/3peQpCkpIYYElKYoAlKYkBlqQkBliSkhhgSUpigCUpiQGWpCQGWJKSGGBJSmKAJSmJAZakJAZYkpIYYElKYoAlKYkBlqQkBliSkhhgSUpigCUpiQGWpCQGWJKSGGBJSmKAJSmJAZakJAZYkpIYYElKYoAlKYkBlqQkBliSkhhgSUpigCUpiQGWpCQGWJKSGGBJSmKAJSmJAZakJAZYkpIYYElKYoAltZXR0VFuvPFGRkdHJ9yeyuDgIFdccQW7du2a1frmso6ZHj8fBlhSWxkYGGBoaIitW7dOuD2V/v5+jh8/zubNm2e1vrmsY6bHz4cBltQ2RkdH2bFjB6UUtm/fzvbt2ymlsGPHjv93BDo4OMihQ4cAOHTo0JRHsI3rm8s6Znr8fHUs6NqaGBkZ4ciRI2zatKkVT7fghoeHWfa/JXuMk8ay115lePiHS3Z/0OwNDw+zYsWKWd9/YGCA48ePA3D06NHXlx87doytW7dy8803v76sv79/wmM3b97Mgw8+2HR9c1nHTI+frxmPgCPioxExGBGDBw8eXLAnlqTJHnnkEcbGxgAopVBKdeAzNjbGww8/POG+40euzX4/eX1zWcdMj5+vGY+ASyl3A3cD9Pb2zukwsKurC4A77rhjLg9Pt2nTJnY9dyB7jJPG8Te+hZ7z1yzZ/UGzd6Kvcq666iq2bdvG2NgYEQFUIe7o6ODqq6+ecN+VK1dOCObKlSunXd9c1jHT4+fLc8CS2sbGjRtZtqzK0mmnnUZHR3WMuHz5cjZs2DDhvpNPH9x6663Trm8u65jp8fNlgCW1jc7OTtauXUtEsG7dOtatW0dEsHbtWjo7Oyfct7e39/Uj1pUrV3LppZdOu765rGOmx8+XAZbUVjZu3MjFF1/Mhg0bJtyeSn9/P8uWLZvy6Heq9c1lHTM9fj5a8r8gJGm2Ojs7ufPOO1//fePtyXp7e3n00UdPaH0nuo6ZHj8fHgFLUhIDLElJDLAkJTHAkpTEAEtSEgMsSUkMsCQlMcCSlMQAS1ISAyxJSQywJCUxwJKUxABLUhIDLElJDLAkJTHAkpTEAEtSEgMsSUkMsCQlMcCSlMQAS1ISAyxJSQywJCUxwJKUxABLUhIDLElJDLAkJTHAkpTEAEtSEgMsSUkMsCQlMcCSlMQAS1ISAyxJSQywJCUxwJKUxABLUhIDLElJOlrxJD09Pa14Gkltxu/96bUkwH19fa14Gkltxu/96XkKQpKSGGBJSmKAJSmJAZakJAZYkpIYYElKYoAlKYkBlqQkBliSkhhgSUpigCUpiQGWpCQGWJKSGGBJSmKAJSmJAZakJAZYkpIYYElKYoAlKYkBlqQkBliSkhhgSUpigCUpiQGWpCQGWJKSGGBJSmKAJSmJAZakJAZYkpIYYElKYoAlKYkBlqQkBliSkhhgSUpigCUpiQGWpCQGWJKSGGBJSmKAJSmJAZakJB3ZAywVyw+/wor921r8nKMALX/exbb88CvAmuwxpHQGeBZ6enpSnndkZAyArq6TLVZr0rap1E4M8Cz09fVljyDpJOQ5YElKYoAlKYkBlqQkBliSkhhgSUpigCUpiQGWpCQGWJKSGGBJSmKAJSmJAZakJAZYkpIYYElKYoAlKYkBlqQkBliSkhhgSUpigCUpiQGWpCQGWJKSRCll9neOOAh8ZxHmWA18fxHWu5CcceEshTmdceEshTkXe8a3l1LOmrzwhAK8WCJisJTSmz3HdJxx4SyFOZ1x4SyFObNm9BSEJCUxwJKUpF0CfHf2ALPgjAtnKczpjAtnKcyZMmNbnAOWpFNRuxwBS9IpxwBLUpKWBzgiXoiIoYjYHRGD9bJVEfFwRDxT//rWVs/VMN+F9WzjH69GxE0R0R8RIw3Lr02Y7Z6IeDki9jYsm3LbReXOiBiOiD0RcUnijH8REfvrOb4cEWfWy7sj4kjDNr2rFTNOM2fTr3FE/Gm9Lb8dEb+UOOMXGuZ7ISJ218tTtmVEvC0i/jUi/jMivhURm+rlbbNfTjNj/n5ZSmnpB/ACsHrSsk8CH69vfxy4rdVzNZl1OfAS8HagH/jj5HkuBy4B9s607YBrge1AAO8Bnkic8Rqgo759W8OM3Y33a4NtOeXXGPhZ4JvA6cB5wLPA8owZJ33+L4FPZG5L4Gzgkvr2m4Gn6+3VNvvlNDOm75ftcgpiPTBQ3x4AfjVvlAmuBJ4tpSzGu/9OWCnlMeCVSYubbbv1wNZS+TpwZkScnTFjKeWhUspY/duvA+cs9hwzabItm1kP/H0p5UellOeBYeDdizZcbboZIyKA3wI+v9hzTKeU8mIp5cn69g+BfUAXbbRfNpuxHfbLjAAX4KGI2BURH62XrSmlvFjffglYkzDXVD7IxB38D+uXK/dkniaZpNm26wK+23C/79XLsl1PdQQ07ryIeCoivhoRl2UN1WCqr3E7bsvLgAOllGcalqVuy4joBt4JPEGb7peTZmyUsl9mBPj9pZRLgHXADRFxeeMnS/UaIP3/xkXEG4APAPfXiz4NXAC8A3iR6uVfW2mXbddMRNwCjAH31YteBM4tpbwT+CPgcxHxlqz5WAJf4wa/zcSDg9RtGRErgX8AbiqlvNr4uXbZL5vNmLlftjzApZSR+teXgS9TvZQ7MP4ypP715VbPNYV1wJOllAMApZQDpZRjpZTjwN/Qgpegs9Rs240Ab2u43zn1shQR8SHgl4Hr6m9I6pf0o/XtXVTnVn86a8Zpvsbtti07gF8HvjC+LHNbRsRpVGG7r5TypXpxW+2XTWZM3y9bGuCIeFNEvHn8NtVJ8L3AA8DG+m4bgX9s5VxNTDjCmHSe6teo5m4HzbbdA8CG+l+d3wP8oOElYUtFxFrgT4APlFIONyw/KyKW17fPB34KeC5jxnqGZl/jB4APRsTpEXEe1Zz/0er5GlwF7C+lfG98Qda2rM9F/y2wr5Rye8On2ma/bDZjW+yXrfiXvvEP4Hyqf03+JvAt4JZ6eSfwFeAZ4BFgVSvnmmLONwGjwE80LPssMATsodqJzk6Y6/NUL4+OUp07+0izbUf1r8x/RfW39xDQmzjjMNV5v931x131fX+j3g92A08Cv5K8LZt+jYFb6m35bWBd1oz18nuB35t035RtCbyf6vTCnoav77XttF9OM2P6fulbkSUpSbv8NzRJOuUYYElKYoAlKYkBlqQkBliSkhhgLbiIODTp9x+KiE9lzSO1KwOstlO/06vtLZU51b4MsFqqvtbqo/UFb74SEefWy++NiLsi4gngkxHxiw3XY32q4R2UH4uIb9SPv7Vhnfsj4r6I2BcRX4yIM+rPXVk/fqi+wM7pEfGuiPhS/fn19bVf3xARb4yI5+rlF0TEjvqiUY9HxEVTzdn6LaiTiX+DazGsiPpC4bVVVO8sA9gCDJRSBiLieuBOfnypwnOA95VSjkXEPwE3lFJ21hdReS0irqF6W+i7qd5R9UB9Maf/Ai6keqfYzoi4B/iD+rTHvcCVpZSnI2Ir8PvAp6guuAPVVcX2Au+i+n4Yv0rW3VTvNnsmIn4B+GvgislzzndD6dTmEbAWw5FSyjvGP4BPNHzuvcDn6tufpXqb6Lj7G6K2E7g9Im4EzizVdVuvqT+eonqL6EVUQQb4billZ3377+r1Xgg8X0p5ul4+AFxer+vZiPgZqpjfTnXx88uAx+vgvw+4v/6L5DNUF/Weak5pzjwCVjv5n/EbpZQ/j4h/pnrP/s6ofgxQAH9WSvlM44Pqa7xOfk/9TO+xf4zqindHqa5VcC/VT0D5GNWByX/Xf3lMO6c0Hx4Bq9X+nepC9wDXAY9PdaeIuKCUMlRKuQ34BtXR7r8A19dHqEREV0T8ZP2QcyPivfXt3wH+jerCOd0R0VMv/13gq/Xtx4GbgK+VUg5SXTzmQqofRfMq8HxE/Gb9PBERPz//P7o0kQFWq/UBH46IPVRB3NTkfjdFxN76fkeB7aWUh6hOX3wtIoaAL1L9jC+oYntDROwD3gp8upTyGvBhqlMJQ8BxYPwHLD5B9VMaHqt/vwcYKj++OtV1wEciYvzKfesX4M8uTeDV0LTk1acgHiyl/Fz2LNKJ8AhYkpJ4BCxJSTwClqQkBliSkhhgSUpigCUpiQGWpCT/B5Mr9KJgBckYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Check for outliers in horsepower column\n", + "sns.boxplot(x=data['Horsepower'])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 398 entries, 0 to 397\n", + "Data columns (total 8 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 MPG 398 non-null float64\n", + " 1 Cylinders 398 non-null int64 \n", + " 2 Displacement 398 non-null float64\n", + " 3 Horsepower 398 non-null float64\n", + " 4 Weight 398 non-null float64\n", + " 5 Acceleration 398 non-null float64\n", + " 6 Model Year 398 non-null int64 \n", + " 7 Origin 398 non-null int64 \n", + "dtypes: float64(5), int64(3)\n", + "memory usage: 25.0 KB\n" + ] + } + ], + "source": [ + "# Since there are a few outliers, we can use the median of the column\n", + "# to impute the missing values using the pandas median() method.\n", + "median = data['Horsepower'].median()\n", + "data['Horsepower'] = data['Horsepower'].fillna(median)\n", + "data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4 0.512563\n", + "8 0.258794\n", + "6 0.211055\n", + "3 0.010050\n", + "5 0.007538\n", + "Name: Cylinders, dtype: float64" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Category Distribution\n", + "data['Cylinders'].value_counts()/len(data)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1 249\n", + "3 79\n", + "2 70\n", + "Name: Origin, dtype: int64" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Origin'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3YAAAN2CAYAAAC1rRuNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeXwU9f3/XzN77ya72dwhIQkhG46EhCMiWKCSqEULqMihbcEqNt/2J4ZqVVrrUdQeVIsV0VbUqqhVVFSEKlUBBSqI4Qg3JAQSEnJns5u9j5nfH5sZdrOzIYHNHsnn+XjkAbs7M/vZ7Cvv+Xw+74tiWRYEAoFAIBAIBAKBQIhe6HAPgEAgEAgEAoFAIBAIVwZZ2BEIBAKBQCAQCARClEMWdgQCgUAgEAgEAoEQ5ZCFHYFAIBAIBAKBQCBEOWRhRyAQCAQCgUAgEAhRDlnYEQgEAoFAIBAIBEKUMygXdrNmzWIBkB/yM1A/VwzRKPkZ4J8rhmiU/AzgzxVD9El+BvjniiEaJT8D+BOQQbmwa2trC/cQCIReIRolRDpEo4RIhuiTEOkQjRLCwaBc2BEIBAKBQCAQCATCUIIs7AgEAoFAIBAIBAIhyhGHewAEAiH6YBgW59rNaDbakKKWIztBBZqmwj0swiCB6IsQzRD9EiIJosehBVnYEQiEfsEwLLYea8ID7x+CzclALqGxeuF4zMpPJTcLwhVD9EWIZoh+CZEE0ePQg4RiEgiEfnGu3czfJADA5mTwwPuHcK7dHOaREQYDRF+EaIbolxBJED0OPcjCLgIx2V14d18dXvq6Gqebu8I9HALBh2ajjb9JcNicDFq6bGEaEWEwQfRFiGaIfgmRBNHj0IMs7CKMU01duO5v32DToQYcrTdg0ct78PI3Z8I9LAKBJ0Uth1ziazrkEhrJsfIwjYgwmCD6IkQzRL+ESILocehBFnYRRLvJjiX/+g7zJqZjeWkeFk/NxtO3jMP6PbV457vacA+PQAAAZCeosHrheP5mwcXsZyeowjwywmCA6IsQzRD9EiIJosehBymeEkE88ekxXJUdj+m6JP65eJUUv7khDys3H8fk7HjoUmLDOEICAaBpCrPyUzG6fDpaumxIjiVVtgjBg+iLEM0Q/RIiCaLHoQdZ2EUIh+s7sedMO55dUOT3WppGgXkT0/Hbj47gw19OBUWRP0hCeKFpCjlJMchJign3UAiDEKIvQjRD9EuIJIgehxYkFDNCWLOtCnOKhkEuEQm+ft3oFHSYHdh6tCnEIyMQ/GEYFjWtJuw504aaVhMYhg33kAiDEKIzQqRCtEmIJohehw7EYxcBnO+wYN+5Dvz06qyAx9A0hYXFw/HMf0/hhvxUiIgbnRAmSF8cQihwuRj852gjVmw8THRGiCguZQNJQ2hCqOiL1sg9e2hBPHYRwPsV5/GDkYkBvXUcRRkaSMU0/nOkMUQjIxD8OdtmxqqtJ7B0Wg6WleTinuk5WLX1BM62kb44hODAMCy+rWnHio2HoVVKce9Mj85ONRlR10F0RggvvfUG4ybRd72xD7ur2/HJoQb8r7oNLhdziasSCP2D09pNa3bhgfcr8cmhBnx2pBFnWnw9cqSX3dCCeOzCDMuy+OhAA/7ftSMveSxFUZhbNMwTtlmYRnLtCGHhgsGCRcWZWLO9it/9Ky/RodFgwchkEsNPuHLOtZtRUdsBrVKKxVOyfLSWlaBCZjzxgBDCx6V6g63aesLPRq66rRBzCocR3RKCBrdgE7KT3h653vRK8u4GH8RjF2aONhjBgsWIxL6Vnh0/PA4Mw2LHqZYBHhmBIIxMJOJvIIDnBrFmexWkot49zgRCX2k22sCwwILiDD+tPfLxEbLTTAgrvfUGazbaMLsw3U+3KzYeJrolBBVuwTZvor+d9PbIkV52QwuysAszW482ojgrvs/eN4qicNO4NLy4gzQtJ4QHs8MluPtndrjCNCLCYCNFLcfeM60Ykajq1TNCIISD3nqDpajlENEIqFtSxIIQLFLUcmQlKJCpVfRqJ0kvu6EFCcUMM9tOtmBR8fB+nTMlJwEf7q9HxbkOFGfHD9DICARhMrVKyCW0z41ELqExXKsM46gIg4lMrRK3T85Cs8EmqDWy00wIJ0K9wTK1SpxrN6PdbMekTK2gbpNi5KSIBSFoZGqVuK9Eh/Mdll7tJOllN7QgHrsw0may47zegtyU/sU4i2gKNxWmYu326gEaGYEQGJqmsLxU57P7t7xURyq1EoJGbYcFj35yFG/uqUV5iY7sNBMiDq432JScRGQnqPDFiWbctGYXFvxzL17Yfhp/vHWcn25FNEgRC0LQ4Ozk+xX1l7ST3nrNSYohi7pBDPHYhZH/VbchP00DMd3/9fUPdcnYdPAQjl0wIH+YZgBGRyAIc7bdjPV7arF0Wg4oCmBZYP2eWoxOjcUIkohNCAK1HWbYnAwaDTa8tfei1qbmxGNqTiKZlBAiip5VBytqDWg1ncaGsimwOt28h+S7s+2kiAUhaBA7SRCCLOzCyN6adoxKjb2sc6ViGjeNS8NzX57Gq3deFeSREQiBUUnF0FsceHHHRY+xXEJDKSXmhBAcVFIxH1rUaLDhxR3VkEtoTM8lkxVC5CFUdbC23Qqr040pOYn8c1wRCxJaTAgGxE4ShCChmGHku5oOjElTX/b5141JwaHznThQpw/iqAiE3klRywRDMVPUsjCPjDBYIBojRBN9rTpIilgQggmxkwQhyBZ7mNCbHWg22pAVf/kFJ6RiGvMnZeAPm47hk3t/QHZoCCEhM14FXUoMymbkgGEBmgJ0KTHIjCeTE0JwIBojRBPcgq1nUZSeCzZSxIIQTIidJAhBFnZh4lB9J0YmX3kC63RdEr4+1Yq399ZiyTXZwRkcgdALNE3hWl0ykmJkaDTYkKZRID9NTSYnhKBB0xRKRqUgJzEGHWY7JCIaFocb59rNZCJMiDh6q5LZbLQhRX1xAccVsSA5dYQrxdtOXs5GAcOwgholRDdkYRcmDtXp+9yUvDdoisI903Pw1JbjKM6Ox9hhlx/aSSD0BYZh8cWJZlKymzCg0DSF7AQVTjZ1Ea0RIh7vBRvDsKStASEkXO5GAdHo4IXk2IWJA3WdGJkYnB279DgF7pyahbte34ezbaRsMmFgOdduxqqtJ7B0Wg6WleTinuk5WLX1BCnZTQgaXBPnr0+34FSTEVqlFAApD0+IHHprNN6zSibRLSHS6KtGe9M5ITIhHrswceyCEQv72Zi8N6aOTITNxWDeS//Doz8ei1smpJO+YoQBod1sx08mZ+G5r07zO333X5eHDrOdhBcRrhihneT7r8vDG9+eQ6PBRsrDE8LOpbwd7WY7X3oeADbur0ejwUZ0SwgLQiGXQpVce9pW4tWLTojHLgy0GG1wuRkkqKRBve7MUcn4zQ2j8OquGkxbtR1/+fwEjl0wBPU9CASZiOYXdYDnZvDcV6chFRFzQrhyzrb57yQ/99Vp/PTqTACkPDwh/PTm7WAYFhc6bXhtdw3Wbq/Gq7tqsHhKFrISFES3hJDDLc5uWrMLd7zyHW5aswtbjzUhTXPpSq7E8xydRNxMjKIoEUVRBymK2tL9eARFUd9RFFVNUdQGiqKCuxoKA8cuGJGTFAOKCv6Ox8ikGDw+Jx/3lejQaLDh7je+x9y1u7G/lrREIASHNpNDcKev3ewI04gIgwmu6a43NieDpBgZKQ9PiAh683acazdjxcbDPpPhNdur8NTN44huCSEn0OLMzeCSrTd60zkhconEUMzlAE4A4KqArALwHMuy71EU9U8ASwH8I1yDCwbHG43I0CoG9D1GJKowIlGFhZOG49uadtzz5ve4/7o8UjmTcMWoZGLBJrukQTkhGHg33eWQS2gM0yrwWfl0UrmNEHZ6azQeaDIsEVFEt4SQE0iPrSbbJVtv9KZzQuQSUR47iqIyAPwYwKvdjykAJQA+7D7kTQC3hGVwQeT4BSMytJffv64/0DSFabmJ+MOcfLz4dTU+3H8+JO9LGLyQpqiEgSSQvoZrFchJuvIWMQTCldJbo/FAzcpT1GQyTAg9gfSYHCvnK2pOyUkUtK296ZwQuUTaFvvfATwMILb7cQKATpZlXd2P6wGkh2FcQeVUcxd+kJsY0vdMVsvx4A2j8NSWEyjMiENeSuylTyIQBCBNUQkDCdEXIdLprdF4plaJVbcV8uGYZDJMCCfc4sy7AMqq2wrRbrbzrwfaLOtN54TIJWIWdhRFzQbQwrLsfoqirr2M88sAlAFAZmZmcAcXRJxuBnUdFqTHDWwophAZWiUWFGfgN+9XYtO9PyB/nCEmWjTaFyQiCnnJsTDbXVDJxZCIiJYGA5GgUYZhIZeIkB6ngFIqRmOnJSzjIEQekaJP7wqDk7MT+Hsp1+Nz9ZensHRaDkQ0UJwVj2tyEsj9dogQiRq9YUwKPiufjmajDU43i8c2HUFtu7VPVS4vt08eIXxEzMIOwA8AzKUo6iYAcnhy7J4HEEdRlLjba5cBoEHoZJZl1wFYBwDFxcUR22jjXJsZiTFSSMXhiYKdOSoZu0634eODDbhtUkZYxjBUiRaNXoq6DjNq2yxoMzvAsICIAhJUUmTFm5EdpN6MhPAQbo0yDIv/HG3E6i9PYXZhOkQ0MCZVjX9+XY2cRDK5GOpEgj69y79nJSjw1M3jIBFRSFHLQVPgX3txRzUAT/jaZ+XTiXaHCJGsUaVUjPL3DqC23QrgYiGV0USfg4qIWdixLPs7AL8DgG6P3YMsy/6UoqgPAMwH8B6AOwFsCtcYg8GZVhMywuCt46ApCrdPHo6/fXEKc4qGhW2BSYhe2k0OmB1urNtZw4d2LC/Vod3kQHZoI4wJg4xz7Was/vIUFhVnYs32Kl5fj80eS/okEsKOd4XBNI0ci4ozUfZWBa/TP906DlqlFI2Gi1UDSd9FQii5lEbLS3R4a28tr1Giz8FHNMzqVwB4gKKoanhy7l4L83iuiKoWE1I14U2iHp2qRlKsDJ8cFHR+Egi9YnO58fy2Kp/yyc9vq4LN5Q7zyAjRTrPRhtmF6fyiDvDo66ktxyEhfRIJYca7wuC8iRl+On3k4yNYUOwbCUOqCBJCyaU0umZ7FeZNvKhRos/BR0TeKVmW/Zpl2dnd/69hWXYyy7K5LMsuYFnWHu7xXQlVzSakacLnseOYUzQML31dDYaJ2ohAQpiwOxnB8skOFxPgDAKhb6So5RDRENSXxUE2DgjhxbvCIEUJ61SXHIvlpbl8A2hSOIUQSvqiUW6PjOhzcBIxoZhDhepWEyZlacM9DIxNU4OmKHxT1YqZo5LDPRxCFJEVr8QNYxPx0ykjoDc7Ea+S4O29ZzE8RC08vOmZJE4qdkU32QkqXJUVz/dOKkxX454ZI2F1uCCiKZxrM6HREFnfNdHg0MG7wiAAnx5fhelqlM0YCRfDQpcSi7/MK4BWKYXZ4ca5dnPQdUF0RxCip0azEhSYXZiOFLUUWQkqtBjtyE5QomRUEtQKqZ9uiK6iH7KwCyEsy6K23Yy0MIdiAgBFUbh+bApe332WLOwI/UIqpXDdmDT831v7+bj9J+fmQyYNrfHvmSTelwpfhMiGpilMzUnAn28dh8+PNqB0TBoe/rCS/36fmJOPd7+rxekWU0R810SDQwvv8u8dZjt0yTFYsfEw8pJjcMfVWXjQS6tPzs3HC9urUFFrCLouiO4IgaBpCmPTYlE2IwcZWjnuK8nDe/vO4baJmT737KdvKcAtRXF+izqiq+gnIkMxByvtZgdEFIVYuSTcQwEATB2ZgEP1nTjfQcqJE/pOY6cdj396zCdu//FPj6GxM7RR0t5J4tw4Hnj/EM61m0M6DkJwEYtpZCcqseSaHDzRQ2crNx/DPTNGRsx3TTQ49ODKvxdnJ2BO4TB8Vj4dv7tpDFZu9reJS67J4R8HUxdEd4TeaDTY8EFFPWJkUjz6yREsuSYHK7f46vPRT47i2AWDz3lEV4MDsrALIWfbzBGRX8chE4vwg5GJ2PD9+XAPhRBFNBvtgnH7LcbQLuy8k8R9xtFlC3AGIVoQURQa9FbB79fqcPH/D/d3TTQ4tOEWeXqLo1etco+bjcHRBdEdoTdS1HIsKM7AySajR4d2l6Be6vRWnzoLRFeDA7KwCyFn28xhr4jZk5mjkrHh+/NwkyIqhD6SrJbxydkccgmNpFhZSMfhnSTuPQ5S4Su6YRgW5/VWKKViwe9XIRXz/6dAoabVFLYiUESDBABIj1P2qlXusVIq4h8zDIuaVhP2nGnrt4aJ7gi9kZ2gQl5yLBi2W3cyYVtKAT7euEC6CredJfQPsrALIWdbzUgO8eT3UgyPV0KrkmBnVWu4h0KIEuIUIjw5N5+/AXD5JHFK0SXODC5ckrj3OEiFr+inrsMMmqawufI8VvbQ2RNz8vHqzjN878RfbziEm9bswtZjTWGZdBANEgBgTEosnry5wEcHK+fmY/23Nfzj8hIdnG6PN4TLZbppzS7c8cp3/dYw0R2hN2iawpg0NTZXNqC8RIc3v63BE7P979kb95/38cYJ6SoS7Cyhf5DiKSHkXLs5IptATtcl4b19daSICqFPGK1ufHWiES8vnoROixNxSgne2XsWIxL7N6m40upb3oUMWrpsSI4lFbwGA81GO/7y+QmsmDUG/9p9Bn+dXwSrw4VYmRgdZjuWlehw9IIBnx9pxLyJGaAo4FSTEWPTYpGdGFr7SjRIAIB6gxUOpwvPzi+C2eGCQirGx/vP45rcJNw1LQdnW83YUFGHWQWpAALnMo0un37JOQJnN5NipdhQNgUWh5tULyT4MSJRhRWzxmDV1hP4zQ2jYbTY8fLiSWgx2iGTiLD+2xpck5vk4+X1tme17WYcPN+J9XsuNjPvq0YJ4YUs7EJIbYcFU3MSwj0MP6bmJODXG85Db3ZAq5KGeziECKfZaMcXx9vwxfE2n+fnjh/e52sEq/oWl+NCbjSDB7PDhdp2K6pbTKioNaCi9qDP6//82UR8UFGPxVOy+Oa7cgmNrAQVMuNDP7klGhx6uFwMjjUa0GiwIU2jgNnuQlOXA49uOu5z3I7TbXh2QSHW7qj28aj1lsvUm44C2c2rRySQRR3Bj7FpsXj6lnG4oLf6aRMA7pqW4+fl5exZs9GGNduqfV7ri0YJ4Ycs7EJIfYcFyerIi4FXycSYkBmHTw414K4fjAj3cAgRTqpGjoWT0nDLxEy0ddmRFCvDxwfqkNoPbV/JjjVhcJOl9eQrOdyeiatWKcW8iRmIlYuQEefplbjqtnF4e+9ZLJ2WA4oCYmQiNBtt+Pp0C7ITVMR7QRgwXC4Gn1Q24NFPjvKLq3/8dCJipCKfvnZpGjnuuiYLw7UKvLqkGA4Xg7NtZoxIVCFNI0d5aS64qLaN++uhtzgumSNH7CahL7hcDP5ztBErNh7GfSW5cLgYXptpGjnmTcyARi5CUowMX51oQopagfw0NWia4qNopCIaj9w4Cka7Gxv316PRYCN5nFECWdiFCIPFCaebhVoemb/yabme6phkYUe4FEmxNIqzE3H3G9/79GxKiu17yu7l7lgTBjcMw+JshxkPXJ+Hd76rxe9mjYbF6cZ739dhUXGmT5+wlXPz8dLX1XC4WCyZmoXnt1VdkfeXQOgLxxoN/KIOALRKKRr0FgzTKrC8VIfnt1VBq5TiVz/0tDo4UNfpo821P5kAu5PFup01/HPLS3XQpcRcMkeO2E3CpWAYFt/WtGPFxsOwORm8vbcOD/0oD8tLdbwd3VDh+XfJv/bxGvzr/EK43Sx+9/ER/rnyEh02VzZg8ZQsbKiow4pZY0geZxRAiqeEiLoOC1I1clBUZE40CtI1aDc7cPyCMdxDIUQ4zQa3YB+7ZoO7z9cgVd0IQpxrN2PZvw/i9f+dw4M3jEaqRoHnt1VhdmE6H3YJeDT3xKfHMLswHfMmZvATZ+410nuJMFA0Gmw+XrnFU7LQYnLg4Q8PY/2eWiydloNHbhqDNrMDbWaHnzYP1xvwmw98vW7Pb6vCiISYS25EELtJuBTn2s2oqO3g9dVosKGlyw4RBTx5cwHWbBe2p9UtJn5Rxz3nfeya2yeQzbIogSzsQsR5vSXiKmJ6Q1MUpucm4v2KunAPhRDhNHcJ97Fr7up7HztS1Y3QE64oBBd6abG74HAzsDkZUBQENUdRCPga6b1ECAY92xJkaBUoL83FspJcPHLTGGyoqAPDejTXaLDhxR3VONXcBYYF/7zP9QSeszkZVLV0XbKkPLGbhEvRbLSBYYGsBAXunenRqZthIZeIsL9WH9CeBtIld6zV6SaLuighMuMCByH1egsSYiJ3YQcAM/KSsHLzMfzupjGQiUNbup4QPaR097HzvgnIJTRS+rFxQaoJErzhikLUd5h9wiqXl+b6TGJ7ao5lPQs7odeIF4NwpfQsVpKVoEB5aZ5PGGV5iQ4sWD8NirpNmdDzQno90mDErzcc6jWMmNhNwqVIUcux90wrfjkjFyu3HPMJXR83TBPQngbSJdvdCy8phtjTaIF47EJEbbsFSTGRXXEyRS3HcK0SXx5vDvdQCBFMsPrYcdW3puQkIifp0mFIhMELVxTC4WZ9Qtfer6jH8lId34+pZ5+wLYcbsHG/5xjixSAEm57FSmYXpuP3AuFqNEX56HNzZQNyk2OQoJL6aXNMmhp/unWcz3PlJTp8dKC+T2HExG4SeiM7QYXy0lH8oi5NI8fSaTlo6LQiRi7Cyrn5gvY0O0GFB28Y5afLLYcb8NjssbhgsJAm5VEC8diFiLoOC64eEXmtDnoyIy8J//6uDrMLh4V7KIQIpdFgx/B4Od68azK/a8ywbjQa7MhLDffoCNEIVxTC5mJ8dowbDTbsq2nHH+YW4FyrCS8vnoS2LjuSY+Ww2B1YMGk4bC7P8ctm5kKXHANdSizxYhCCQs9iJYHCfq1ONz6oqEfZjByMSo1FhkYBBizSNHLYXQxe+slE6C0OqOUSPP3ZcThcLMpm5CA3KQZ1HRa8tfdirzBSDIVwJdA0BYmI4hd1XOGT2YXp2FPTgeIsLe6cmg2WBdYtnoQumwuJMTJUNRvhYhisXlCE6lYzshNVaDXa+F54te1WUpgqSiALuxBRr7diTmFkh2ICwFXZ8Xhrby1q283IIjveBAFUUjH+svUEllyTA6vdjRbY8ea3NVgxa0y4h0aIUryLQniHAxWmq/HTqdn41dv7+YnKT6/OhIthkRQjgy4lFn/49BhfivszUvadEEQ4XfYMT+v5uHR0MqbrEiGhaVS3mrDolb0+FS8/P9KIe2aMxJELBswpSsfOUy1wM0B1qwl5KbE+70nCiAlXCqfbeRMz+AqYXLGUrAQFnpiTj9NNJhxpMCBWJsZvPrhYbfjln03CxgPnMbswHZlaBU41GeFwebx0pL1GdEAWdiGAZVk0GqxIiuDiKRxSMY3pukS8810dHrmJTNQJ/licLtw2KRMPe5Wef2JOPmwuV7iHRohSuKIQq7aewP3X5eG5r057SsZfm4vD9Z2wORkUpqtxx9VZWLn5mM+k+ZczcvCvb8+SUtyEoMPpkgvH3FzZgKdvKfDpYbd64XiMSVHj0yMXUNdh4fPvAM9EeNuJJiyemu1rL2fn4587q3kvyPJSHdbvqYXe4iBhxIQrhtPtySajTwXMNI0ci4oz8f/eOcBr8bHZY/Hr63R481uP1/iF7aexbKYOj226qPHyEh3vVSYe5ciHLOxCQIfZAamIhlwSHQVJSkYn46ktx/HA9XlRM2ZC6JCLxVi5+YDP5GXl5mNYf9fkMI+MEK3wRSFSY6E3O1A2Iwe65FicaDLyFd5+eW2uX3Pm57dVoWxGDtbcPgHj0uP48CCuwmaz0YYUNSkwQbg8hIqVZGqVmJip9SlecqS+E49+chT3TM/x8ealaeS4e9pIP92u3HIMS6fl4MUd1byO37xrMuQSGg43g3PtZqJZwmXD6TY9ToFtJ5t57c2bmOHX5uCpLcdRNiMHi6dk4a29tbg6J4lf1HHHrNlexeuVeJQjH7KwCwENndHhreNI0yiQlaDCfw434rZJGeEeDiHCaDEJtztoNfW93QGB0BOuKMQeYxvWbKvGspJcAJ5CFCtmjcHJJqOg7hgWPqW4e1YyJHkhhCuB06W3h8L7McOwqNNbeW16h2rOm5gRULfeLW05+/mgV0gc0SzhSqBpCuPSNdBbHLwmA+WIMiz4xZuIDtz2gBSmig5IVcwQ0KCProUdAFw/JgX/+t9ZsCypgETwJSFGKtgkN14V2VVfCdGBUir2qS64qDjTU42tu+y2N3IJDZqCzw5yz0qGpGE5Idi4XAwqz+ux9WgjDtTp+Unvxv31PtUGRTQC6tb71iqX0Djd3EU0S7hsvDVZeb4TLhcDmqYwIlGJP/aowuoNp0Wbk4GIBsakqgWPGZ0Siw1lU8hmQxRAFnYhoKHTGnWT3vGZcdCbHThQpw/3UAgRhkoiwhNzfNsdPDEnHypp6MN2ezYPJqWYoxuGYeFyM3hs9lhsrmxA2YyR2FBRh5HJMdhc2YD7r8vz0d3yUh3GpqmRqVXy1+hZyRAAtEopWrvsRCeEK8blYvBJZQMWrduLX759ADurWrHumzN4Yk4+9BYH3tpbi7IZOXh2QSHGDdMIlpZ/6uYCbDncwD/+063j8EFFPdI0cr6p9D3Tc9Bh9o2CIPaOIITLxeDzY43YdrIFRy8Ysf1kMz4/1giXi8FwrQpZ8Qo8t3A81DIRHps9VrDVhlxCY0yqGv/4ulrwmD9+dgJWpxsArliDRMcDCwnFDAHnOyyIV0aXx46mKFw3NgWv7DyLSYvjwz0cQgRBUYBGIcaz84tgdrigkopB00Co9/BIyN3gwvv71CqlWFCcgRS1DI/PzoebYXH7VZn4975aPHhDHlI1CoAFzust+PPnJ8Cw4L/3npUM0zRyLJmahTtf30d0QrhijjUa+OIpgMcjZ7A5IQLL20SNXAKby42zbSbcflUm3vu+jg9zG5OqRn56LCZlXWwXQ1OAVEz5VC+US2jokmMwkWFB0xSxd4SAnGw2ol5v5Qv3cJteJ5uNKEiPw/gMLb462QyTww0GwKtLitFktPGtNvQWB5aX6nC+w4zDDUbcZHOibEYOGBZgWfDHpKrlV6xBouOBh3jsQkC93orE2Ojy2AHAD/OS8O2ZNtTrLeEeCiGCMFhdeOD9Six79yBWbDyCZe8exAPvV8JgC21VTBJyN7jw/j4bDTZPnt2/D0IiAuwuBuv31OL2qzKhS4nFgx949Ldq6ynUtlt9vneuIhy347ygOMOn6TnRCeFK4CoDcmzcX48Vs8bg8c3Hsezdg/j7V1U4csEz0c6IV2H9nlrMLkwHRQFuBvjH19Woa7eiyXCx+EpmvApP3TzOr7DFio2HeZ0Se0cIhN7i9LNxz2+rgt7iBACIxTSuG52C0lHJSI9TotPqxPpvzyE3ORa/LtXhmflF+PxII4ZplZBLaLz5bS0UEhFe3VWDF3dU89Va3QyuWINExwMP8diFgAudVswcnRzuYfQbpVSMGXlJ+Nfus3h8Tn64h0OIECwOF6aOiMfPp42A3uxEvEqC13efhdXhDuk4hELuSCnm6EXo+8xLjoGbAawOF+6cmgWFRIT9tfqAoZbNRhuUUjGSYqXYUDYVTrcbRpuL6IQQNNI0Ch+PcKPBhppWE7RKKX56dSZS1HLU6y1457s6LCzOgN7iwIs7qvkejEuuycb35zrwfkU9P2GelZ/KN5X2vIcc8yZmgKKAVpMd2QkqYu8IAbE53YLasDncqGk1od1sR6vRgZPNnirDBcPUmD8pw6cFx/JSHQrSPHl0jQYbhsUpMCs/Fc1e1WD31+lxz/QcAJ4Njctpf0B0PPCQhV0IaDLakBBlOXYcN4xNxaOfHMH91+chVi4J93AIEUB6nAKzxqXh/97az98UVs7Nx7C40JZADtQ8mJRijj48uXUs/32maeQomz4CaoUUv/LqubS8VAelVHTJUMvyEh02VNRhxawxGJsWS3RCCBr5aWqfXnZZCQpMHhEPrUqKp7Yc99Hg1qONWF6qw3vf1/mFWXK9wbiGz5w90yqlWDwliz/21V01WL1wPNExISA5CSpBbajkIty0ZhdW/GgUbC7GL1RTq5Tyi7P3vq9DqlqO3318xC9EEoBf+CSnX73F0S8Nkvv2wENCMQcYm9MNs90NtSI6F0VJsTKMy9Bgw/fnwz0UQoRgsrvxxKfHfEIpnvj0GEz20HrseobckVLM0cu5djMe3XQE5SU6ZCUo8PNrsqG3OvH7T474hRe53Cx/3L0zc/H7m8b4hSGt2V6F2YXpeOD9Q3AzIDohBA2xmMZV2Vo8O78Iz99ehGUzddhd3cYv6oCLGpyel4z1e2rx51sL/cIs12yvwryJGby3grNnS6Zm+R1LdEzojRFJMfjbAl9t/PW2QvzuoyPQKqXISlQJhmr+7qYxWFbiKdazYNJwflHHHcOFSAqFT67ZXoUFxRn91iC5bw88xGM3wFzotCIxRgqait6k0Fn5aXjp62r8/JpsiEVkL2Co09IVoI9dV2j72Ak1DyZNfaOTZqMNte1WvLW3Fs8uKMTSNyv8mj0D3eFFLgY7T7WgbMZIPLXleMDjuJ5NrSYb0QkhqFzotGHZuwdx78xcvLa7plcN6i0OdFqdvfYGS4qR41y7GWkaGVxuJkCfUKJjgjA0TeHGglSMSbuojXazHbXtVtw7MxdtAe7Z1S1dWLvd03T86VsKAoZIcu0Qer42YXgcfpiX3C8Nkvv2wEMWdgPMhU4bEmKiqyJmT3KTY6BVSvHF8WbcNC4t3MMhhJkUtQxZCQq+IADg6TeWrA69zoWaBxOiDy48BwCM1os5cYLhRVIR7i3RwelisHJOPtQKMbISFKhtt/ocx7IXQ3yITghXAsOwONduRrPRMxGNlXt6LXo3fBbSKk0B5SU6dJjsAV9fvXA8zrab8NSW4/jNDaNB0xQfksnl2YkoIFVNdEy4NFx/xHiljNdoawD9ubsf2pwMOkx2lJfmgus8sHG/Jwc0KUbOb0D0PD/rMhdkRMcDC1nYDTAXDFYkxERnfp03N+Sn4JWdNWRhR4BSCtx7bS4e7w7HlEtoPDk3H0pp6HfcvCdcKWqy8xetZGqVeGZ+IfRmByQiz8R256kWPDEnHys3e+ns5gIkx0pxorGLDy3i+ij+85tq1LZbfXLsVt1W6NPjjkDoL0Ll2R+4Pg+/mzUaHRYHr9WVc/P5EHWPTSyAw+XCi1/XQCqm8OTcfB+b+adbx2FiZhwA4M7X92FRcSYe/rASWqUUj9w4GmaH20fjo1LVyIwPbN+ILRy6CGl07U8mYPXC8TjVZMSOk81+tvSJ2fn44lgj7p2Zi1i5CLEKKVZ/dfH15aU6qKQinG034VpdMlYvHO/XooCET0YmFMsOvsaAxcXFbEVFRbiHAQB4/qvTONduwcLi4eEeyhXhZljc//4h/OvOqzAuQxPu4YSbK75bRpJG+8u+mnYs6S5UwSGX0Fh/12RMzkkI2ThIP5xeiSqN1rSa8N9jTbA63dh0qAG/+mEuLhis2HSogfcMsyyw5XADHrphNB7srubGIZfQeHZ+EWRiGjFyMY7Ud8Jgc2PL4QasmDWGaCLyiBp91rSacNOaXX56WzYzFyKaQoJKivpOYa3+6dZxaO2yo6bNjK9PtmB6XjIoCqApYN6EdGQnxmDPmTbsrm7Ha7tr+Pd48IY8rN1R7feen5VPF/RyEFs4IES9Rrcunw6r04UmowN/+PSonz5XzBqDB94/hKXTcnz0x52/bGYu1u6oxmfl05GdoMK5djMJn4wcAv7yI8pjR1GUHMBOADJ4xvYhy7JPUBQ1AsB7ABIA7AewmGVZR/hG2nfO662Ij9KKmN6IaArXjUnG6/87i9WLxod7OIQw0hwgXr8lxDl2gfrhjA4w+SFELs1GG8zd7TJq263493e1+L8fjkRtuxUv7qj2OdZsF25fYHO5kRmvwMJ1e31eJ5ogXAmByrPbXAzWbq/Gb28chbzkWEGtnm7qQnyMDGu2eZ4/3GDkX7tmZAKyE2OQopZDRPvmMNlcwnl2gUrCE1s4tAmk0TaTHXUdVlzotArq82ST0Scfuef5nA453ZHwyegg0iph2AGUsCxbBGA8gFkURU0BsArAcyzL5gLQA1gaviH2jwud1qhtddCTa0cl44vjzdCbo2JNTRggUtQyPh+KQy6hQ55j11s/HEJ0kaKWQ9SdSySX0DjcYMS5drOgzlTd+U09nx+uVeKCgWiCEFy88z85uBxOAJ7+nd267XlMqkYBUXfOnDfFWRqIaRpbjzaiy+bC1Jx4wfN7Pg5UEj6QLTzd3IWaVhMYZvBFZhEuEkijEhGNRz4+wufI9Xzdzfg+7vm6d54yIXqIqIUd68HU/VDS/cMCKAHwYffzbwK4JfSjuzwaDdFfPIVDLZdgYpYWH+wnrQ+GMhqFJ3/Eu1zxk3MLoFGE1pwEupmRm1D0kZ2gwrgMDZJiZVheqoNcQuO/R5vwp1vH+ejsgevzQAP8MdzzT99SgIc3VuLoBaOgJpJiiCYIl4dQefblpTrsOt2C8tJc5KXEIkUtxVM3+9rEP8zJh9XpwjP/PYnykot6Lc7SYGFxFn722nf45dsHsGjdHrSZHPjrbYX8MZsrG/D0Lb7X6y2nKZAtPNJgxE1rdmHrsSayuBvEBGoh4HAzWF6qQ3qcws9m/vHWcdhyuAGAp1CKt0a5PGUunJimQPQTRURcjh1FUSJ4wi1zAbwI4BkAe7u9daAoajiAz1mWLQh0jUjJX2JZFvlP/Bdrbp8AlSyiol4vm1NNXfjX/87im4euBRXFLRyukKiJvR8Ivj/bjld2VeOnU0ag0+JEnFKCd/aexS+m5+KqESTHLkKIOo0yDIvjjQa0GG1QSsU4r7dCb7bD5HCDYT15IR8dqIdUTOG5BePRaLTBbHchNzkG979/CLXtVqRp5D7NnblJ+I0FqchOJCFEEURU6ZMrTNLSZUNSjBxiEbC/thOPeDVzfuTG0TDaXLC5GLAskKaWosXkAMMCCgkNmqJgdboxNScBd73xvV8+04e/nAqlVMy/R32nGftrO8Gwnpy8wgwNSkalCNo2IVvINZBuNNh6zc8jBCRqNZocK0emVon/HG3EmVYT1u2s8amySlNAcowUSpmE13BWggK/nTUGtR0WDItT4EKnBRaHGwqJCM9vqyL31sgjdDl2FEVlAMhmWXZ39+MHAHDW5N8sy1YHPBkAy7JuAOMpiooD8DGA0X183zIAZQCQmZl5eYMPMl12F1gWUEpF4R5K0MhLiQHA4ruzHZgSwkIZg4FI1Ojl0Gy044vjbfjieJvP83PHh7ZAEOmHE3zCqVGaptBlc+HuN/fjhTsm4LFNR3HP9Bys3e5/y2gw2HDfuwcBAP/82US+1UGjwYa39tZi6bQcZMYrUNdhxfo9tZiQGUcWdoOAcOmzZ3n2My0mfkIMeMIe//T5SSydloMXd1QjTSPHspJcrNtZ47PQ+qCiHrrkGMGwyQa9FT8qSENOUgxqWk34v7cO9Ll4irctPN3chSMNRn5Rx10/UH4eIbhEikZrWk1YsfEw32Ox0WDzybFbVpKLcWo5XvrJRByq74QuORZPbjnOa8b7OJKzGV0MhBvpGQDveD3+PwDrACgBrATw075chGXZToqidgCYCiCOoigxy7IuABkAGgSOX9f9PiguLo4IN2Rjpw2JsdJB5dmiKAo/zEvGhu/ryMKun0SiRi+HhBipYB+7cOSSkn44wSVcGuV2m61ON5aX5sLp1aRZqH8S10JGLqH5PnY99Ti7MB0v7qgm4bmDiEixobUd5oANxwFg3sQMPLXluM/Cb832KpTNyEFqd9ik9/lZCQokxMiw50wbUtSe5tL9KZ4CXLSFAPDrDYf8/mbI30BoCLVGOdvZbrZDKqJhcbiRopb75F0G6qEYK5egpqULecmxUEpFkIop3Dsz18eOckF9ZHMgehiIhd0olmW3eD22sCz7NwCgKGpXbydSFJUEwNm9qFMAuB6ewik7AMyHpzLmnQA2DcC4g06jwYpE1eDIr/NmWm4iHvygEia7CzGDJMSU0Hdi5WL8v2tzfXo2rZybj9gwaIH0bop+eoaRZSUo+BxOLvfDO7SyvESH2jYTH3o7TKPAL3+Y69ujaU4+3v2u1ic3iWiFECxUUnHAyTIAvyqXgOfxyKQYiEQsnr6lAI9+cpTX+70zdfjZa9/59LjLSlDwnmju+n1ZnHH5VqTn2OCHs52rtp7AouJMHzv5yuLigDZ0eakOSokItW0mmB0Mnv6sEnnJMf52dHY+3t1XC6Dv+iN2NvwMxEys5zdf6vX/xEucmwbgze48OxrA+yzLbqEo6jiA9yiKehrAQQCvBW20A0ijwQbtIKmI6Y1aIcGYYWp8dqQx6vvzEfqPzcnwizrvx28vvTqk4yA5doODnqXaZxem41STEctLdXh+WxXe2luLshk5yNQq0WS0YUNFHf4yr5DvrXS2zcxPRgCPHlduPobX7iyGmKaRopaBYVh8caKZaIUQFFLUMl6fnJ7uvy4PDMtiWYmnoIrQwq/dZMeZVhNum5iODWVT0NRdXI1b1AEe/T7y8RE8t3A87r+MxRkJUR86cLZz6bQcfuEGeDT06KYjWHVbIVZsPMzb0BGJKsjFIpxrN+Nf357Fb24YjZVbPD1Bp+cl+9vRLcewdFoOTreY+qQ/ck+ODAZiYddFUVQey7KnAYBl2Q4AoChqNICu3k5kWfYwgAkCz9cAmDwAYx1QGjut0Col4R7GgPCDkYn4oOI8WdgNQVq6hEtrt4a4pDzp3TQ46FmqnaIAo92Njfvr8fyiCeiyOVGnt+BvX56G3uJAeYkOZoeL/44D6bFBb8VzX1VBb3Fg3eJiohVC0MiMVyEzXomyGTlIj/Pkcr7x7Tk+PylNI8eTc/PxuFdUQ3mJDq/sOovbJmWg0WDDlJxEFA0H9pxpE9RvVYsJZTNykBGnQKpGgWtyEvo0OSYek6EDZzuF+tDVtluRHifHZ+XT0Wy0welm8dimI6htt/J6bOq0wOZkkKaRI1OrENRhZrwCZTNyIBVfWkPknhwZDMTC7gkAWyiK+iOAA93PTQLwCIDlA/B+EUt9pxUJgzAUEwDGD4/Dq7tr0GiwIk2jCPdwCCEkOVYmmNOUGOK2Hr31sSM3keghRSDnSEQBeosDRy4Y+Hy52yZlgGWB7SebUJw9BrurWiAViWCyu7C8NBfvV9TzE2u5hEZ9pxUPXJ8HqYiCxeGCVin1KQxAtEK4XGiaQv4wNU41dyFNI/eJYAA82tUopVheqkOGVgkAaOi0QCqmQFOAmKbhcjGgaQpKr7DONI0c8yZmQEQDV2VrUdXSBY1SimMXDHAxDLITVL0u1IjHZGjh3eZCyEMcr5LxOegMw+JvC8Zjb007MhNU6LTYkZWgQnGWBndPGwmTzSloR1M1cugtDjy15ThGJMRgZPJFe9lzE+FyckMJwSfojadYlt0KYB48IZhvdP/MBDCPZdnPg/1+kUxjp23QNCfviVRMY3J2PDYduhDuoRBCjEIiwv+7Nhev7a7B2u3VeHVXDf7ftbkhr/5K+tgNDnr2YNpc2QBdSiyWl+qw90wrfjnjota2HG7AguJMPPRhJQ7XG7Hk9X34xfr9eHlnDZZMzUKaRu5TgfCxTUdxusWMX284hLt+kI00zUVtEK0QroTMeBVGp6rx9t6zWDk332eC/cTsfGzcX4t4lRQPfViJ+949iL9/VYVf/jAXw7UK/OaDQ/j8WCM+P9qE8vcOoLxEh6wEBRZPycJru2uwZls17nrje0hEIhgsdjy/rQp3v1FxyZ50gTwm59rNIfu9EEIHZzs3Vzb49aHrGTpJ0xTGZ8QhVSPH3744CZPNjRe2ncbtk7PwwPuH8PDGI4J29PFNR8GywN3XjMAZr2b33CbCTWt24Y5XvsNNa3bhQqcNWQm+G/3EzoaeAelj110EJQtANcuynUF/g0sQKT3CZj77NX71w5EYHq8M91AGhKMNBnx0sB6fL58R7qGEmqjqbxNs9pxpE+zD9PrPr8LUkZdKow0eZHe6V6JKoz17MFEAdlW1YmRyDB75+AjvHc5LicXDH1Zi6bQcvLa7xk+Dz8wvwsmmLnx04OKu87KSXKzd7qmOWTYjB2u2VROthJ+o0mcgON2a7c5uz4QdybEyON1udJhdePDDSj+NPrdwPH71zgGUl15sh5CmkeOv8wvxi/UVfsc/O78Iy7pbe3DPBWp7sOdMG+545Tu/598ruxpTckJnmwcJUaFRToMdZjskXlUxA3l2XS4GB8/rsfhf+wLa0WfnF+GElx3lbGdxlhYahRTj0jU4127GTWt2+Z27bnExyt6qIPfkgSekfezuAfAnAGcAjKAoqoxl2U+D/T6RDsuyaDba+LLcg5GxaWr84xs7alpNxM0+hGg3OQTDLdrNjpCOgxQJGDz0bFux50wbHv/0OJaV5KK23cr3X+J6KgnllHjykrp8ejXJJbRPue4Jw+PwXtnVRCuEoODdYsCbrUcbcbK5y0+jWqUUMjGNZSW50CXHQqv0zA9+enUm9BZhu2p2uPyeCxTalhzrH9ZMPCaDm/62/KFpCjYXg3um52B4nHBe3clmXztqczJgWKCly46KWj2MVidENCV4rkRE4TNyTw4rA5Fj92sA+SzLtlIUlQNPT7sht7DrsnuMsVI6eNsB0DSFySPi8Z8jjbivRBfu4RBCRIpaJjh5SIkNXz7pAAQeEMJIb7kjWQkKjApQdbA4Kx7lpbnQyCUYHq+E1emGVEShMF2N0y0mxKuksDjcIf88hMFHb0VKhsUpcKLR6KPRNI0cS6Zm4f/9+wDvzXjkxtGwOhk899VpPDO/SFDTqRo5XrhjAs62meFwM9h7phUKiYjvece9L8OwONtu8qvWSVodDE2E9AnAJ8pleWmuoOby09RYvbAIaRo5Oi1OUBTQ1mVDXYeFj3h4+WeTet1EIPfk8DEQqw4Hy7KtgKeaJUVRg7N6yCVoMthCXkwiHEzOjse7++rIwm4IoVWK/Cq+PTk3H1plaHPsIikUk1SiCy5c7siqrSdw/3V5eO6r07A5PZPae2fq8OwXJ/16Mz0xO9+n6tvyUh3W76mF3uLAE3PyEa+SoPy9g/zrkRwiRPQU2fRmewBPYacElRQPXJ+H1V96tLugOINfcAEe70ab2cGHY76y8wz+MCcff/DqI/bA9Xk412rGn7eevGhrby4Q1PG5djOW/fsgtEoplk7LAUUBNAWMTYu9pHaI3gYXgfQ5KiXWJwfz/Yp6v42AJ28uwF+2nvCpnrmhog73XpuLI+c7AXi0+/inR/H3ReNxvNEIhvUUvBqXocHZdhOW/ftg2O/JQ5mBWNhlUBS1JtBjlmXLB+A9I44LndZBWzjFm1EpsWg3O0g45hCiw+zGi19X85MHlgVe/Loaz9xWFNJxREpp5UhaYA4WuDDbxBgpOi1OlM3IAcNezLGzORm8tbcWS6flQEQDk7K0eHzTUb6hs83J4PltVVg6LQcv7qjGys3H8PyiCT6vR2oZbqKnyKc32wMA973rWWD9YW4+r910jX/YG8NeDCk+3GDE7SzjaaGgUaDBYIWbYfHnL0/6vM/jm47yuvZ+X65KcKPB5hNGd83IBGQnBtY40dvgI5A+X/rpRB8NNhpsWL+nFs/OL4LN5UZyrJzfHOPOW7PdY0cf//QY/jq/CDtOtwEAHC4WFoeb35iQS2j89bZC/O3LU2G/Jw91gl4VE8BDAPZ7/fR8PCRoGqTNyXtC0xSuytbi86ON4R4KIUQ0d9n5vKe126vx4o5q1LZb0dxlD+04eml3EEpIJbqBgaYpNBvtONxgwJptHq2d9spb4iawa7ZVo8lg4ycjHFwuHvd/m9Pt93qotdIXiJ4in95sj/cC64iXds93Wv2q+Ioo+Dwnomis2eY5ds22apgdbsH3oSjfxy1dtsuuEkz0NvgIpE+VTOynEb3FAZVMBLlYhIrajoB21OZkYPXK91xQnIFHPj7io5uHNx7G7MJ0v/Mj0c4OZgai3cGbvf0E+/0ilQuDuDl5T4qz4vHZkaZwD4MQIrgcO2/CkWMXKe0OImWBOVhgGBY1rSbsOdOGVLUMBWkxKC/NxbKSXD63zhu5hMbweKXg81yeh1xCIzFW6vd6JBaVIHqKfHranpl5iVh/91Vo63JATFMoztLwr3HH7TzVgsdmj/XJHc1LicVf5hVCLqGRppFjmFaB8lKPzrmy8b3pmnvMFanwbhvS1/w6orfoxOViUHlej61HG1F5vhMu18XvUOjemJWgQIxUhD/eOs5HI4/NHosGvQVSMQ2GDaw3uYRGfHexH7mERl5yrKBuRD1WFZFqZwczA1EVs9dCKSzLzg32e0YiDZ3WIeGxA4AxaWq8sL0KDZ1WpMeRZuWDHY1COMdOE+IcO24i0zOEKNSFAoQabJOb2eXRMyzshrGJuH7sMD7cJytBgSfm5GOlVx7S0zcXgAKDx2aPxVNbjvPPczl23P/bzQ4UZ2lQUWuI6KISRE+RT6ZWiadvKcCjnxzF1BHxmDUuDWVv7feyhwUAarFxfz0e+tEorN9zDrMK0rBu5xk+fLgoIw5v7zmHmnYzXlkyCfV6G9/ugO+Fd6BOMJf0nzs9oZbeOr7cKsFEb9GHy8Xgk8oGPPrJ0Yt28JYC3FKUDrGY9rs3ZiUocF+JDrf9cw9+fZ0Oy2bmIlUtR53egrXbq6G3OPDiTyZic2WDT06zd47d8lIdrC43Xr+rGPEKKWK6vX89dTMmVc0/H8l2djAT9D52FEW1AjgP4F0A36FHrwWWZb8J6hsKEAn9be5Ytxcz8pIwfnhcWMcRKtbtPIMZeUm46wcjwj2UUBAV/W0Giu/PtmPV1hNYck0OrA4XFFIx1n9bgxWzxuCqEQl9vk4wEvZdLgbHGg1oNNiQplEgP00NsXggIswDE6E5KlGp0ZpWk09vpDfvvgr/1z1h5shKUOCPt4xDk8GGOr0FH1TU486pWXj3+zrMLkyHTExjSk48DtXpYbS7wbLARwfqobc48OqSYkjENJJjZKAoTzhnpBWLiFA9BZuo1CdHTasJd72xD7ML0/GD3ATcLdDX8627J0NvcSJWLkK7ySnY0271wvF4astx/P6mMYKvr1s8CU43A6VUjP21egCAWi6GViWD1eHC6NRYFKTH9UsXPe1uplaJL040D3a9XQ4Rq9HK83osWrfXTy8byqagaLgWgG9vUIVExB+/rCQXNAWs21kDrVKKeRMzQFGAWiaCWiHFP76pxoJJw6FLjoHTzaK+04Ium5u3oX+dX4SHP6zE2p9MgMPF+uhmeakOnx9pxI3j0pChVcLicGFMmhoFwzRDXUsDQej62AFIBXA9gDsA/ATAfwC8y7LssQF4r4il0TA0iqdwTMzU4rMjjUNlYTekae6yo6LWgIragz7Pt/Qjxy4Yk1eGYfF1VQsO1xvAsMCJRiNaTTaUjEoJ6U2E9NMLHt5hYWkaOYxWl1+4T227FZ0WJx7ddJR/jQXw06uz+AqEz8wvxJ8+P+V3/b1nO7C5sgF/mJOPYxeMsLkYbK5swIpZYyJmIkv0FPk0G218nrEuOUYwJK25yw6ZmEZDpw3n2i3C/cKajJg3MQM1bWbB1/ed0yM7QYmqFhM0CglMdhde+99ZzC5Mh4gG0jQKMAzbL5spZHdvGJNCeo9FEY0G4fDZJoMNRcM9j7372+0508Yfv/NUC5ZOz4FWKcXiKVk+3uA/3lqAxVOykBwrh9XJ4NcbDvm9t9XhscnL/n0QW5dPx2fl09FhtoNhPPb15vHpiFNJ8FD3RgXZKAg9A5Fj52ZZdivLsncCmAKgGsDXFEUtC/Z7RSqe5uT2Qd2cvCfjMjQ4dsEIfYibVBNCT2KMVDAOvz96D0bCfl2HGVXNJqzbWYO126vx8s4aVDWbUNcR+qR/7iY6JScROUkx5AZ2mXBhYWkaORZPyQJFCed8qBVin4kNRQEyEY2yGTlYVpIbMA9ULqaxqDgTv3rnAJ794jRe3VWDRcWZWLX1REQViyB6imy8c5jiVRJBrcUpJTjbaoJWKfUrksId42Y82pWKKMHXaQo422bB37+qQqpajve+r8Oi4ky8trsGa7ZV4xdvVeA/RxvBMH2LvApkd+v0FqK3KCJNoxDUS6pGOHzW267OKkhDY6cVC4oz+EUd4NHC7z8+CqebBajAulZ092a2ORk0GW3ITlChpcuBJa/vw+ovT+OZL06hxWiHtjsfjxTjCT0DErNEUZSMoqh5AN4GcC+ANQA+Hoj3ikSMNk/lIIUktDlH4UQmFmFcugY7TrWEeyiEAUYpEeGJOfk+CdhPzMmHsh96D0bCfrPR7tcX6vltVWg2hrY6JyF4cLkh3KRj3Tee3l7eWnvy5gKcazP7TDrS45T489aTfAXCZ/97yk+j5SU6iGjKbzKzZnsVZhemk2IRhD7jXajk9d1nsXKuv0b//uUpSEQ0Tjd3YWRyDJ66ucBPj1sON4CmAF1KDB64Ps/n9eWlOiQopfjoQD1sTgZHLhgwuzDdT78rNh7u86SZFEoZHOSnqfH0Lb56evqWAuSnXSza412EimWBtT+ZwNvVN/fUYrhWKaiF4fFKPPzhYY8Nne2r65Vz8/HqzjP84+RYueBmwfPbqjBvYobPdYnGQsdAFE9ZD6AAwGcAVrIsezTY7xHpNBqsSIqVgaKG1q7XhMw4bD3a5PMHTRh8XDDa8MXRRry8eBI6LU7EKSV4Y/dZxKskKOzjNYKRsG92+Ifp2ZwMLF4lmQnRBReGyGmj1eSA083wvcBoClBIaLy9p96nqERtu28oW6vJAafLjdfuLIbB6sTJpi68tbcWt03KCFjJjRSLIPSVnuGyw+LkeHvp1Wg02KBWiHFBb0FDpx1SiQir/uvp61WcpcFLP5mIQ/WdcDPAhoo6/PKHuciIk+PgeQPe3VeHZTNzkRQjQ1KsDKeau/DPnTVoNHgmxAwLiGgI6re23UwKpQwhxGIatxSlQ5ccgyaDDakaOfLTNHx+eaCQ26uytFjT3YqjpcsmqAURRXnZXjd/n0+OleH1/53B4QYjv5DMTlDhu7Ptl2zJQTQWWgYix+5nAMwAlgMo91rcUABYlmXVA/CeEUVjp21IhWFyTBiuxVt7a2FzuiEfQt7KoUZyjAwzRydjf63eM9mggJmjk5EU0/d2B8GoaJkVrxK8MWXGkwpc0QxNU8hO8Hy38yZm4I+fnfD7jstm5PANyikKKMzQICtBgdmF6YiViZE/TI0TjQbsqenA3jOtuG1SJvQWB39+z+sVZ8WDpoA9Z9oirpgKITLxzmECgMz4i8V/fn2dzq8gSkWtASu3HMNDN4yGxeHC0zePw8MbD+POa7KQlxIDvcWBZ784DQBYVpKLV3fV+Oh075lW3H/9KEH9HjzfCauTuWQeU6RUEiZcOWIxjaLhWj6nzptAIbcbyqbw+nl7r3/F1cdmj0WcUoysBIUn5Ncrn1MtF2OGLhm3TshEvEqKeJUINE0F3CygKU+e9ILiDOQmx4Bl0a98UMLlE/SFHcuyoS1JF4FcMFj5fh9DCbVCgqx4FfbWtOPaUcnhHg4hAFdajdLJMDA73HwJei5syMkwlz65m2AUiBgep8CTNxfg8U0XSz4/eXMBhoeh5UYwKnwOdbx/h8kxMjwzvxBVLSbB3eCxaWosKM7gNxasDifuvTbXpwVHeYkOmysbsKg4Exv312H9XZNB04AuOQYrNh7mj1t1WyFYMJj1/K5+J/uT753gTXaCCmt/MgE1rWacbukSLPxjc7kBsGBYBo/PHguGZSEV0XjkxtH40+cnYXN6Cvp427asBAXmT8rEIx8fEWx/8O6+WqzbWYNR903HyOQYv3F563RUSiy2Lp+OJiMplDJYCRRya3G4+YV9o8GGDRV1eOknE2G0uVDTZsLa7dW499ocPHXzODy26QgWFWf2KK4yDp0WO9wMi5YuFoAIWV6tP7jjHrg+D3IxjWUluT4taEgRldAwEB67IU9jp23I9LDrSdFwDb483kwWdhFKMKpROl2sYG7bq0uK+zWWnjve/eVEsxEv7qjivTYsC7y4owqjUmL4ks+hYIiUpx9QhH6HD1yfh/xhGr/d4KwEBfQWp8/Gwos/mYjHPz3slzu3dFoO/6/D7cawWCVYABvKpsDicCNFLQdNgV/Ucec+8P4hjC6f3qs2yfdO6AlNUxiREINl/z6Ie6bnCHoyMrQKVDWbcLyxi7ejcgmNB28YheWlOpgdbqikIoxMVOLZ+UUw210YplXwPe44T7WIBnKTY/G3L05idmE6DjcYUddh9lvYEZ0OPQJ50VLUclw9IgHJS6/GzqpWuBngeKMRa3dUw+ZkkKaRg6JpHK7vFMzn/P3HR/DC7RNw33sHfTbGvjh2AX+dXwSrw4VYuRgdJjtGJMVg6ZsV/barhCtnyHvXBoL6Tgvih+jCbmKmFl+daEaw+yMSgkMwqlFaHO6Au4GhxLvk+Nrt1XhxRzVq260hL54SjN/pUEfod7j6y9Ooau5CeYnOt1DP7IsNyrljTzQaA+Z52JwMFBIarV0O3LRmFxb8cy8WrdsLvcWJ7ARVwNLhl0r2J987QYiWLo+eNu6v99NueYkOerMTrSb/wk/PfnEKJrsba7dXY/2eWpxuMePBDyux4qMj+P5cB39so8GGF3dUY822apxu7kJtu5WvHquU+u/VE50OPbyL+wD+jezbTHas2ea5Z9pcDK+NeRMz8NSW48hKUAXM5zTYnD4VL1d/eQrXjx2Ghz+sxIqNR/DA+5Uw2tww24Vz4EkRlYGHeOwGgAudNoxJHfSphIKkxylAUxRONnVhTNrQ/B1EMr1VRevrLppaIebzmbgU2s2VDYiVh9acJKhkgruSod5UCcbvdKgT6Hdoc3kmyJyHYkpOAgwWh9+xWQm++ZZcbke6RoHlpbmYlKXFXV5NpL13j5NjL6+gxEB+7yTEM3rhvCWNBpugd+3BG0aDYYUnzZw9XTI1y2fzgmGFc0NVUhHKS3ORHqfAc4vGI1Xjn+d8uTolGow+vL+zsWmx+M9909Fq8g+55dolcJte3P+5jbCGTgvGpKohl9A+TcxFFNBhsmPexAy8uKMaADC7MB2PefUU5aIl3ll6taBmFRIRybUbYIjHbgBo7LQisR+FJAYTFEVh/PA4fHWiOdxDIQjg3X+Jo78Vq9wMg1/OyMVruz39417dVYNfzsgFw/Y9xy4YuFlWcEecRWi9xdzCwBu5hEZSDKkC1lcC6ZKmPB6K13bXQC4WYfUXJyGXiPyObey08FpI08ixZGoW1u2swYqPjuDlnTWobbfwu8wcNieDZqMNZ9tNWF6qE9zdvpwxX2n1Ny507qY1u3DHK9/hpjW7sPVYU597lRHCi7e3xFu7f/viJBYVZ6JBbwnY145lPaHGaRqFz4RYyPv3u1mjIaIpj843HsH9Gw7h2IUuP51cjk6JBqOPnt/ZrOd34VRzFyZnJ/j1JuTaJWQlKBAjFfvZP5Pdjdd2n8FfbxuHJVOz+Hv9yztrwIJCrPxicbxAnj0GrJ/XsLxEh/L3DhItDTBkYRdkWJZFc9fQak7ek/HD4/DlcbKwi0R6C9HoK2KaxsotvqFwK7ccg5gObSVUmViEDRV1WDrN05R66bQcbKiog1QUWrMmouF3Y1xeqkOIhxHVBNLlDWNTUF7q+W7f2luLq3OS8IfNx/DY7LE+xw6PV/FaePTHY/zC3P6w+RgWFPu2YfGEromw7N8HsX5PLa+jshk5GJsWy0+EvPtB1bSa+AlJMP6WhCChc9ENVxjqs/LpeP3nxVi3eBLEtMez8dbeWry5pxYJKqmfzfjTreOgkYvwmxtG42ybyWcxxhW6eHZ+ER64Pg9/nV+EZLUcq7887aeTs22+OrkcnRINRh/9+c64dgl/WzAef956krd/MTIRnrq5AJsrG1AyOhVSkcjPlj731WlkxCkBeLTEefa8kUtoJKhkmJWfig1lU3xseG27lWhpgCGhmEGm3eyAXEJDJh665f7HpKmxZlsV2k12JAxRz2WkEoxqlHqLU3CHjisnHyoYlsGvS/Nwtt0MhgXENPDr0ryQ53c2Gmz8jZEr4rJ+Ty0mZMYhO5GEYvaFQLr87mw71myr5o+jKE9lwS6b0+f3/Y+vq/GTyVl47qvTuGd6jqA+M+OVfGgQN7l1uD35JVzeEsc1IxOQnRgDhmGx/VQzDtcb+Aqc4zI0KBmVEpS/JSFIaG/0wxWGajba8L8z7Vi7vdrn9X98U4O1d0zAK0uKcUFvRavJjpYuG/7y+SksK8nFxv31eGz2WJ+KgounZMPJMHjpa0+hi/LSXEGdnGgyYkTiRR3SNIUbxqRgQ9kUNBpsSNMokJ+m7lWnRIPRR3+/M7GYhlPA/v32xlH4+dRs6FJi0GUTzqenKOAfP52IE01G/OPravxu1mi0Wxw+NpKzhRaH28eGX2pchCuHLOyCTGOnrV/9vAYjEhGNgnQNvjndSpqVRyBXWo0yKUY4ty3U4ccSEQ2b07cZuc3pgjjErrIUtRx6i8NnYUAasvYfIV32rO7G5YOY7G5sOdzA53neVJgGlUyEshk50CXHCuozVSP3yzk5127uNb+utt2MC3qrzzgv6K2obTeDBfj8o8nZCUHLGSFNpAcPKWo5H3bp/X2mx8nAAjDbXbhgsOL9inrcNimD93zoLQ5s2FeH1QvH42STEQqJCDQFiGgKzy4oQr3eggytUlAnp5u7MFyrgMXhRppGDpYFDp7vxCMfH+lzVUyiweijP98Zl4snoim/c2gAUokI96zfH7Cya7xKCqfbjZzEGGyyNcDmYrDpkMcesxQgE13MoyNaCj0kWCjINHRaiZcKQGFGHL4i4ZiDkliFSDD0UK0IrZfa4WTQaXVh3c6L8f+dVhccztDm+g1USB7B93ebppEjVubJB9l7ptUnz9PicOPp/5zAmm3V+NNnJ/zykVbdVogp2QkYmRyDKTmJfM5JZncPJu9jn76lAJlaJRiGRZPRyvds5DRmdrjRZLQOWP4R0dPgITtBhXEZGh97WZylwcLiLPzste/wy7cP4OWdNVgyNQs7T7XggevzsLmyAeUlOpxuMeGpLceRqJIiMUaGv/73FMrfPYQHP6gEwwDrvjnjZ4fLS3T4oKIe20624IH3K/H50SZ8fKiBX9QBfQurJBqMPvr6nXG5eHe9sQ8nLhj9NDQiMYb3FAeq7Prbjw7jRKMJDpcLD90wGv/eV+tpaL67Bmu2VeMXb1XgP0cbwTAs0VIYoAZjWfri4mK2oqIiLO/9r91nse9sO+68ZkRY3j9S6DA78LuPDuPAY9eH3IMSAq54az6cGr3Samf/PdaIP3x6nK+UxbLARwfqsXJuPm7ITx3Akfuyq6qV7+3EIZfQeHVJMabpkkI2DuDi7zSYIXlXSNRqtKc+M7VK1OktaO2y487X90GrlOJ3N43B+m9rsOSaHFjtLihlYtz37kH+GmkaOeZNzEBmvAINnVbMm5AuGBZb02rCXW/s4z1/LAtsOdyA138+GQBwrs2M//fvA34ae+knE3H3mxU+z30WxP5MEainYBO1+uwvDMOirsOMZqMdFocLsXIJfvbad4KaqtdbkKJWwM0ySFXLYXcxYFkWd7/pb+eWTsvBRwfq8fubxuBkcxdvh6ViCr+5YTSs3d5AEU1j9Zen/cb1XtnVmJKT2Ou4B7kGL0XUabQv31lNqwk3rdmFpdNy8NruGp+qlwVpapgcLjz4wWH+eM6WZsUrUNthxUcH6tFosEEuoVE2IwcM67Gbr+2u8dPo20uvxviMONA0NdS1NBAE/AWSUMwgU6+3IF5FPHbxKimSYmU4eL4TV2XHh3s4hG6C0aw2Vi4WDD1UyULrsTPZhPvkmOyuAGcMHFca3krw0Js+uRySRoMNnRY7bpuYiYc/rITNyWB5aa5PuA9XjXDptBy8uKOaz5nriXcvRG9aumxg2b7nkwY7Z4ToafBA0xSyE2N4/W092iioqS67Eya7G3/acBBapRRLpmbhve/rsGymLmCek97iAE1TeHWXZ1KdlaDAL2fk8n8XcgmN57q9Jf0NhSMajD768p1xdpRrbeCdX7esJBcAerWlHDYnA4YFtAoJDDZhO7mzqhXn2s24pSidaCmEkIVdkDmvt2BMqibcw4gICtM12H6ihSzsIohAlbNG98PbIBd7QjG5allcKKZCEtqFXVKsVHDCkhDiPnaE4NGbPr1zNbISVPi/t/bzx71fUe+nyfISHd7aW9tr76QUtRxZCQr8fGo2shJUMDvckIgopGnkcDOAweoM0D/M99ZJckYIveHthfbOUeZacwzXKiEWUbC73LwH5fltVVg6LQf1eougBmkKKC/R4V+7z2D9XZNhFvAG2pwM/rL1hF8hFhIKN3ThbN6olFiUl+aCYT3tNBoNNogo4JNDnlDgNdsv2tI/3ToObV02fuG3cX+9Z1OBAjLilRjGsoIadTPAo58chS45BkXDteH6yEMOsrALMvV6K2aEOAwsUikarsW/99VixY2jwz0UQjfBqHbW0mUXrAKZkxjaiYKbYXD/dXl47qvT/A3o/uvyQt5PjxA8etPn5OwErF44Hg+8fwjNRrvPcVxl0mfmF6GqpQtjUtX4x9fV0FscfO+kFbPG+HmmM7VKPHjDKOjNDhyq7+SrujndDH40JhXVLSZBjdGii0UHyESZ0Bs9vdA3jE3Ek3ML8OLXVbj7mhGwON140MvDVl6iA01f9Mq9X1HvN9F+6uYCmGxOvLHnHJb+YAT2neuAw81gTJra7++HqyJbNiMHeSmxGJOq9qmaSRhaZGqVuK9Eh4d6aG5DRR0K0jXITY5BY6cVz8wvgt3lRopahtp2C1Z/5buRGyMTg2VZdFoceGdvrd/mAbexZnMyaDLYUDQ83J986EAWdkGmyWAjxVO6yU2OQaPBxufKEMJPMCpUxaukgqGY2hB7ykQ0jS+PN+Kv84tgdbiglIrx5rc1mJgZF9JxEIJHb/rs2V6g53F6iwMnm7rw4o5qyCU0np1fhBNNXXhrby0aDTZBz3Sd3oLGTitAeRo9c5OSB67Pw+nWLmRo5TjXZsIz84tgcbjQ2mXHv/fV4oXbJ+CzILc5IAxOenqhdSlxePHrKvzmhtGobunidQd4FnNrtlfhmflFPhUy39p7cSONpoB4lQQsy+KnkzNhdTJYu6NaMCQZ8DQ8n5ipRWuXHfExUjjcLkHvNWFoUKe34NFPjvppbkPZFEjFFA6dN/os4p5bOB5P/+eEz/HPb6vCK4uLoVGKYXcymF2YhsQYGdYtnoQmgw0tXXbe7nIViQmhI6IWdhRFDQewHkAKABbAOpZln6coKh7ABgDZAM4BWMiyrD5c4wyE1eGG2e6GRiEJ91AiAhFNoTBdg29OtWLhVWS7JhLgKlT1zGHqj7fBYHX67SCXl+hgsDr7NZYrLeIiEVFYPDUb1S1dvKdl8dRsSMWhn7Bc6WcheLiUPrkckoZOM56YnY+VW47xxz02eyy6bE6kaeRoNNhwsrnLLyekp2e62WjD8HgV/rL1BD9xBoB3vqvFhEwNatutPpOcx2ePxe9uHA2KQr9yRog+hi49vdBcL8bTzV0AIOihPttmxvJSHd77vo63tdyGxWOzx+LtPbWYN2k4NEopjl0w4J7pOQCAHSdb+PNmF6ZDIxchPkaOJf/ax2v4iTn5qOuwIi85Fk1Ej0OOQFERVqcbRhuLlZuPQauU4qdXZyIpRgaZmMavr9PhzW89CzUA0CqlMNqcaO6yocNkBwsKy9876OPRAy5WGc5P6z09idjH4BJRCzsALgC/YVn2AEVRsQD2UxT1JYCfA9jGsuxfKIr6LYDfAlgRxnEK0tBpRWKMFDRFBMkxLkODbSebycIuQghGU+U4hQQbKup8QjE3VNTh2flFfb5GMIq42FwMLnTafDwty0t1SAvx7iDDsPj8aBN+88HFz/K3BeNxY0HfPwvBg5A+M7VKvyqZCokEbsaCV5YUo8PswJlWE9Zuvxh6uaGiDiqpCPfOzOUXa5srG/w80ylqOUx2FxYVZ/ptVDDd+SHeO9VPbjmOvy8aD3f3vIhhWJxtM6O2wwyVVIwUtQyZ8b5/T8HQOiF64bzQXO7cqJRY3hsn1ONOLqFRMEyN2nYzFkwajgSlGP/42SQcrNPDzQDrdp7B/7s2F29+W4NbJw73sX/lJTrsq2nHspk6PLbpKJZOy8Hqr3xbHazcfAzPzi/Cx4casGZbNZ9DNTEzzk+7hMFHb1ERNa0maJVS/PyabJ/w8+WlOvxyRg7+ubMGALBkahZ+84EnlLO8NNfP6/z8tiqsWzwJGoUEY1LUqNNbAi7aiH0MPhG1sGNZthFAY/f/uyiKOgEgHcDNAK7tPuxNAF8jAhd29XoLkknIoQ9FGXF457s6uNzMYGx7EJVcabWzMakq3HutDo9/epQ3xE/OLcCY1L57/YJRxMXhYvliGdw1nt9WhVeWFPf/Q10BNa0mflHHjeM3HxzCqJRpyE2JDelYBgPe+ux5089KUOC+Eh2/4Foxa5SPBgBgzfYqrLl9AmxONx7eeJjXKNefzptMrRKtXXZ+UQdcDE16ZXGx4M728UYjVDKx4IRkeakOupQYlIxK4SclwdA6IXrJTlBh7U8moKrZhOe3VUGrlPJetbuvGSFY9GfllmNYVJyJr081496ZOvzq7f0+Wnzp62o8eXOBTwEhTrfPzi/ic/a4yofe2JwMzA4XuLaLNieDRz4+grIZORidqiYT6kFOb1ERXTYXlkzN4hd1wMX7atmMHMybmAERDR+by7DCGhPTNMalx11y0UbsY/CJqIWdNxRFZQOYAOA7ACndiz4AaIInVDPiqNd7PHaEi8QppUiOleFAXScmjyDVMQcDJ5rMePHrKh+P3YtfV2FEohJXjejbxkYwirgEandgDnG7g7PtZuFwqnYzWdhdIT1v+rML0328aPFKqeDvnmFZflHHPffoJ0cxMVPrl2PXarILXsPqdAes9GZ1uAUnJNwEKCfx4sZJIK3XktCjIQFNUxiREINl//aEqnGFfhYUZyBOKUGqVIF1iyehotbjkeNyk9Zsr8LbS6/GzqpWH/2kaeRYVJyJ/bV6Ye2D9dOsUFVX7xbG3ET8ZJMRcgmN7AQV0eQgpbeoHYZlkKZRBLCpQF5KDGxOt9/rQhqTiuk+LdoC2cdmY/Daxww1InJhR1FUDICNAH7NsqyR8gptZFmWpSjKr6s6RVFlAMoAIDMzM1RD9eF8hwUJpIedH+PSNfj6VMuQX9hFgkaDQZPRLtj7q9lo7/M1glHEJVC7g8QQF3FRyUQoztL4NMt+89saKKWhbf8QDCJNo0L5Sd6PlTKx8KRCRAtOFoRy7DRy4WvEKyV8lU0uhzNeKcW/vj2LklFJPmPjmvhSFKBLjkWH2c6/T89QPIryXKuquQt/+vwUCT3qB5Gmz77S0uWr40aDDWu2VWNZSS7Wbr/4rzc2J4M2kx0M6ztxnjcxA2u2V+Ge6TmCupXQNP/8xv31+N2s0Wi3OHgN5ybHQCqhkKKW4oU7JuBsmxluhsHYYbH84pNo8vKJBo0GitqhKQpn20wBNgNEaO2yIV2r9Hl9437hVjNdNgecbgY2J+NjHwEI2kdvW7qgOAOdFifOtJhIBdfLIOJi4yiKksCzqHuHZdmPup9upigqrfv1NAAtPc9jWXYdy7LFLMsWJyWFp91AbYcFSbFkYdeToow4bD/p95UNOSJBo4Anpr2m1YQ9Z9pQ02oCw/jtk/RKqlqGrAQF7p2Zi2Ulnp+sBAVS1H3XPhcOwuWaXE4RFzfLYOXcfJ9rrJybDzdC2+4gTiHBgmJPs+wVHx3BQx9WYkFxJrTK6CuiFE6NCumSu+l7wz0uTFcjIUaCx2aP9dHA8lIdnAwrqFGhHLvqFhPKS3Q+1ygv0cHNMrA53Vi3swZrt1fj5Z01sLsZ/GJ6DmRiz+JRLqGRppFj8ZQsvLbbc9xDH1aiodPG/11xoXhLpl485uWdNWDh6ZfH7WKfazcP9K846okUG9pfOB2naeS8JpeX5iLBy0YI6TwpRobNlQ0++hR1t0LYuL/eT7fLS3X4x9fVPs/b3YyPhhsNNhitTlgdDB76sBKrvzyNl3fWoKbVDK3SsylGNHn5RKtGAcDicOP9ino8eMMoP12lauQYPzwOMVJPWLt31dZktQx/XzgeqxcWYdnMXGyoqEO8Usb3zPO2j6/uqvGzj6tuK+T/PpZMzcK6nTX41TsH8OMXdmHrsaZ+z1GGOhHlsaM8rrnXAJxgWXa110ufArgTwF+6/90UhuFdkvoOC6bmJIR7GBGHLiUW9Xor7/YnhI9gJCqPTY0RzLEbm9r3sIlgFHFhWQovfV3tExL60tfVWHVbYZ+vEQy6bG488ekxn3CTJz49hvV3TQ7pOKKZQLq8YUyKTz7I5soGPH1LAd7bV4vbJmbi7jcqoFVKUTYjx5MvZ7JDKRFh4/5a3DtTh8c3XdSoUI5ddoIKDcmxeHTTEb9iQNeMnIDHNvkWT1n95Wksm5mL+k4r/vz5Cdx/XR7MDpdfjt6KjYcxLl2DnKQYv1A87pjnvjqNpdNy8GJ3qfr+hCETooueeXacJlfOzUdhuprXNRdmzG0u/Pnz47ivRIcXtlfhwRvykKyWQ6vwRCo0Gmx8GwQRDVw9Ih4PfnAYjQYbWk0OLJ2Wg9GpsXy/MuCihp+dX4TnvjomqO1nvzjNP0c0ObRIjpVDb/F42spm5IBhL/ap1VsceOH2Cei0OrF2RxX+Or8I1S1dcDPAm/87h+l5yRDRQF5KLB64Pg+dNgfyh2nw1M3jUPZWRa/2cVicPKBeSb5d/4mohR2AHwBYDOAIRVGHup97BJ4F3fsURS0FUAtgYXiG1zsNnVYkE4+dHyKawrgMDXadbsNtkzLCPZwhTTASlU80m/lFHXeNxz89ipykq1Gc3Xf9X2kRF6PVKRgSarSGNseu3Wz3CbMDPOEpbea+h6YOdQLp8rPy6YJVMrPilVjcXcKdC2uTS2isv3syaAoYnxmHRev2XjLHjqYpTM1JwAPXj8IKr0IrqxeOR7tZOPcOAJRSEX5zw2iwDAOpWHnJsM+eoXjcMZxeAoUhkzLggwOappAcI/Nb3HMbQImxMmRqldAlx2DbyRafXLtWUxX+tmA8mgw2nNdb8LcvTvEtEBoNNry2uwZ/vnUclBIR9BYHAE+o54s7qlFemhuweIrQ86lqOd8uRC6hkar2VEok+hsaiGjgsdlj0Wz02NSeuFgW5/UWzClKh9Xuwppt1XzEgndV4ZVz8/H4pmN4/eeTIRFRl7SPCSoZXttdg3um5/jlk86bmMG3BiH66xsRtbBjWXY3gEDfWmkox9JfTHYXrE7Swy4QBcM8bQ/Iwi68BKNoSVMvyc6hJE4pnGMXF+K/wcx4JZZMzfLZiV9eqvPzDhECcyld9twAaO4SXnS1dtnx48Jh2HOmrc86F4tpzCkchnHpGh/v8Xfn2gX1VZQRB4DFwx9WQquU4vc/HnPJfNE0jRzlpbl8JcKdp1pw7ehkpGsUWF6ai3EZGr8wZFIGfHBxwSCscb3FgcndkT4Wh9tvQl3bbkWbyY6T3ZPb2narT8NylgWGxyvgYlm/fLqCYZqAxVOEnq/TW7BkahasTjcKhmlQWW/w2/Ag+hu8NBps6LI5MTo1VlAfSomIb22wvDQXcgnN53z23LBYNjMXHWY7lAG0lhwr5zeumgw2vP7zq9DaZcPy0ly8X1EPAH4LRqK/vhFxOXbRyvkOC1LUclCkh50gRRka7K5qg5vESocVLub9UrlHvZEWIO8pJcStPpxuN56Y7Ztj98TsfLgYd0jHIROJBNsuyMTRVzwlXPRXl5fSYKDcPIVE5Jdb6u0V8w4Jdjjdgrl3Fqcbj246Cq1SisVTsvDMf0/6HeedL8owLI43dvF5TpsrG3DH1Z48khUfHfHk7jn97WIgLybJe4oOeuaMDotTCGoy1avvppBusxIUSFBJIaIu9r3jPHJrt1fjtd01kNCenM+e+XRNRhtWzBrtly9F0/DLTy4v0eHrky1IjJFh3c4an0UdQPQ3WPHWqVIqBlhg1daTuP+6PB99PH1LgU+kzvsVnqIpXM6nNzYng8x4BRo6bSh/74CffVx1WyEMVgc2H76Am9bswk9e/Q53vfE96vU2fHKoAUumZuGnV2f6LRiJ/vpGRHnsopm6DgsJw+yFhBgZ4lVSHDrfiUlZ2nAPZ8iSqVX69AELlHvUG/mpajw5t8Avx64gVT2AI/eHpmjsONWIlxdPgt7sRLxKgrf3nsVdPxgZ0nGcC9Du4Fy7GbpU0u6gL/RXl5fSoFCvpqdvKUD5ewdR2271yeH74kSzoFcsTaPAC9ursHpBERxuFvEqCerazYhTiFHbbsW9M3P5iYd3rlPpqGSMy4jz6dO0ausJ3sMyKsU/j+Q3HxzC6NTpGJnsW7HzSr3rhPAg5G1d+5MJfnl0T99SgPw0DX9eT916Njt0ePDDStx9zQhQFPDA9XlY/aVv8+jK+k5kaJX884BHK3/87ATW3D4By0t1yNAqkBAjQ1uXHTRFQZei4vOo5GIaFAWUzRh5yR54RH+DByGdPn/7eDxy41hUtXThmflFaOy0YHi8CjTl8RZzcG07/rawyKdBOdBdnTpGjrvf/N7PPv5gZCIqz+tBU5TfxsGa7Z42Ss9vq8LfF40PGBnE6Y+EqgtDFnZB4nyHBYkxZGHXG4UZcfj6ZAtZ2IWROr3Fpw9YoNyj3rjQZcNXJy7g5cWT0GlxIk4pwTt7z6I4W4sceehu+AzLYOaoNL5JL+exY9nQVsWUSy6WF+/5HKFv9FeXl9Jgz+I8ComIX9Rx13/g/UPYUDYlYM6p3cVgQXEmHvig0mcS3W5yICtB4TPx5TwoADBheJzP5KLdbMei4ou7z4Hynuo6zD4Lu2C0BCGEByFv67J/H8Tn5dOxoWwKmgw2pGrkyE/TQCy+aCd66lZM0/jZa9/B5mTwz501WDI1C+OHawQLW6ycmy+oK4ebwedHGnHH5Cw89OH3PnlQGRo5XvzmDBYVZ+L5bVV+OU5C+uO83ilqT75rnd5CJtZRSk+dapVS1LSafdIKnr5lHNQKEYw2/76eeosDTpcbT8zJx8rNx/hzHrg+zydlg7OPaRo5UtRyrP7KX2vARU/fPdNzEBugDQ3XRoiEqgeGzDyCxNk2M/HYXYLCDA22nyJtD8JJb16A/lzji+NtuPNf32P5e4dw57++xxfH2/p1jWAgEYmwcotvZbeVW45BLAptCKRKJsbyUv+y4yoZ2TfrK/3VZV80yBXnmZKTCIvD7bPbzF2/MUDeU0uXDXqLw6/a6fPbqnCyuQtPzM7nw+K8kUtoxPT43qUi2iekiOtLdqnzgtEShBAeAjZd7rKhaLgWPypIQ9Fwrc+ijsNbt20mu8/keNXWU/jfmQ6s2eYJw3xxRzWvYY1CIqgrutsT19NWPvHpMcQqpPjTreN89MldQ6idAuf1vuOV73DTml34pLIBd72xj39MStNHFz11Om9ihl9awaOfHIHVyeIvn5/w08Njs8fijf+dg1xMo2xGDpaV5KJsRg6SYmTQmx1+elxQnIGnthz30xqHXEKjrsOKV3d5wogfuN43HLS8RAen23MuCVUPDJl5BImaVjNm5CWGexgRzaiUWJxrN6O1y076/YWJYHgBIsWT0NpLAY1QYrQ5kKCU4Nn5RTA7XFBJxbDYnTDanCEdRzTTX03153iGYaGUivjiJRv31/NV/9I0ga9T3WIS1BfDAscbjZBLRHhs9lh+osLtVCt6NKa3ONw+1+EmzN5FAZaX6nzO40KMkmKl2FA2BRaHm3hEoohg2cg0jcLvOtyGglCEwHMLx+NEkxEMC2yubMDtV2WircuOOKVU2JvnYnCwrpN/zVubjQYbNlTUYe1PJqK6xYSMOAWe+eKkj9f70U+O+rTsWLX1BNLj5ESvUUJPnQYKvz1c3+lTtEdEA3nJsbjQacHY9Dj87uMjfnp84DodVt1WiBUbD0OrlGJBcQZ0yTGCWuPsYHmJDm/trYXNyeD3Hx/F8lIdymbkQJccCzFNobXLBqPNhZpWU8CqxSRUmCzsgkZtd/EUQmDEIhrj0uOw83QrqY4ZJoRyj/rrBQjGNYJBYoxMcIIT6pBohUSMTpsZj2/2neBnJZHiKX2lv5rq6/FC4TrlJTpsqKjDilljkJ+mCXgdN8MK6oumAKuT4UOLuNy50SmxaDfZYXX6Fu9JjvWdPHET5nWLi3HofCfsLgbr99Ri/PC4gGNevXA8rh6RQCbJUUKwbGR+mtovL29kUgwe+tEoPPPfU/xzj9w4Gi1dDp++jY/NHosN++owY1Sy4AJRLqFB0RRsLoZ/jeuNVzYjBxlxCtR2WPHUlmNYVJyJZqNN0Ost6/Y6pmnkWFScybcZIaFxkU9PnQbaNOh2kvmEnK9eWIQktRyA8AJreLwS149JRVGGBgfqOvHIx0dwX0muoNbGpqlxpMHIt/jgrmF2uLF2ezV+e+MosCx8QkRX3VaIrASFjyZJqLoHsrALAg4Xg9YuG/FC9YHCdA22nSBtD8JFMBqDB+MawUAmorC8VOfXZkAmCu04aIryK1qw+svTeOtu0qC8r/RXU309XihcZ832KrxfNgUF6XG9XmdkUgz+elshHvYq9768VIcUtQzPb6sCcHGiI5fQWDotB6/trsGGsik+YxDRwJ9uHYdHune15RIai4oz8dimI5hdmM6fz20MBqPXJCG8BMtGisU0bilKhy45hs/LG5UUi+o2E169sxgWmxsxchFUUjEWveLbt/GpLcd5b0ejwYo/zMnHH7zyoJ6YnY9Xd56Bweb0WTzqLQ4oJCI895XHa5emkcPmcmNEooovRc9NvuUSGtmJnsWqUNl7otvIpqdOU9VyjEpV+2xI/PHWcViz7bTPeXIJjaRYGRQSGulxwpsGSbFy0DQFg9XJ2z6a8r1nc1obppHjeKORnxdu3F8PvcUBtjtsfVicEg/3KDi1YuNhrFtczDc/F9o8GarFVcjCLgjU6z2FU8Q0SVm8FEXD4/De93VwuhlIROT3FQ6utDF4sK5xpTR12fH5kUb8dX4RrA4XlFIxXtl5BjmJofUctgQICW0xkQbl/aG/murL8c1Gm2Dz+Dq9FQXpcb1eh6YppMXJsWxmLpJiZFDKxKjXW/DG/86hbMZInxBM7xAii8PXY9dosEEmpn36jnE70xTlnzvXFCDvz7saHCHyCZaNFItpFA3Xomj4xecKMuJ8jgnUtzFTq8SfPjsBACibPgIv/XSiZ4IN4KWvq3G6xYTyEh3Wf3sOS6flQCamUZCuxu8/Psov6nr2EltequMLtpSX6NDUaQEAKHpM7rkxEN1GNj11mhmv8tmQyNQqoZCI/KIeHv7wMBoNNjy/qEgwpNJkd2LrsSacbDLyujA73Ni4v97HFn5+pBFJsTK+sianMaVEhH99exblJTqcaxOuPC0RUfgswObJUC6uQhZ2QaCm1Yw0jSLcw4gK4lVSJKvl2F+rx5TupqwEwuWQEivDjePS+J087oYQ6iJGSbHCIaFJpEpu2EnTyAWbx1/QW3Cu3XzJCWe8Uoa13flDHHIJDZWEwpt3Tcb/zrTBzVxcqHl73jhS1HIYrE68ttu/JPjkbC2uzbsahcM0/GRDJhaustrbRpjD4cbhCwY0GW1IU8sxbpgGUikJBR4qBMrpi5GJcec1WaBAYZVX6OZTNxfg1gnpKBweh/3nOjBjVDIAQCmlUXm+E3qLA4CwF+75bVV4Zn4RTjZ1YfvJJvzmhtH4588mIjFGKjgGEUWhptXEb1wMRQ9KNCG0IcF59WrbzTjbZka6Volfl+oQp5JCJRVh9VenfRZrGyrq8LcF4/HLt7/DPdNzfHShtzj4cE4AKC/N9auI/Py2KqxbPAm/mpGD9HgVmABh8SlqOT/Wnt45loVPmxnA83h0auyAbTREioeQLOyCQE2bCalqMonrK0UZGnx1opks7AhXhNPNCDYGn3RXaEMgrQ4XfjdrNNotDjCsp7hBvFIKq8MV0nEQ/HEzENTIspm5l0yyZxgWZ9tNfuG+L9wxAZ0WJx7eWOnTxoCrGtiz916mVoljFwx+/ceemJOP441GWB1uNBqsuDE/DWIxjS67Q1BPJrtwMR6Hw42tJ5pQ3WICwwJVzV1oMFgxa0wqWdwNEYRy+paX6rByy3EsKM7w6TNmczJ4bNNRvLx4EpoMdqz+6qJ+/zKvEK/tPsl7YLyLaaRp5LznWyKiMClTg7yUGOytaceOky1YeNVwv7+V+6/Lw4Hzevz9qyqsXjgeUjGFZf8+OOQ8KNEOt9jL0CjQanJg+XsHoVVKsWRqFt77vs7PDj55cwEYloXNyfgUSdm4v95PI8O1SkGNAYBKLsUv1ldAq5T6necd5cAwLLafasbhegNvMydkxvmNq7xEhw6zHdkJqqAvwCLJQ0gWdkGgqtmEVA1J2OwrEzK1eGVnDR798dhwD4UQxeitTsHwjE5raKtRquUS2N2MTyjJA9fnQS2XhHQcBH9auoTDGh1u5pJJ9ufazVj2b88Ehtv1pSlPr6f73vVMTr2rxOUmx+JvX5z0671Xp7fg2S9O4e5rRqBsRg7ENA1dcgz+svUE3yx9eakOJ5uNKEiPg1Yhw2m32U9PWoVUcJzHm4xo0Fv9QpmONxkxPpP0DB0KeOdK1babcfB8J9bv8XiRGVa40mGzwYbHe7TzONtmgt7i4HU9KiUWcgkNrVLaa0jmC7dPwH3v+f+tKCQ0mrscfL5d2Ywcn/cjOXjRxYlmI1+gx7s1grcdnJSlxQvbTuPxOQWQS2i+SAr3+vTcREzM1GJXdRtY1mOje9OYVinlm6GXzchBwTANcpNjfBZjdR1mVDWbfGzgUzcXYENFnV9+9Ye/nDogC7BIyo0mSU5B4EyriYRi9oMRiSqY7C5Ut5jCPRRCFKOSigX74PQsNz/QWJxuweIplh7VEQmhhwtR80YuoVGcFX/JCoVcjyeuQMra7dVYs61asPcdwwIUAIeL9eu912y04farMnkP3IhEFb+oAy56EfUWz4bEpfTEMCxqWk3Yc6YNlec7YbA5Bb2SRpvT59iaVhPpMTYEsLs8LTkAjweEW5x547GTYh8de1p/iPDk3Hw+XO7ZL07iiTn5WFAsHJI5b2IGbE4GHRaH4N9KfIwMHx2o58/pKT+bs389VAnBweViUHlej61HG1F5vhMuF3PpkwAf2yfUGoFhAaPVhYZOO5wuhu/v2miw4bXdNVBIRIhViCGXiPDqrhq8uKMab++tQ3mJrleNce+9Zls1HC4GOUkxoGmKt2/n9VY/G/jYpqOYXZjuMz6bk4HZ7hZcgB1p6LwiOxmMHsHBgnjsgsDZNjOGxZGFXV+hKQrFWVp8ebwJucm54R4OIUqJU0qwcm4+30RaLqGxcm4+tIrQesqMVpegQTdaSShmuBEKUVt1WyGuybl064BAeUvpcfJed5hTe+TYpWnkqGmT+IQRccVWvEt727qLrhgCeKKNVpdguM/fF40XPN7mZCImNIgwsAjp4v7r8iAX03jz2xo8MTufb1DO2Umrw8nrmyuS8vy2KmiVUpTNyEFmvKdoxsvfnMFPr84S1BgXMqfs3mTr+bdCAT4VNHvKjpSnDz0uF4NPKht8Wmg8fUsBbilKh1jcu69nWI8KmL3ZQaPNifV7av0KpaSo5Xh+22m/fokP3TC6V41x75fSnfbkrfmnbi4QPLdnWrJcQsNsF75f76pqw7NfnL5sOxkp/X0B4rG7YjrMDjjcDLRKEnbVHyZmafHZkaZwD4MQxdicDF76uhpLp+VgWUkulk7LwUtfV8PWx93HYJEUKxXcEU+MEQ6dI4QOLkTts/LpeK/sanxWPh1zCoddcgIDXFwUct8td8PnSnYH2mF295CfmwFfQZM7bs32izvR3LXjVR69cEUovJFLaCSoJILhPlyxlZ7HJ8VKBXemz7Wb+/rrI0QJQrp47qvTaLc4cHVOEv65099ODtMqPYs/Ce1TJIXzjDz6yVGwAE63mHC+0yqoMbbbsdHYaeG9M9xry0t1aNBb+MerbitEYYbG7+8p1P1PhzrHGg1+xUoe/eQojjUaLnlurEzMf89cvlwgOxivkvGe37Xbq/HijmpcOzoZj3x8xKfZeXlpLtYsmgCtSiKoMW5t5VmAjkOM3BOR4635GLlw9M6kTK2f3hK7i531PDazW4eXaycD3S/CoW/isbtCqpq7kKlVgqLIDmh/GDtMjRd3VKPRYCVhrITLotHgaZjrXWEL8JSLDyVOxo2nbi7AY17NgZ+6uQBuloRiRgKXW3Y+UC+yz442Yv2eWvy6VCe489tqsmFk8sX3CpTnx+0myyU0HrxhFDq6KxHaXcJ6crjdguE+p5q7sGLWaKzaepI/fsWs0dB3h8f1fN9LFY0hRB+BwsAY1hMyJ2QnGztteKO7zYEuOSbA+SyenJuPF7+u9itpz+XYySU0EmJloCkKZTNywLCe/LoUtQzNRjuWleSCZYH0ODkmZsYHLE9PCA1CoeQ2J4Mmg82npYYQTUabjxcOgE/xE+/rOd1uv2iJvORY/ljvZufXjEzA1dkJPv0UudziMamxePCGPFidDF7YfhrLZuowKkXjo/nadjPuvy4Pz311sTjV/dflQaMQ++ltf12HYHuGC91tO7jx99dORkp/X4As7K6YqhYT0rVkYdJfxDSNiVlafH6kCXdPGxHu4RCikFS1cJuBlBBXqBVRInx5/AJeXjwJnRYn4pQSvLP3LO6ZTsKMox2hRWGaWg69xcF7MS4VehMoRGdydjxW3TYOSqkYb35bg9/eOBY1rSaIaRE2fF/L92dUSMVY/20NVswag4QYf81bHW4cqG336M/sRJzKo7+JmXk+x6Zp5FhQnAGLw40zLSZIxEBTpx1tZjvS45TIT1P3yZNJiCwYhg0YCklTnrwnoddUUhHmTcxArFyElAC2tLrFBIVEhNmF6Rger8Cz84tQ02aGUkpj7DA17lfpkKKR4/FNR+FwsT4VDZuNdqzaeoq/1q3jh6Guw4zWLjssDjfv7SOEljSNcEPxvhQATOm2fd6bBMtLcwWvF6+SYWJmvM9Chw2gRYVEhIP1eoxMVGF5qQ7xSili5GJoVRL87qMjfD4yADy26ShGpcbA6nTjkRtHweFmoVVIYbA6sGxmLmwuBnEKMTLjVbhgsIGiaBRnxvO2LUElw4aKOr/2DN75eEJ23LuVQXKsHCLaszgdFidHp9mJRqMNaRoF8tPUYd84Iwu7K+RUUxfxOF0mk7Pj8WnlBbKwI1wW49I0eHJuAR7/9OIO35NzCzAuTRPScTAsg/HDE/B/b+332QFk2NCGhBJCw7hhGjx5cwFe3FHlt/MrFHqToVH4eeCWl+pwrt2MF3ecgd7iwJNzCyCXAjet2YWVc8aiotaAitqDPtdxuBjBnMGRiUoMi1P46O/JmwswKimWP5YrTc7l+RVnabCgONMnP7WveTaEyIHLM1q19YSgFqViCk9tOe732pM3F8Bkd2LL4QYsKs7Ebz867OfxWF6qg0oqwj++qYFUTGF06iic11s84e5OxhNCt63ap4n5izuq+Ry+l772TP65x2faTKhpNfuVrCc5n6ElP03t5xl7+pYC5Pfhvilkf8ZlaPye4+xgz40xhmH9jn36lgI8teUYSkanYkOFp3XCS99UY1FxJk41u30WdYDHm1bTasGmg/WYnJPA9xnlNHusvhM3FKSh/L2DgrYtO0GFFbPG+I3hhe1VAIRDKIVyWJeX6rCvph03FKRh5ebIsqMUOwi3TYqLi9mKioqQvNdt//gWs/JTUZAe2snkYMDlZnDvuwfwWfl0ZPTo/RThXPFdKJQaHczYbC4caTSg2WhHilqGcWkayOWh3a/ad7YdD31YidmF6fwO4JbDDXhmfhEmjwhbr0ai0QGEawiutzgQp5DA6WaRqhEOvak8r8d3Ne0wOdxgWI8+PjpQD73FgaXTcvjJ8Os/vwp3vPId3iubgp+/vs9vV3v93ZMxeUSCz86xUiqC3cVgyb/8j99QNgXj0uNwrt3jJbnT65pr7piAhz+sFDynaHhIWiQQfQaBmlYTblqziy+AMm9iBkQ0UDo6GePS4wB4cpHazXZQoNBhdiBFLYNGIcGs53dh6bQcvLa7hj//p1dnIjlWhmFxCmhVEtgcDIw2J+KVUix6ZS+0SinvlZucrUVZ92aC93vnJcei02JHo9HB20ONXASTw+3TTw/waO6zyG13MGg16nIxONZoQJPBhlSNHPlpmj4vRDj74x1uCMDvuUCLde/zFRIRyt87iNmF6T46/N1NY/Dwh5W4Z3oOXt3lr5myGTmYlKXlN7O8X1t/12QsEbCf3rat52fI1CpRp7cEHL/335n3NV9ePElwDCGyowH1STx2VwDLsjjd3IWy6TnhHkpUIhbRmDIiAZsONeDembpwD4cQhcjlYlwVvsUTAEBvcQo2QuXK1xMGH1KpCMXZ8X06ttFgg9Huxtrt1X6vcWFrNieDNpMdAGCwOARzQDq79dRzF3zr0cZecmY8x/bMwbIGqAzXlzwbQuTg/b32zFniJqZC+aV7zrTxFQe9z3/2i9MAgPfKrkb+sDi/473f47c3jsJjs8fiqS3H+XL25SU6/PGzE7htUoZPuN6yEk9YOsn5jAzEYhpFw7WX9bceKGe5r3nM3ufvOdOG2narnw5PN3fB5vRtbu6db7z6y9MYmSScF9pisl/Stgl9ht7GHyiHVW8WrmAcbjtKFnZXwAWDDVIRDXWIy6sPJq4ZmYg3vz2H/3dtLilAQ4hKtEoJnE4H3rxrMlq6bEhRy7GnqplUyiUA8OS0tHXZsPaOCTDbXVDKxNhxogklY1LhYli8cMcEvPltDRJjPLmhaoUE2082eXLsuo9/89saFGePgcvF+O2sp2kUKM7SYMk1OT7He+fMpKjlyEpQ8F7ltDjPY+8wp77m2RAiB+/8TW+vmUIiBsOwAb0m3v0de56vkNCQimjsP9fh8dapZHC5GT6fias6TAMw25x8wRSWBd7a62lY3vNtRV6VDXt6NyQiWlDXHN4e6hQ1KbgS7XDRDk1GG1JiZSjO8kS7eetwVEosyktzEa+UYJhGib/MK0S8SgKGZaGWSXD/dTqkqD3nXp2TBIoCElUSpKoVYAE8MWcMhsUp0Wl2CNrD/mqqp/0EgM2VDYjvruR5OfmKAwlZ2F0Bxy8YkUVK9V4ReSkxcDIMDp7vxMTMkIQAEQhBJS9VhXNtsXyoG5frl5dKbAMByEtU4VRTFx7sDn3MSlDg3mtz+cecXpQyCnIJDaPVioXFmXyoJJej9OquatyQP8wvf0OXqMTC4iyf45+cWwBd4kX9ZWqVuK9E55NXw1U7rG239ivPhhA5cDlPq7ae8IkaWLezptf8Ne/zykt0fG6TUNVLvcWB+6/Lg0IiwuqvTvpoUkQD7i6HT97cQz8aBTFF8RNeT6sOKeKUEiwv1fkc+8D1eTjRaMSFTituzE/zW9wJ5TaRvLzoxeFw45PDF/D4Jt+8+K9OXPDR4UMfVvJ5weUbDvocW6lvx3Pbz/Leu7U7quBwsVgyNQu/7pEDx+n3ybkFyEu8mOfXX00J2c8n5uTjkwP1eGJOvl+OXbjtKMmxuwJWf3EK5/VWLCwmsStXwubKC7A53Vi9aHy4h9JXBm3sPaH/7DvbLpjjxOVEhQmi0Qih4lwHfvbad7w+7p2Zy+eTcMglNDb8YgpiFRK0ddkFc0T+Or8ID39Y6Ze/8f3ZdiwW0N9bd0/mw5QD5Yisv2uypyqmRoH8YX3PswkCRJ9BgmFYHGnoxKJ1e/uVv8Z5LTrMdgCUj0a5871zQMtm5GDNtmqf15fNzIVURCE3ORZmhxv1egvW76kFAN57mJsciz9/dgJ3XZOF7MQYOFwMzHYXWk12vPNdHfQWB8pm5KB0dLJfXlIg3YYoL49oNMj0tIXAxXvloTo9CjLicPcb38PmZALayZcXT8Kd//qef7x0micVSuhYb/2+vfRqFGfHX5amAp3z5l2TkaqRodPsRJOx//mKVwjJsRsIDp7vxFV9zLMgBOaHeUn4zQeV6LQ4EKckTZ0J0UWzUTimv9loD9OICJFEU4/8DO98Eg6bk0GT0YaiTC2OXTAKvm51uATzN5r6oL+Afc7A4qZxw670IxLCCE1TsDjc/c5f65nrJHS+dw4o08MHYHMysLkYPPtFNZ9D551HyuXYLSvJ5fNMDzcYBHNNGRaCeUmBdEvy8qKTnrYQuGir/vT5KayaN45/PZCd7PTKXe+p0Z7Her/WbPT0t70cTQU6hwWLrIQYZCUARX34/KGCLOwuE5ZlceyCEYuIt+6KUSskKM7W4u29tVhWQoqoEKKLQD2gQt1PjxCZpAXoYxcoLyOQnhTdvcpS1XLUtJr4/JBUtUww/yNFLeO9MrRXaBxHVoICCokIe860kdylKCdQr8Sevbj6ez4X0MX1xPOGe723fnlZCQrkpcRiWUkuRqfGor7DErDfXrpWgarmLpxtM0MuoaGRS5CmubLPRYgsAtlCrietUubbj1Ho2Div3HW5hEaCUoLEWOHrqqQi3DszFyIaSIqVweViBLV+KVvY299XJOaAkoY1l0m93goKQLyKeJiCwY0FaXj9f+dgc7rDPRQCoV/kpao8fci8ihGQHDsCB9f3jtPH5soGPDk330cv3nkZYwT0tHJuPrZUnsfTtxSg0+bATWt24Y5XvsNNa3ZBJGJx77U6vLa7Bmu3V+PVXTW491od8lNjsfVYE25aswu/3nAIy0t1/DWzEhS4r0SHRev28tfZeqwJTE+3DCEq4HLmvDUj1FOxP+cvL9XhowP1kEto3H9dHhJVUp/X778uD1sON+CpmwuQHCvD5soGlJf4auyXP8zFwx9WYu32ajz4QSWGaRV44Po8n+s8cH0e8oepUdtuwZy1u1H21n6UvbUf39a043CDAS8vnnjZn4sQWfS0hXKJp6fiuDRPL7w3v63BE7M9tnHj/nofm8XlBb+z9yz/+JEbR0MpE+PZL076aI97jaYovLa7Bmu2VWPJv/bhk8oGZGgUPlrviy0M9PeVqVXyNjaS7CjJsbtMNh1qwHv7zqO8lHiYgsVzX53Gj8amYGnkt48gsfcEnn1n27GnqhlTclP4Pjh7q5sxVZdCcuwIAHwrwSXHyDAsXoZ2o3BeRuV5PZ7acsxT5dLhgkIqxvpva7Bi1hgkq2X40d99cz3KS3MF+4NtKJvik3eVppFjQXEGJgyPQ7xK2u+crCBD9BlkhPqL9cdz4O15UElFcLpZvoedg2GgkIhgdbjRZXNBo5TAaHUgXiXDmBQ1LhitaDba4XS7IZeIUdtuRnKsHL94q8JPYx/+cirMdjcMVidUMhE0CgnkYhFmr90t2K/sh7okaFXSy/5cVwDR6ADA2ULOw1U4TAOpVMTrz2h1wMUAbSY7hscrYHV4ws9T1DLEq0TYVNnMV2FVSGi+Qbl3Vdgf6pLAsix+don+nlwvvb7YQqG/r3Pt5ojMASWhmJdJxTk9cpLIrlEwmTchHau2nsSCq4ZDLSel4gnRQbPRjue2nwW2n/V5PiclLjwDIkQcQn3vMuKE8zIaDTZU1BpQUXvQ5/kOswMuhvXL9WBY4fySRoNvXkijwYY126rxXtnVl5WTRYhsAvUXC8X52YkxyO6uOrjnTBt+88FhLCvJFdSYye7ClJxEn+cD5fgxrCcva1J2PNHlICFQD1BOf72x50ybTwEfb4317OPYaemtx9yl80t72kKhv49IzQElC7vL5Luz7fjZ1VnhHsagIitBhYmZWqz+4hT+MLcg3MMhEPpESi85TgSCEL3lZaRpFIJ6StXIESv375skooRzUS6Vn0RylwhAcPvEMQwLZXcuKCCsMQoUalpNPu8TKIdpdEos0uMUV/DpCNFMT20GsmlCdkwhEQe0o95cKn/ubJsZtR1mqKRipKhlyIy/tG7DbUdJjt1l0GlxoEFvxQjisQs6C68ajk2HLmB/bUe4h0Ig9InRqSrBHKfRJMeOIADXRylQXsaYlFjcO7OHnmbqMCZFLZjrMTErDk/f4pu38vQtBRiVFCv4fKZWecU5WYTBwaW0eDnXKn/vAMpLdH45d1ze3q83HPJ7n+wEFf62wFeP5SU6PPPFSTR02sKes0QIPULaPN7YhbU/meCTr9zTxnF2rDc76s2l8ud+/MIu3P1GBe58fR8+P9qE7aeafXQbiXaU5NhdBluPNmHdzjN46EejB+w9hjLfn+vAe9/X4T/3TYc2MovTkNh7Ak9f+oiFAaLRCOVSfZQu9XrPXA+WBe5+cx+/M82ywJbDDVhz+wSUv3fQ7/nXfz5Z8DohruZG9BkBBLNPnPe1uHwnjVyEiVnx6LI5cfB8Jz6oqEejwSb4PgzD4nB9J7afaoGbAT464Dk2xLmf3hCNhpFA2vzPfdNBUeDtVqZWiTq9xc+O9Ufb/cmfK5uRg1vGp/voNkx2NDpy7CiK+heA2QBaWJYt6H4uHsAGANkAzgFYyLKsPlxjBIAdp1qQPyy8neUHM1dlx+NMqwlL3/we79wzBQqpKNxDIhAC0pc+YgQCx6XyMi71es9cjz1n2lDbbuXzSzgaDTbB5wNdhzD0CGaOkPe1vPOd3iu7GnKJyCc3Suh9aJqC1em+5HGEoUEgbbaabJiSk+ijByE71h9t9yd/jmHhp9tIs6ORFor5BoBZPZ77LYBtLMvqAGzrfhw2WJbFN6daUZQRF85hDHoWFg9HjFyMu17fB5PdFe7hEAgB4XrweEP62BF6wjAsalpNfE85b7zzMri8jZ6vKyQiwZC0QMdz+SiB3odACKSdy9FIb9fq6/sEczyE6OZKtdDf8zn7vOdMG2paTUiOFT6fphDQFkcKEbWwY1l2J4CeyVU3A3iz+/9vArgllGPqyfFGIwBgWBwxNAMJTVH4v+kjoVZIcMuL/0NNqyncQyIQBMlPjRXsY5efGhvmkREiBe98kZ495XrmZQjlbZSX6FD+3kHB/KdAeR753b2hIi3/gxA5BDNHKFOrDJjT2dtrAzUeQnQzEL0ZA50vlM93tt3kl/e5vFSHBKU0oC2OFCIux46iqGwAW7xCMTtZlo3r/j8FQM89DsRAxjX/7b+ncK7djJ+QipghgWVZbDvZgo376/HbG0dj0VXDQVEhywMJBIm9J/BUntfjnb1nccvETLSb7EiIkeGTA3X46ZQRKBquDdewiEYjiJ75Ht495bISVH55GQzD4khDJ7ad7Fu+UaA8jzDn0fUG0WeEECyN1LSacNcb/rmer/98MgAEfK2vWg4DRKNhJli9GS91fqB8vK3Lp8PNADVtJtidDM7rLVi/pzbcuZ8c0ZFjdylYlmUpihJciVIUVQagDAAyMzMH6v2xqfICfjF9xIBcn+APRVG4bkwKRqXE4p/fnMHnR5uw6rZCv5K10UAoNEoIPY0GG97f34j39zf6PF86Jg1Fw8M0qMuEaHRg6Jmv4d1TTmhiQNMULI6+5xsFyvOIxPyPK4HoM/gESyPNxsA5nSyLXvM9B2I84YJoNHiEqjdjoHy6JqMnn6+ly4ZfrP/O7/VIzf2MqFDMADRTFJUGAN3/tggdxLLsOpZli1mWLU5KShqQgRyo6wTDshgZgV/kYGd4vBIrb85HUqwMNz6/E5sONYR7SP0mFBolhB6u79i9M3OxrMTzk5WgiMrNB6LRgSFFLRfUSG/5IiTfyB+iz8ilPzl2aRo5yktzYXG4UdNqitiQtsuBaDQ68M6pU0o9Pe+86Uvec6Ta4mhY2H0K4M7u/98JYFO4BvL23nOYoUuKhFDAIYmYpnHbxAw8eMMoPPPfU/j1e4dgJoVVCGGmr/1yCEOXTK0S95X4auS+Ep1fjpE3JN+IEE30plfv19I0ciyZmoV1O2tw9xsVV9Q7j0C4HHrm1C1atwf3lej4xV1f8p4j2RZHVI4dRVHvArgWQCKAZgBPAPgEwPsAMgHUwtPuoNfu1QMR19zSZUPJs99g9cIixMolQb02of/YnG6s33MO59otWLd4EnQpIS1UQWLvCTzB7AUVRIhGI4jL1UgE5RsFG6LPQUhveuVea+2y487X/ft+htleCkE0OkgJZI83lE2B1ekWtLURaIujI8eOZdk7ArxUGtKBCPDSjjOYkZdIFnURglwiQtmMkfjmdAsW/HMPnr61ALMLh4V7WIQhSDB7QREGJ5erkWjPNyIMLXrTK/casZeEcBNIg1anG1NyEgXPiSZbHA2hmGHnXJsZHx9sIAuHCOSHecl4eNZoPL3lBFZuPganm7n0SQRCEIm2+HtC6CEaIRA8kL8FQrgZ7BokC7tLwDAsVmw8jNmFadAqpeEeDkGAEYkqPHVzAQ7XGzD/H9/ifIcl3EMiDCGiLf6eEHqIRggED+RvgRBuBrsGIyoUMxJ59otTMNlduKkgLdxDIfRCjFyMB67Pw+dHGzHnhd1YceNo3B4ZPe8IgxyapjArPxWjy6dHUvw9IYIgGiEQPJC/BUK4GewaJAu7ALAsixe2VeOTgw14fE7+oPnCBzM0ReHH44ZhXHocXt1Vg/crzuPRH4/FpKywNYkmDBGiKf6eEB6IRggED+RvgRBuBrMGycJOgHNtZvxh8zHU6634/Y/HQqMgBVOiicx4Jf4wJx/fVLXiV2/vx4hEFX5+TTZmjk6GXCIK9/AIBAKBQCAQCISgM+QXdizLwmB14ly7BYfrO/HFsWYcbujEjflpWPqDERCLSBpiNELTFGaOSsb03ETsPduBl74+g4c+PIyrsrW4KjseY9LUyExQIlUth1IqIiGbBAKBQCAQCISoJqL62AULiqJa4el5lwigzfu1uBlLUjVTF6b3dr6rq93BuhyRWV6RZUSgaHe4hxF0QvC5aJlSJFJq+ux+Pb92cSVj1gt1QG9jWXbWlYzFS6OXi5+2wwQZhy+RMo5waTRSPv/lQsYfGiLBhg4U0fIdXA6D9bMJfa5gaLQLwKkruUYEM5S0EIkE1OegXNhxUBRVwbJscbjHEUwG42cCBu/nGigi5fdFxhGZ4wgX0f75yfgJV8pg/g4G62cbqM81WH9fwOD9bIPhc5E4QwKBQCAQCAQCgUCIcsjCjkAgEAgEAoFAIBCinMG+sFsX7gEMAIPxMwGD93MNFJHy+yLj8CVSxhEuov3zk/ETrpTB/B0M1s82UJ9rsP6+gMH72aL+cw3qHDsCgUAgEAgEAoFAGAoMdo8dgUAgEAgEAoFAIAx6yMKOQCAQCAQCgUAgEKIcsrAjEAgEAoFAIBAIhChnUC7sZs2axQIgP+RnoH6uGKJR8jPAP1cM0Sj5GcCfK4bok/wM8M8VQzRKfgbwJyCDcmHX1hYNTeMJQxmiUUKkQzRKiGSIPgmRDtEoIRwMyoUdgUAgEAgEAoFAIAwlomZhR1HU/RRFHaMo6ihFUe9SFCUP95gIBAKBQCAQCAQCIRIQh3sAfYGiqHQA5QDGsixrpSjqfQC3A3gjHONhGBbn2s1oNtqQHCOD1eVGvd6KkUkKdFrcaDPbkaCSQW9xIjdJjnazG81GO1LUMmiVIrSZnHAxgFTMQgQR2swOaFVSgGVhsLqgUUrAMG6IaBHaTHYkxchgtDkRIxNDKqbRbnJgRIIKI5JiQNOU35jSNHK4GaCly4YUtRzZCSrB43q+RiAQCIS+43C4cfiCAc1GG5JiZXC43EjTKDEi0deuGqw2VDWZ0WpyIEYmRnyMBFa7G43d94W8VBXUMhlvm0ckyFGnt/P3DZZ1g6ZEGJemgVhM41ijAY0GG5JiZKBpIE0t9Tk+L1WFOIWcH1+T0YbhWgUoABcMNqRpFEiIFeNChx0tXXakaeQYN0wDqVQUvl8m4bLg7untZjsUEhFMdje6bE5oFBIkx8qQEadEvd6MRqMd7SYHktUyxClEsDpZGG0uWB0upMTKYXczaOmyIylGCplYhE6rHQqJBAarA0qpGFIJBQlFo9XkeR+VTIwOiwNquQRdNicSY2RwuhlYHG5YHG4kxcjAgEG72QmNQow4hQQMCxitLrSbHUiMkUJCUxDTNMakqiEW0zjTasK5NjNi5GLYXW6kxykxIkGFOr2FzFlCTF/mitwxTZ02SMQU9FYnEpRS3pZwrxusDrgZoM1kR6paDooC6jqsSI+TQyUT4UKnDTEyMaxOFyQiEUw2FxRSETQKMewuFo0GG1I1MsjFNC4YbFBJxZCIKMTIxWAZoMPigExCgQKNZqMdqWoZFFIRzA4n/1yKWoZxqWooFBI4HG4cuWBAo9GGxBgp0tQyGGwuXOi0Qa0QI02tQFaCCgBwts2M2g4z1HIJgO55dawcSWopGvQ2pGvlaDE6PDY2TgGlTIw2kz2sWo2KhV03YgAKiqKcAJQALoRjEAzDYuuxJjzw/iHYnAzkEhrLS3VoMVhgtMbh8U+P8c+/ungC9tca/z97dx7f1lXmDfx3tG+WvMlL7NiOE6dJ7DhpcFfaAgmUwKRJGtqUZegwwNvhHSCBMCwDbdKkHeaFgTAJMMMUmIEyA22gW5KBUpq0pKWrmyaO3SxOHNvxKq+SLOlqu+f9Q7qKZEletfv5fj7+2Lqbju3nnnuO7rnPiVj23Y+sxrjTi5cvWvCBVYvwwDOtEcd59NUuqBQMf//eZdgTtt+O9XV4vLkbn3vPMvzm9S5csEzg+3evxYcaygAgVKYCnQr33lSNA8faQ/vu374WG+sjt5u8jipKQgiZOY/Hj6db+rA7rA7fsb4O33q6FV/fuDJUr1pdAp5rGwrV9dVFWnzuPcuw98jV+n3f5gbcVJeHDx98Fc99+SacaB+NuG7s2VSPJ052Y3tTNcxGJf7vf78dWnfkCzfhRPsYdh9ujTje7Q1mPNc2hN3PtEZdF6qLtPj8e5dFvMe+LQ3Y2riIOndZRGqPfOfZs/j0zUvg9Pojrv1f/eA1qDXrMGD1RMTbQ1sa4Pb58fD/no3ZZtj1geXQKuX4p9+/HdE+0avk+Pc/d2DM6cHODXXQKeV46JV38Pn3LIVN8GHAKkQcZ9/mevz3a4H2ynfvWg2XR4xo1+y5ox5KOTBgF+Dzc3zlt6cjzqU9h9uwY8NyHDx2AV0jLmqzpEisdu7kv3usbXasr8M/NXfj8++rw+aGchxvH8J/vnwJH1lXhb1HI//vz7X24/raoog66XO3LQttF6uelNrIUvwV6ZXgYDh2th8bVpZHxNbDWxugksvwtSdaIurFDzeY8ftgvSgt37u5Hv/24sVQjO3cUIdVi/IwIYj4ym9jt6v3bq5H7+gEKgoN2HO4bcq2d6pjNSuGYnLOewF8D0A3gH4AVs75c+koS+eIIxTIACB4RRw41o4Prq4IXSSl5SqFMmrZxSEHvv2Hc/jEjUtCF/rw42xbV4lNjRWhAJXWHTzejk2NFdh7pA2fvW0pBG8g4DpHHBFl2rauMhRY0r67DkVvN3kdIYSQmWvps4YaB0BkPR1er54fcETU9VI9Hr7f7sOt6B/1Q/CKGBj3R1039h5tw70312L34VbImSxi3ZjDH+rUhR/vwoAjVL7J14VNjdHXq93PtKKlz5qivx5JBOmavqmxAiNOT9S1/1/+eB5yJouKtweeaYXF7o7bZtj/pwsYmnBHtU+GHR5sW1cZej3i9GBTYwV0aiUuDzuijrP78NX2ykWLI6pds/dIGzQKBby+q506aZ10Ln3rqTPY1FgRWk5tluSbSVsx1jbS/2z3M60402/FrkOncO/NtaHOmrTd3iNt+NQtS6LqpPDtYtWTUhtZ+lmnUmLP4TZ84sYlUbF1/9OtuDg0EVUvvhNWL0rL9xxui4ixA8faYXf58ZXfxm9X7znchnfXlYbed6q2d6plRceOMVYAYAuAJQAWAdAzxv560jb3McaaGWPNQ0NDSSvLoE0I/eMkglfEkD16+WCMZSKXLsbemMdhDGAMcdcJXhEujy+0zGIXIsoUb9/J201eR5IvVTGaKlanF/uOtOH5dwbSXRSSILkWo8k0EKc+lepgqV4dtLkjtotXRw9K28e4bkj1vuAVMeb0RqyLt334+05+z7hlsGX2tYDiM5J0TWfsatsinOAVMRqnrSEGE6bHiwVxUkJ1aRlj0a8dbl/c95faK/HWOzw+OIKxPXmdVDbGIpdncpslF2J0Jm3FeNtI/7OBYP3jcsf+3447vVPWSVO1g6WfpbiJ156OFcOT6+PJx5187KnKYrHPrO2dalnRsQPwfgCXOedDnHMvgCcB3By+Aef8Ec55E+e8yWw2J60gpUYNNMrIP5tGKUNJXvTyWNvKWWD7Qr0y5nE4v/pzrHUapQxalSLifSe/T7zyTVV2knypitFUeeCZVpzpteIrv21Bx9BEuotDEiDXYjSZyuPUp1I9LdWrpUZ1zO0mvy4NbR/7uFqVAhqlDAU6ZcS6eNtPft8ZlcGY2dcCis9I4f97qW0Rbqq2RvjosOnWhy8Lb6NIr/UaRdz3l9or8dbrVQrog7E9eZ10LnEeuTyT2yy5EKMzaSvG20b6n5UF6x+dOvb/Nl8XOy6nex0ef1LczCTGpWXx6uPJMTY5JuPVlzNpe6datnTsugHcyBjTMcYYgA0AzqajIDVFeuzfvjb0D5TG4z57phf7NtdHLPd4vVHLlpr1+OaHVuC/X7uMh7Y0RB3nyZM9OHK6F3sn7bdjfR2OtvRizx31+NmJS9AoZfj+3WtRU6SPKNMTb/Vg54a6iH33b4/ebvI6QmbDYhNw/JwFf//eZVi/ogT//VpXuotESEqtXmTCvkl1uFRPh9er15TpI+r6I6cD9Xj4fvs2N6C8UB5oEJnkUdeNPZvq8egrHdi3uQF+LkasK9DJsW9zQ9TxlpfpQ+WbfF04cjr6erVvSwMaF5lS9NcjiSBd04+c7kWhThV17f/qB6+Bn4tR8fbQlgaU5Knjthl2fWA5zAZ1xLKdG+pQrFfhyZM9oddFOhWOtvTCKXhRU6yPOs6+zVfbK0tL9FHtmj131EPw+aBUMHz/7jUxz6V/unM1jrb0hpZTmyX5ZtJWjLWN9D/bt6UBq8tN2L99LX75Sgf2bIr+v//i5ctRdVL4drHqSamNLP3s9Hixd3M9/vu1y1Gx9fDWBiwzG6LqxVVh9aK0fO/m+ogY27mhDnlaOb5/d/x29d7N9Xj5wmDofadqe6ca43zKCcwzBmNsL4B7APgAvA3gs5xzd6xtm5qaeHNzc9LKImX6sdgFFOvVEHx+9I65UBvMijnicKNQr8a404ulcbJi+kVAGZ4VU6cCEMyKqVVChB9yyDHicKM4mBVTr1ZAHcyKWVOkR22MrJgWu4AyYyAr5tCEgJK82FkxLfbodWTG5v0HS3aMJtvPX+rAyxeHcd9tS9FvdeHho++g+f4PUCxljgUfo6kQyoppF2DWq+H1+1E2XVZMjQIFOiUET+ysmBa7gJrCQFZMi82NEqMaHH7IEJ0Vs9ighkIGlE2TFXPQJqAyXwvGEMgwZ9SgyKgMZMUMZqprTG1WTIrPBJGu6aMONzRKORxuP2yCF/laJcyTs2I6PCgxqJGvC8+K6Udpnhpuv4ghuxvFoayYHmiVClhdXuhUcqgUDEqZDEMTHmhVgTsaY04P8tRK2D1eFOvU8IqBrJgujx/FwayYoxM+GLXyQFZMRGfFlMtkWDWDrJhpaLMs6BidSVsxlBXTKkApZxh3eVGgU4XqEmm9zeWBL5QVUw3GWERWzP5gpsuorJgaBdz+YFbM4J22fqsAnZQVU60A54GsmBolA2aZFXPAJqAoLCtm/7gbBo0ci0yRWTG7g1kxORD6e5QYVegbF7AoP5AVc9AmoCJfC71agRGHOxWxGvfAWdOxm41sPplIVljQFT4A/PXPXsf1NYW4bkkhAOAffnsaP723CasWGdNcMhK04GOUZDSKT5LpKEZJJosbn9kyFJMQkiF8fhEnu8dwTXleaNmqRUa8cmk4jaUihBBCCFnYqGNHCJmVd/ptKMlThybsBIBrSvPwWsdIGktFCCGEELKwUceOEDIrLT1W1JoNEctqzXq09dnSVCJCCCGEEEIdO0LIrJzpsaKqUBexrNSogc3lxZjDk6ZSEUIIIYQsbNSxI4TMSmufNSqFr4wxLDHr0dpnTVOpCCGEEEIWNurYEUJmTBQ5Lg1NRN2xA4DKfC0uDNJE5YQQQggh6UAdO0LIjPWOu5CnVkIbY76r8nwtLgzY01AqQgghhBBCHTtCyIxdHJpARYE25rqKfC0uWKhjRwghhBCSDtSxI4TM2CXLBMpNmpjrKvK1uGShoZiEEEIIIelAHTtCyIy1D06gzBi7Y2fSKuHnHONOyoxJCCGEEJJq1LEjhMzY5REHSuN07BhjKDdp0TniTHGpCCGEEEIIdewIITN2ZdQZt2MHAKVGNbpGHCksESGEEEIIAahjRwiZIY9PxPCEG8V5qrjblBjU6Bymjh0hhBBCSKpRx44QMiM9Y04UGdRQyOJXG2ajBh1D1LEjhBBCCEk16tgRQmake9QZN3GKpNSoQfcoPWNHCCGEEJJq1LEjhMxIz5gLxYb4wzABwGxQoXfclaISEUIIIYQQCXXsCCEzcmXUiUK9esptCvVqjDk98PjEFJWKEEIIIYQA1LEjhMzQlTEnzHlTd+zkMoZCvQoDViFFpSKEEEIIIQB17AghM9Q7g6GYAFCSp0bPGD1nRwghhBCSStSxI4TMSO+4C2bD1HfsAKDIoEbPGD1nRwghhBCSStSxI4RMy+3zY9zpRYFu+jt2BToV+iiBCiGEEEJISmVFx44xdg1j7FTYl40x9qV0l4uQhcJic6NQr4JMxqbdtkivwhUaikkIIYQQklKKdBdgJjjn5wGsBQDGmBxAL4Cn0lkmQhaSvnEXimcwDBMAigwqtPXZklwiQgghhBASLivu2E2yAcAlznlXugtCyELRbxVQNIPEKQBQpFej30pDMQkhhBBCUikbO3YfBfCbyQsZY/cxxpoZY81DQ0NpKBYhU8vmGO23CsjXKme0bZFBhUGbG5zzJJeKJFo2xyjJfRSfJNNRjJJ0y6qOHWNMBWAzgN9OXsc5f4Rz3sQ5bzKbzakvHCHTyOYY7R1zolA/szt2OpUCMgZYXd4kl4okWjbHKMl9FJ8k01GMknTLqo4dgA8BOMk5H0x3QQhZSPqsAgr1M3vGDgCKDWoM2GiSckIIIYSQVMm2jt3HEGMYJiEkufqtrhnfsQOAQr0K/Vbq2BFCCCGEpErWdOwYY3oAHwDwZLrLQshCI013MFP5OiUGqWNHCCGEEJIyWTHdAQBwzh0AitJdDkIWGq9fhNXlhWmGyVMAIF+nwgB17AghhBBCUiZr7tgRQtJjyO6GSaeEfAaTk0sKdCr0jtOUB4QQQgghqUIdO0LIlAZsAgp1Mx+GCQSesaPkKYQQQgghqUMdO0LIlAatwqyerwOCHTsaikkIIYQQkjLUsSOETGnQJiBfN/Pn6wCgQKfEkN2dpBIRQgghhJDJqGNHCJnSgE2ASTu7O3ZGrRITbh/cPn+SSkUIIYQQQsJRx44QMqV+q4CCWd6xkzGGAr2K7toRQgghhKQIdewIIVOy2NzIn2XyFCDwnN2gjTp2hBBCCCGpQB07QsiULPbZ37EDAs/ZWSgzJiGEEEJISlDHjhAypSG7GwWzzIoJBOayoykPCCGEEEJSgzp2hJC4BK8fLq8feWrFrPc1apQ05QEhhBBCSIpQx44QEteQ3Y0CnQqMsVnvW6BX0h07QgghhJAUoY4dISQui12Y0zBMAMjXqjBIHTtCCCGEkJSgjh0hJC6LzY187ewTpwCg6Q4IIYQQQlKIOnaEkLgs9rl37PJ1SurYEUIIIYSkCHXsCCFxDdoEGOfYsctTK+Dy+iF4/QkuFSGEEEIImYw6doSQuAZsAgrmMDk5ADDGUKBTwUKTlBNCCCGEJB117AghcQ3aBOTPYXJySaFeBYudEqgQQgghhCRbWjt2jLECxlhjOstACIlvyO5G/hzv2AGB5+ws9JwdIYQQQkjSpbxjxxh7kTFmZIwVAjgJ4KeMsf2pLgchZHqBjt3c79iZtEpYaMoDQgghhJCkS8cdOxPn3AZgG4BHOec3AHh/GspBCJmCzy/CJvhg0sy9Y2fU0CTlhBBCCCGpkI6OnYIxVg5gO4CjM92JMZbPGPsdY+wcY+wsY+ym5BWREDLi8MCkVUImY3M+RoFORR07QgghhJAUUKThPfcC+COAlznnbzLGagG0z2C/AwCe5ZzfxRhTAdAls5DJJAg+nOm3YsDmRlWBFj6RY9DuRr5OAaNGiXGnF3bBhyKDClqlDHbBhwm3D8UGNfwix/CEB3kaBbQqOdxeH1QKBYYm3DCoFDBqFVDIGUYnPFAr5PD4/chTKzHq9ECnUqDUqEZlvg7dY04M2gSUGjWoKdIDADpHHHNaNpOGvyjyOe1H0sdic6NgHsMwAaBAr0RrnzVBJSJkeh6PHy19VgxYBZQY1ZDLOJQyOQSfiJEJDwp0SijkMri9fpTna1FmUKHf7sTIhB+DdjdKjWqsKtPDoNVg3CWg0+KE3e3HhNuHkjw1lpYGLj0XBhwYc3phNqjg8Pjg9PixpEiPZSV5VLeRGQm/LpbkaaCQB4a/jzq8KNQrwTkwPOFBmVENn8gx4vDAbFBDBMeY04t8rRJWpxc6lRwqJYOcyTBgE1BsUINzDqvLi0UmLbx+EYLPD58IuDyBtoRN8MKoCbxHn1VAmVGNMpMKfVY3PD4Ot9ePQr0K4y4PivQa1JcboVBQvr1c4POJaOu3YsThhkmrgtXphUYlg1ouR2m+Cv1jbgza3Sg2qCCXAQomg1opQ9eoC4U6JRgYRp0elJs08Po5GBPBIIPd7YPb60dJnhourx9unwiDWgGL3Y1igxoenx/lJh2qC3XoGnWia9QBfbBdWlU4+zYhtStjS2nHjjEmB7CYcx5KmMI57wDwkWn2MwG4DcCngvt4AHiSV9LkEQQfDp/px+7DrSjQqfC3767B/j9dgOAVUV2kxefeswx7j7RB8IrQKGXYt7keP37xIjw+jntvqsaBY+2hdd/80ApolHLsPnx1+50b6pCnUcDv5/jPVy7jnqYqHDzeHrG+skCL7z13Hl0jLmiUMuzfvhYqBcMXfv12aLsfffxaeHwcuw6dCi2Ltd3+7Wuxsb5sypNJFDmebRuIOtZ0+5H0stiFeSVOAYB8nYqSp5CU8Xj8eLqlD7ufaQ3VNQ9taYBayfC1351BgU4VVY/+852rIZcBX3viTFi924DbG8w4cWEEvWOuiO0f2tKAleU6fPV3p/Hpm5egY2giYv33716DDzWUU91GpjT5ulhdpMX/fc8yPHikDctLDPjYDdXYe6QtZszu+sByqOUy7PjN2xHXdr1Kjn//cwfGnB7s3FCHNzpGsPnaCthdXjg8/qg4ttgE7D78TkTcK+Uc//jU1TbFl9+/HHvfeAdfXF+HrWsqqHOX5Xw+EU+f7sUPj7fj49dX4wfPX42h72xrwKVhR0T9ueeOesgZh1opx5/PWVBXZsSBY+2huByxO9G4uBC940JEfH1j4wowAP/87LnQsh3r6/Cvz1/AR6+vxv1Pt0bEbl2pAeuvKZ1xvUntyvhSeoZyzv0APjaHXZcAGALwX4yxtxljP2OM6RNbutQ402/F7sOBgN62rjLUqQOATY0VoU4dAAheEbsPt2FTYwW2rasMnTTSumGHJ9Spk5YdONYOi92NEacHmxorQp268PXtlglsaqwILdt16BRaeqwR27X0WEMnzFTb7Tp0Cp0jjil/584RR8xjTbcfSS+L3Q3THCcnl+RrlRimjh1JkZY+a6hRAgTqmgeeacVFiyNU506uR//xqTO4OOSYVO+24sKAAxctE1HbP/BMK5zuQH094vRErf/Kb09T3UamNfm6uKmxAg8Gr/+fvW1pqC0QK2b3/+kCRpyeqGv7sMODbesqQ68/dcsSXB52YNgRHacPPNMKnUoZFfdKuSJi2Q+ev4BNjRW4/+lWtPXT6Its19Zvxf1Pt2JTYwV+8PyFiP+1XCaPqj/3HmmDTqXEpSEH7rquKhRHUly+v74CF4ccUfH1/549FxWjB4+3496ba0OdOmn5gWPtaOmxzqrepHZlfOn46OUvjLEfMcZuZYytk76m2UcBYB2Af+ecXwvAAeAb4Rswxu5jjDUzxpqHhoaSVPT5G7C5Q4HIGEI/x3oNBF4zFnudyGNvL/LAunjHk9ZNXjbTY09eNt08ZYM2IeaxFtr8ZtkSo5IhuxtGzfxu6hu1Sky4ffD4xOk3JmmXbTE62UCcukaqt6aqEycvG7S549aDg3YBjMWvJxda3ZYq2R6f4SZfF8Nj0+X2xW0nAPFjNvzaLnhFjDu8ofZArGM4PL4ZLZPKMGCluJ5Opsdov1WI+J+Gc4TFnUSKCZEDIxPR7dchuzCr9qLLE/s9RI5Z1ZvUrowvHR27tQDqAewD8P3g1/em2acHQA/n/PXg698h0NEL4Zw/wjlv4pw3mc3mxJY4gcqMamiUV//s4T/He8157HVyFnt7GQOkO9Hx1nMevWymx568rCRPE/V7his1amIea7r9ck22xKhkwDr/oZgyxpCvU2Jogu7aZYNsi9HJyuPUNeH11kzrtVKjOm49WBqsu+KtX2h1W6pke3yGi3ddBACdWjFtOyFWzIZf2zVKGfL1SshZ/DjVqxQzWsZ54HuZieJ6Opkeo+UmbSgWJseEXqOIGycyBhQZotuvJXmaWbUXdarY7yFjmFW9Se3K+FLeseOcvy/G1/pp9hkAcIUxdk1w0QYA7yS9sEmwutyEfZsboFHK8MRbPdj1geWh4Dxyuhd77qiPOOn2ba7H0ZZePPFWD3ZuqItYV6RXYd/myO13bqhDSZ4aRToVjpzuxY71dVHr60oMONrSG1q2f/taNFaaIrZbXWnC/u1rI5bF2m7/9rWhpCrx1BTpYx5ruv1Ieg3ahXnNYScp1KtoLjuSEqsXmbBvS0NEXfPQlgYsK9GH6tzJ9eg/37kay8z6SfVuA5aX6bG0xBC1/UNbGqBTB+rrQp0qav33715DdRuZ1uTr4pHTvXgweP3/6YlLobZArJjd9YHlKNKpoq7txXoVnjzZE3r9i5cvo6ZYjyJ9dJw+tKUBTo83Ku69fl/Esi+/fzmOtvTi4a0NqC83pfrPRBKsvtyIh7c24MjpXnz5/csj/td+vz+q/txzRz2cHi+WmvX43ZvdoTiS4vJPbb1YatZHxdc3Nq6IitEd6+vwy1c68PDWhqjYbaw0zarepHZlfIxzPv1WiXxDxkoBfBvAIs75hxhjqwDcxDn/+TT7rQXwMwAqAB0A/pZzPhZr26amJt7c3JzYgieQlBVz0OZGZYEWfpEHn2dSwKgNZsV0+1CkU0GrkrJi+lFsUMEfzIxlUCugU8oh+AJZMYcn3NCrFTCqFVAoGMYcHqjkgayYBrUSYzGyYlrsgUxc4dku57JsNlkxZ7tfhpp3wTM9RgFg8w9fxrZ1lbimLG9ex/nB8xfw6XcvwcaGsgSVjMzAgojRWEJZMW0CSvLUUMg4FMGsmKMOD/K1gayYHq8fZbPJiunxwWxQY1lYVsxxpxfFwayYLo+ImiIdZcWcmQUbn+HCr4tmQ+ysmCMOD0rzrmbFLDaowcEx7vTCFMyKqQ1mxVREZcX0YZFJMykrph9FehXs7sismKVGNconZcUs0KlgEzwo1KtRX25aaIlTcjZGpayYow43jMGsmGqlDBpFZFbMIr0KCjkgZzJolDJ0j7pQEJ4V06iBVwxmxeQy2D0+uL0izHkqCGFZMYfsbhTp1fD6/SgLy4rZPeoItUvnkxUzR9qVsxX3F03HdAe/APBfAL4VfH0BwOMApuzYcc5PAWhKZsFSRaNR4LolRWktQ63ZgFqzIWHLpiOTsTntR9JnaMKdkDt2+VolhmjcO0kRlUqOpprCWe2zVKvC0pLo5flaDdZWxx7ac/0SGvJD5ifWdbG6KPXXyHeF/by4cH4f5JHMp1DIsGZxQdz1lfmxY3DVovyElWFpiQFLS+YX69SujC0dH78Uc84PARABgHPuA+BPQzkIIXFwzjEy4UlIx86oVdIk5YQQQgghSZaOjp2DMVYEgAMAY+xGAJRDl5AMYnP5oJQzqBXyeR+rQKeibGqEEEIIIUmWjqGYuwAcBrCUMfYXAGYAd6WhHISQOCx2AYX6+WXElOTrlDjbb0vIsQghhBBCSGwp79hxzk8yxt4D4BoEHv47zzn3prochJD4LHb3vKc6kBToVDS3DCGEEEJIkqWsY8cY2xZn1XLGGDjnT6aqLISQqVkSNNUBABTolBiy0zx2hBBCCCHJlMo7dncEv5cAuBnA8eDr9wF4BQB17AjJEBabGyZtYjp2Rq0SdsEHj0+EamGlyyaEEEIISZmUdew4538LAIyx5wCs4pz3B1+XIzAFAiEkQwTmVUxMx07GGPJ1SgxNuFGRr03IMQkhhBBCSKR0fHy+WOrUBQ0CqEpDOQghcQxYhYQ9YwcAhXrKjEkIIYQQkkzpyIp5jDH2RwC/Cb6+B8DzaSgHISSOQbuAtYvzE3a8Ap2KJiknhBBCCEmidGTF/EIwkcqtwUWPcM6fSnU5CCHxDdndKEjgHbt8nZLu2BFCCCGEJFE67thJGTApWQohGWrI7k5YVkwAMGlV6KeOHSGEEEJI0qT8GTvG2DbGWDtjzMoYszHG7Iwxmr2YkAzhcPvgFzl0KnnCjlmopzt2hBBCCCHJlI7kKd8FsJlzbuKcGznneZxzYxrKQQiJwWJ3o1CvAmMsYccs0KnQb8v9jp3V6YXD7Ut3MQghhBCyAKWjYzfIOT+bhvclhMyAxSagUJ+45+uAQMfOkuMdu8fe6MbN/+8Ybvj2MRw7O5ju4hBCCCFkgUnHM3bNjLHHATwNwC0tDD53RwhJs8EEzmEnKdSrYLG7p98wS50fsOOf/3AOD21tgMPtw65Dp/GnL9+GEqMm3UUjhBBCyAKRjjt2RgBOALcDuCP4tSkN5SCExGCxCQlNnAIAOpUcIuewC96EHjdT/L8/nMXWaxeh3KTFspI83FZXjAPH2tNdLEIIIYQsIOmY7uBvU/2ehJCZG7QJMGkS27FjjKHYoMagTUBego+dbp3DDpzsHsenbl4SWraxoRzfeKIFX9u4IuF3PwkhhBBCYklZx44x9jXO+XcZYz8EwCev55zvSFVZCCHx9VsFVBXqEn7cQn1gyoNlJXkJP3Y6/e6tHtyyrBgqxdUBEIV6FeorjHi2tR/3XFeVxtIRQgghZKFI5VBMKWFKM4C3YnwRQjLAgFVI6OTkEqljl0s45zh8ug83LS2KWnfjkiI89XZfGkpFCCGEkIUoZXfsOOdHgt9/mar3JITMnsXuRkGCs2ICQL5WicEc69hdtExA8PpRW6yPWre2Kh+PvNQBm+CFMceGnxJCCCEk86RyKOYRxBiCKeGcb55m/04AdgB+AD7OeVNCC0gIAeccQ3Y3ChKcPAUI3LHrGXMl/LjpdOycBdcuzo85559aIcfKciNebh/Gh1eXp6F0hBBCCFlIUpk85XsJOMb7OOfDCThOVhJFjs4RBwZtAkqNGtQU6SGTTT+J9Fz3S0dZSXrZg5Nr61SJrxoK9Wq0W0YSftx0On52ELctL4m7vmGRCcfPWqhjlwThdYxOpYDH70eRXj2juobqJ5JNwuO13KSBXwQs9rnFLsX+whTr/w4ga9qUZOZSORTzzwDAGLsDwP9yzsVUvXcuEEWOZ9sGsOvQKQheERqlDPu3r8XG+rIpT6i57peOspL0s9gEFBkSPwwTAIoNKvSP585QTMHrx5leGz73nmVxt6lfZKRpD5IgVh2zY30dHm/uxtc3rpyyrqH6iWST8Hgt0Klw703VOHCsfU6xS7G/MMX7v6sUDF/49dsZ36Yks5OOeezuAdDOGPsuY2zFLPbjAJ5jjL3FGLsvSWXLWJ0jjtCJBACCV8SuQ6fQOeJIyn7pKCtJvwGrOymJUwCgSK/GgC13OnYnu8dQXaSDViWPu01lgRYOtw+947k1BDXdYtUxB4+3Y1NjxbR1DdVPJJuEx+u2dZWhTh0w+9il2F+Y4v3fW3qsWdGmJLOT8o4d5/yvAVwL4BKAXzDGXmWM3ccYmy4H+i2c83UAPgTg84yx28JXBo/RzBhrHhoaSk7h02jQJoROJIngFWGxT91Qnut+85GO98wG2RCjAzYBhUlInAIAerUcPlHMmUnKX7s0gmvKpq62GGNYtciI1zuyYwhqNsQoEL+OYWz6uobqp+yVLfGZSOHxKsV3uNnELsV+8mVijMb7v4uTsl5kapuSzE467tiBc24D8DsAjwEoB3AngJOMsS9OsU9v8LsFwFMArp+0/hHOeRPnvMlsNiet7OlSatRAo4z8d2mUMpTkaZKy33yk4z2zQTbE6IDVhfwkJE4BAp0cc546Z6Y8eP3yKJaXTj8n31KzAW92jqagRPOXDTEKxK9jOJ++rqH6KXtlS3wm0uR4nU/sUuwnXybGaLz/++SRk5napiSzk/KOHWNsM2PsKQAvAlACuJ5z/iEAawB8Jc4+eumOHmNMD+B2AK2pKXFmqCnSY//2taETShrXLD0Am+j90lFWkn5948mZw05SrFcnfFii4PXjhXMWdAxNJPS4U/H5RZzptWL5DCZbX16ahzc7x1JQqoUjVh2zY30djrb0TlvXUP1Eskl4vD7xVg92bqibc+xS7C9M8f7vjZWmrGhTktlJ5XQHywCUAfgIgB9wzk8El7+bMZbHOb/EGPtMnN1LATwVTCmuAPBrzvmzqSh3ppDJGDbWl2HFjlthsQsoyZtZJqK57peOspL067O6sK6qIGnHLzKo0JfAjt3IhBt3/8er0Cjk6B134esbr8HHb6hO2PHjOTdgR7FBDYNm+iq0pliH3jEX7IIXeTSfXUKE1zGBrJhyeP0iNjaUTVvXUP1EssnkeC0zanD7qjIMTcw+din2F6Z4/3cA+H0WtCnJ7KRyuoN/BfCPnPO/mbTcFlx3B+f8WKwdOecdCNzRW9BkMoZaswG1ZkNK9puPdLwnmb9Ba/KesQOAAp0KV0adCTkW5xw7HzuFxgoT7rmuCv1WF/YdeQeNlfloqDAl5D3iefvKOJaVzOwTSoVMhppiHc70WnHz0uKklmshmU8dQ/UTySax4nVpydxil2J/YYr3f8+WNiWZuVQOxSzlnJ+ZvDC4rCaF5SCExDFoT15WTAAw56lxZTQxd+yeP2vBlTEnPvKuSgBAuUmLu5oqsfdIW0KOP5XmzlHUFs/8olZbbMCp7vHkFYgQQgghC14qO3b5U6zTpqoQhJDY3D4/7IIX+drkDRc056nRMzb/O3accxx4/gK2XVsJhexqNfbe5SXoGXOhOcnJSk5dGceyWXxivqRYj5Pd9JwdIYQQQpInlR27ZsbY/5m8kDH2WQBvpbAchJAYBq1uFOpVSR0rbzYkJnnKqSvjGHV40FQT+TygXMbw/pWl+OWrnfN+j3hsghcWm4DKAt2M96k169Haa0tamQghhBBCUvmM3ZcQSIDyCVztyDUBUCEw3QEhJI36rC4UG9RJfY8CnQpWlxeC1w+NMv7E3tP5n9e68Z5rzJCx6E7obXVmfOnxt2ETvDAmIVlJa68VNcV6yGfRAS41amB3ezHq8CT1GUZCCCGELFwpu2PHOR/knN8MYC+AzuDXXs75TZzzgVSVgxASW7/VlfROh0zGgsMx537XTvD68cd3BnDLsthzBBk0CtQvMuG5tsE5v8dUWnqsWFI8u9TOMsaw1GxAS894UspECCGEEJLyeew45y9wzn8Y/Dqe6vcnhMQWmMMu+en4y4yaeWXGfPH8EJYU6afshF6/pBCHT/XO+T2mcqp7fE5z9lQV6tDWZ01CiQghhBBC0tCxI4Rkpt4xFwr1yR2KCQSes+saccx5//9t6UNTTeGU21xblY/mrjFMuH1zfp94zvRa55TmuaZIj5Ye6tgRQgghJDmoY0cIAQD0jLtQZEj+81/FeWp0zfGOnccn4sULQ1FJUybTqRRYXpqHly4Mzel94hl3ejDm9KDcpJn1vjVFlECFEEIIIclDHTtCCACgd8wJc5KTpwBASZ4Gl4fndsfuzc5RLDJpZzTXXmOlCcfOWeb0PvG09tqwpFgfM2nLdMpNGow63LC6vAktEyGEEEIIQB07QggC88L1W4WkZ8UEAh2czjl27P70ziDWLDbNaNu1lfk4cWEInPM5vVcsZ3qtc3q+Dggkjqku0uNcP921I4QQQkjiUceOEAKbywcGQK9O/gwopUYN+sYF+PzirPc9fs6CtYunHoYpKTNpIGPARcvErN8nntM946gumvn8dZNVFerwDnXsCCGEEJIE1LEjhKBn3AlzXvLv1gGASiFDgV4564nKO4cdmHD7UDPDjhVjDA0VJrx8cXguxYyptXf2Ux2EW1yowxlKoEIIIYSQJKCOHSEEvWPJn5w83CKTFh1DsxuO+ecLQ1hTaQKbxfNtq8qNOJGgBCpWlxcjEx4sMmnnfIyaIj1aacoDQgghhCQBdewIIbgy5kJxiu7YAYFhkpeGZjdE8vg5C1ZX5M9qn1WLTHizc2xOwz4nawverZPJZp84RbK4UIuuESc8vvmXhxBCCCEkHHXsCCHoHnGgOAVz2EnKTVqc67fPeHu3z483O0exumJmiVMkJq0SxQYV2vrm/1xba591Xs/XAYBaIUepcfadWkIIIYSQ6VDHjhCCrlEnSlJ4x25xgRYXBmfesWvuHENVoQ4GzeyTu6wsN+KVS/N/zu7UlXFUzzEjZrjqIl1COpqEEEIIIeGoY0cIQc+oC2Zj6jp2lQU6XBqemPFUBC+ct6BhlnfrJCvKjHjl0sic9g13pseKpeb5d+wqC3Roo+fsCCGEEJJg1LEjZIHjnKPP6krJ5OQSg0YBjUI+48yYL54bQuNcO3bleTjZPb/n7KxOL4bnmThFUlOkQ2svdewIIYQQkljUsSNkgRtxeCCXsZTMYRduSbF+RkMS+8ZdGJpwY6nZMKf3MWqUMBvUaJ3H8MczvVbUmueXOEVSVajDuQF7QidOJ4QQQgihjh0hC1zXiCMhd6Jma3GhDm0zuHP15wtDaKw0zatTtaLciNc65j4c83TP2LzmrwuXr1NBJZehZ2x28/gRQgghhEyFOnaELHBdI06UpvD5OklNkR6nZzBZ93PvDGBNZf683mtFaR7+Mo+Jyk92jyesYwcANcV6vNNPCVQIIYQQkjipHXs1T4wxOYBmAL2c803pLk+yiCJH54gDgzYBFQUaWGweWOwCig1qWF1emA0qiBwYc3qgVykg+PwwqBUQvCKcHh8K9Sr4RY4xpxdGrSK4jRfgcgxPuFFdqIPT68egzY2KfA0AoM8qoCRPDZfHh3ydEn4/0GsVsKRYB5fHj2GHB0V6FcacXhTolFDJGQaC+zs8fgxPeFBsUEGtkMGglmHMGTh+qVENk1aOkQkPFHJ5xLJLQ04UG9QoNapRnqfF2UEb+q0CzAY1ZDLApFWhqkCHnnEnRiY8EHx+uDx+GLVKuH1+LDLpQo1t6e9VatSgpigxQ+YWis5hB8wpzIgpWWrW4xevXAbnPO6k44LXj9c7RvHx66vn9V4ry4346csd8PlFKOSz/zyr5YoVdzQumlcZwlUVaNHWa8UH68sSdsxsJoocncMTGHN6oJTLIPLA/75Ar4DDLcLu9sHl9aM0Tw3B6w/UeSolxpweaJRymLRKcA70WwUYNApolQxyJsOg3Q29WgGjVoFrivOgmUNWVbKwiSJH96gDgzY3HB4faot0GHF6MWAVUGpUwydyWF1eLDNrMeK4et0r0Mkx7vRjxOFBgV4FOUPoGl2kV0EEMGgNbGvUyjHu9AEAPD4Ol9ePYoMKgtcPmxC4ptsFL4waJVw+H5QyOSYEHwr1SvhEDofbj+pCHRQKhmG7Bx6/CLvgg04lR75OiRWlRigU9Dl+LvH5RLT1W+H1+yByGcadXuTrlBiecKMkTw2dSg674INCxiBygEMEeKBOLDWq4Rf9kMvkcHp80KkUcHl80KoUsDq90CjlUCkYFHIGm+CFQiaHVhmInzGHByadCoI3sJ9CJsOAVUCRQQWnxweDWgHOAcuEGxX5OtSXU+ylWrZd5XYCOAvAmO6CJIsocjzbNoBdh07hpiWF2Li6HHsOt0HwitAoZfjHjSvQPerEo6924p6mKjze3I1P37wETq8fB461h7bbuaEOj77ahTGnB3s2rYRCLscDz7RieYkBH7uhGnuPtKFAp8K9N1VH7LdjfR0eb+7GR6+rQvuADc6lxRHvL63/+/cuw7m+cSwvz8feI1fX/8tdjRC8Ih54pjW07OGtDVDJZfjaE2+Flu3bXI/XLg3j922DePCOehToldj52KnQ+j2b6vHEyW78zc1LYHV5YRd8UeW8/+lWfO2DK6FWMnzh12+H1u3fvhYb68uoczdDHcMOLC6Y3/xsc1FkUEMhk6FrxImaOHfDTlwYwlKzAYZ5Pv9n1Aaes2vrs2HN4vxZ7dtvdcHjFxM6HUR1kR6nesYTdrxsJoocx84NYszhhkmnhNvHMe7woNasxfkBN3rHXRHn/t47VsHu9uN7z52PqO/0Kjn+/c8dGHN6Yr7uHnHiA9eUUueOzJgochw/P4j2wQkcONaO5SUGfOLG6ohr4s4NdchTAVanD7sPB6571UVafP69dRGvP/eeZRHXyvBr9ENbGsC5iBGHFweOtU95bf7cbcvwkxMX0TXiijrOvs318PhFPPy/ZyPe5/KwAx+qL6cGdo7w+UQ8fboXb3QMoammGD9+8SLuaarCweNh9eTmemiVDIKX4/mz/diwMrItuXdzPd7qHMa1VcX4yYm2qP2lOpRz4D9fuYzPvWcZfvLnq3EX3laU4u/BO+rhE10R8ffw1gZsXVNBsZdCWfOXZoxVAvgrAD9Ld1mSqXPEgV2HAh2cT92yJHQiAoFP+0acHvzLH89jU2MFDh5vx6bGCow4PaELgLTdgWPt2LauEoJXRL/NHepoffa2paGLy7Z1lVH7Scc8cKwdd11XFfX+0vo9h9vwwdUVoWNJ69stE6H3kpbd/3QrLg5NRCzbfbgNd11XBcEr4sEjbfD6eMT6vUfbcO/NtWi3TMBid8ct51d+ewotPdaIdbsOnULniCMV/66c0DHsQJlJk5b3vqbMgOausbjr//dMP95VXZCQ91oxx/ns3u4ex/JSQ9y7inNRU6zHOzSXHYBAnXem1wqdSgmvD7homcCwwwOVXImLQxNR536vVQh16qRlB461Y9jhCdV5sV63WyZwpp+ykZKZ6xxxoKXHGorBz962NOqaeOBYO5aXFYQ6cQCwqbEi6vXka2X4NfqBZ1qhUylD7zPVtXnv0TZsaqyIeZzdh9tgsbuj3qfdMoE2iv2c0dZvxf1Pt2LruirsPtwWag+G/9/3HG5Dvk6N3Yfb8Ikbo9uSew63Yeu6qlA8Td5fqkNHnJ5Q/IbHXXhbUYq/B49Ex9/9T7dS7KVY1nTsAPwrgK8BiJmznDF2H2OsmTHWPDQ0lNKCJdKgTQidFGMOb+hnSWCIkgjGrn6XloWT1oXvAwAuty/0s3SMWPsJXhHDYSdorPVDdiFu+SbvI05KACh4RYxMuEM/Ozy+qPUujw8in/r3i3dsi11ApsnEGOWco3M4PclTAGB5qREvtcf+WwheP46fs+C6msKEvNeqMiNensNzdm91jaF2jhk54ynJU8Ph8WE4eA5kinTE6KBNgMgBh9sHh/vqOT9oF2Ke+1PVMVKdF+/1oC2z/t5kdlIdn1Jsxrp+SgSviMFJ18LJ19aprrXSz45ZXJvDP2OafJxY10ORAwPWzLsm5qJUxGi/VYhoo8WLF6kNGastKXhFDE9Mvb9UF08VdzOJP4q91MqKjh1jbBMAC+f8rXjbcM4f4Zw3cc6bzGZzCkuXWKVGDTTBscyFemXoZ4mcIbRM+h6+TKJRyiBlUw9fr1MrIraNt59GKYM5Tz3Nes2U5QvfZ/KoSI1ShqLgvGkapQx6lSJqvValgJxN/fvFO3ZJXnruQE0lE2N0yO6GUi6DIU3D09ZUmvDShSGIk68GAI6fs2BJsR6FelVC3mtluREnu8fh8c1uPrs3L4+iriSxHTvGGJaaDTOa7iGV0hGjpUYN5AzQaxTQa66e89Ly2dQxUp0X73U6kgSRxEl1fE6OwcnXTyCwLvy6Hb58utfh8anXzPzaHD5TyuTjxLoeyhjSNipjoUlFjJabtFFttFjxUhBsQ8ZqS2qUMpgNU+8vYwjVo/HibibxR7GXWlnRsQPwbgCbGWOdAB4DsJ4x9t/pLVJy1BTpsX/7WmiUMvzXy5exd3N9xIlXqFPhqx+8BkdO92LH+jocOd2LQp0KOzfURWy3c0MdnjzZEzipjGo8tKUBGqUMPz1xCXvuCBzzibd6ovbbsb4OR1t6sXNDHX77ZnfU+0vr926uxx/P9IaOJa1fVmIIvZe07OGtDVhmNkQs27e5Hr97sxsapQwP3lEPpYJFrN+zqR6PvtKBZSUGmPPUccv5/bvXorHSFLFu//a1qClKXAbDXNYx7EBFfnru1gFAiVEDvVoR83mzX7/ejZuXFifsvQwaBSrytXi7O/7Qz8lcHj/aLRNYluCOHRCYz+4MPWeHmiI9GipMcLq9UMqBpSUGFOlV8Pi8WGo2RJ37i0wa/MPt10TVd8V6VajOi/W6rsSA1eVzm+SeLEw1RXqsrjSFYvCnJy5FXRN3bqjDhf4x7Nt89bp35HRv1OvJ18rwa/RDWxrgdHtD7zPVtXnPpnocbemNeZx9m+tRMqmxL8V+PcV+zqgvN+LhrQ146mQ39m2uD7UHw//vezfXY9zpxr7N9fjv16Lbkns31+Opk93Ysyn2/lIdWqRTBeLujsi4C28rSvH34B3R8ffw1gaKvRRj2TZJLmPsvQD+YaqsmE1NTby5uTllZUo0KSumxS5gUf6krJiCF8U6FTgCWTF1KgU8Pj/0oayYfhTolBB5ICtmnkYBg0oBwe8DuAzDE25UFergkrJimjQAQygbpcvrQ75WCb8YmRVzxOFBoU6FcVcg85KUFXORSQOn14+RCQ8K9SpolLPMiqlXo9QUmRWz2KCGQgYYp8iK6fH5UT4pK6bFLqAkLyVZMed98EyJ0f95vQvHzlrwf26tTVsZAhcFOR7a2hBa1jE0gTv/7RUc/Oi1UCXwoevH3uzG4gId/uGD18xo+1cvjWDvkTbsuaM+YWWQ/OXiMM4P2vDTe69L+LGRZTEaMyumz48C3dWsmIJHhDlPBbfPD7dXhF6twJjTC41SBpNGCQ6g3ybAoFZAq5RBztjVrJgaBa4xU1bMDJI18RmeFdPp8WFJWFbMkjw1RM5hdfmw1Ky5mhUzT40C/dWsmIU6FWQyhK7RhfpAvA7aAhkMTeFZMf0cgsePIr0Kgs8Pu+BDgV4Fu9sLo1oJweeDIpgVs0CvhD+YFbOqUAclZcVMpIyOUSkrps/vg5/LAm0zrRIjE26YDWro1FNnxRS5HzLI4fIGsmHGzIopk8EueCGXywJZMYPZ2KOyYtoEFOljZMU0aVG/yESxlxxx45OuchlIJmOoNRtCz/VUJeYRo1lbl+TjX1OWH/F6zeICrFkcvV1NsQE109y4Cf97kZm7MGBHeZqHSdyyLJB59Wsbr0GeRgkAOHCsHR9YWZLQTh0ArK4w4em3e2fcsXu9YwTLS/MSWgZJrVmP373Vk5RjZxuZjKG2ZP5/57XzLwohEWQyFrwGXb2+1MTZdmlKSjS16qJ0l4CkgkIhw5rFiUksRnJL1nWjOecv5vIcdoSk0rkBOyrTMNVBuBKjBo2L8/HjFy4CAF65OIyX24fxodXlCX+v5aV5uDzsCCXumc5LF4exqjw5s6uUGjWwu70Zl0CFEEIIIdkp6zp2hJDEuWiZQGVB+p6xk3zsusV44mQv/u5Xzfj7/zmJz71nKXSqxA8oUMplaKgw4UScTJzhnB4f3umz4Zqy5NyxkzGGZWYDWug5O0IIIYQkAHXsCFmgxp0euLyBZznSLV+nwsNbGlBVqMf9f7UKDRXJe9i6sTIfz7UNTrvdq5dGsKzEAI1SnrSyLCnW41T3eNKOTwghhJCFgzp2hCxQZ/vtqCnSJ3Ti7fkwapVYv6IEFUm+g/iu6gK81D4MweufcrtjZy1YncQOJgAsNRtwkjp2hBBCCEkA6tgRskC902/D4sL0D8NMNZNWiZoiHV5qjz9ZuShyPH92ENdW5Se1LMtKAkMxY83jRwghhBAyG9SxI2SBauu1YnGaE6ekyw21RXjyZPyMlG9fGYdGKU96Ypl8nQo6tQIdw46kvg8hhBBCch917AhZoNr6bKheoBO537ikCC+1D2Pc6Ym5/qmTPbh+SWrmGakrMeBk18wnTSeEEEIIiYU6doQsQILXj84RB6oKF+YdO4NGgXXVBTjUfCVqneD140hLP26rM6ekLMvMBrxxeTQl70UIIYSQ3EUdO0IWoHf6bags0CZ8AvBscvuqUvzspctRSVQef7Mby0sNMOepU1KOFeVGvNFJHTtCCCGEzM/CbdURsoC1XBnHkuKFOQxTstRsQHWRDj9/+XJomV3w4scvXMLmNYtSVo7KAi3GnB5Y7ELK3pMQQgghuYc6doQsQG90jmKp2ZDuYqTdJ2+sxiMnOvCXi8Pw+ER89XctWF1hwrKS5ExKHouMMawsM+L1DrprRwghhJC5o44dIQvQya5xXFOaus5LpjLnabBj/TJ88Tdv410P/wljDg/uvakm5eVYUZ6Hly/Gn36BEEIIIWQ6inQXgBCSWv1WF1xeP8pMmnQXJSOsWmTCD7avhdPjQ75OlZYy1C8y4YfH29Py3oQQQgjJDXTHjpAF5tVLI1i1yAjGWLqLkjFUClnaOnUAsLhAC4fbh+4RZ9rKQAghhJDsRh07QhaYl9qHsLKMhmFmEsYY1lTm48/tQ+kuCiGEEEKyFHXsCFlAOOf4y8URNCwypbsoZJLVlSYce2cw3cUghBBCSJaijh0hC8jZfjsUMkbP12WgNZX5eKNzFE6PL91FIYQQQkgWoo4dIQvI82cHsWZxPj1fl4H0agXqSgw4cYGGYxJCCCFk9qhjR8gC8r9n+tFUU5juYpA4mmoKcfh0X7qLQQghhJAsRB07QhaIjqEJDNndWEHz12Ws65cU4sSFYTjcNByTEEIIIbNDHTtCFojfvtWDm5YWQSajYZiZyqhRYkV5Hv7QOpDuohBCCCEky2RFx44xpmGMvcEYO80Ya2OM7U13mQjJJl6/iN819+A9deZ0F4VM47ZlZvz69a50F4MQQgghWUaR7gLMkBvAes75BGNMCeBlxtgfOOevpbtgySCKHJ0jDgzaBJTkaSCXAf1WAaVGDWqK9JDJWMQ2M1lOFrbfn+lHmUmDxYW6dBeFTGNddQF+9Von2vqsqF9A01J4PH609FlhsQswG9TgAIoNaqrDSFaKdS0GEFpWbtLALwIWe+xrNV3LSTpNjr+qAh26x5wYcbihksvg9PhjxjXFavplRceOc84BTARfKoNfPH0lSh5R5Hi2bQC7Dp2C4BWhUcqwc0MdHn21C2NOD/ZvX4vbV5biubODEdtMtXxjfRmdZAuYKHL86PhFbL22It1FITMglzF8YFUpfvLnS/jhx9aluzgp4fH48XRLH3Y/0xqqu3asr8Pjzd34+saVVIeRrBLrOr5/+1qoFAxf+PXbKNCpcO9N1ThwrD3mtTre/nQekFSIFX8Pb23AY290Yf2KMhw83h4zrilWM0NWDMUEAMaYnDF2CoAFwJ8456+nuUhJ0TniCJ1MACB4RRw41o5t6yoheEXsOnQKbf3WqG2mWt454kjb70PS75nTvZAxhmsX56e7KGSGNqwsxYkLw7homZh+4xzQ0mcNdeqAQN118Hg7NjVWUB1Gsk6s6/iuQ6fQ0mOF4BWxbV1lqFMXvl6K83j703lAUiFW/N3/dCvuvbk21KmTlofHdfgyitX0yZqOHefczzlfC6ASwPWMsYbw9Yyx+xhjzYyx5qGh7J0HatAmhE4QieAVIU07JnhF9FtjbxNvucUuJLXMZGbSEaNWpxff/t9z+PgNVTR3XRbRqRT4q9Xl+Pbvz6b0fdNVjw5MUe9RHUYk2XKdj3cdF4PjjKS4nrxeivN4+9N5kPmyJUanEi/+XG7flHEdvoxiNX2ypmMn4ZyPA3gBwMZJyx/hnDdxzpvM5uxNEFFq1ECjjPy3aJQycH7153KTNuY28ZaX5GmSWmYyM6mOUc45vvFkC95VnY/lNMVB1vlgfRnOD9jxx7bUZchMVz1aPkW9R3UYkWTLdT7edTx8ZNpU1+p4+9N5kPmyJUanEi/+dGrFtHEtLaNYTZ+s6NgxxsyMsfzgz1oAHwBwLq2FSpKaIj32b18bOnmkZ+yePNkTGrtcX26M2maq5dLDrWRhOfB8O9otE/jY9dXpLgqZA5VChs/eugT/+OQZ9Ftd6S5OUq1eZMK+LQ0RddeO9XU42tJLdRjJOrGu4/u3r0VjpQkapQxPvNWDnRvq4l6r4+1P5wFJhVjx9/DWBvzylQ7sWB8dt1Jchy+jWE0fxnnm5yBhjDUC+CUAOQKd0UOc833xtm9qauLNzc2pKl7CSdmIAtnhAlkxB4IZMidnv7TYZ7acJNS8/6DJjFG/yPG9P57H4dN9uP+vViJfp0rK+5DUONrShzc7R3Ho726azf8yo2M0lslZMcGAIj1lxcxRWRefsxXrWgwgtKzMGMiKOTQR+1pN1/K0y/kYncrk+JOyYo463FDGyYpJsZpScf/AWdGxm61sPplIVsjYCr990I5vPXUGDo8fX1xfB5NWmfD3IKnFOcdjb15Ba58VP7u3CbVmw0x2y9gYJQQUnyTzUYySTBY3PrNiugNCSHyC14+/XBzG429eweuXR7Fl7SJ8cBWlGs4VjDF87PoqHDs7iDv/7RXce1M1Pv3uJSjQ051YQgghhFxFHTtCMhjnHG6fCJfHD7vgw5jTA4vdjb5xFy4NTeBMrxXnBuyoLdbjhiWF+Oh1a6FVydNdbJIEG1aWorHShKdP9eLW776AT99Sg10fuCbdxSKEEEJIhsjJoZiMsSEAXQCKAQynuTiJlou/E5Bdv9cw53zj9JvFFxajkcsVKlb1lSdnNSu16POI3OsWp98yCTiXgbH0vPcCLodcm6dw91+wDzy660KcTZIWo9PIpvM4Fip/aqQrPlMhW/4Hc5Grv1us3ysRMWoHcH4+x8hgCykWMlHc+MzJjp2EMdbMOW9KdzkSKRd/JyB3f69kyZS/F5UjM8uRLtn++1P5yXzl8v8gV3+3ZP1eufr3AnL3d8uF3ysrpjsghBBCCCGEEBIfdewIIYQQQgghJMvlesfukXQXIAly8XcCcvf3SpZM+XtROSJlSjnSJdt/fyo/ma9c/h/k6u+WrN8rV/9eQO7+bln/e+X0M3aEEEIIIYQQshDk+h07QgghhBBCCMl51LEjhBBCCCGEkCxHHTtCCCGEEEIIyXI52bHbuHEjB0Bf9JWsr3mjGKWvJH/NG8UofSXxa94oPukryV/zRjFKX0n8iisnO3bDw9kwaTxZyChGSaajGCWZjOKTZDqKUZIOOdmxI4QQQgghhJCFhDp2hBBCCCGEEJLlFOkuQC4SRY7OEQcGbQJKjRrUFOkhkzF4PH609FkxYBNQbtRg9SITVCp5uotLCJknQfDhTL8VAzY3yoxqrC43QaOh6pUQklzx2hvpLMuIww2VXAanxz+rMmXS70JIPOFxWlGggcXmyah2PbU8EkwUOZ5tG8CuQ6cgeEVolDLs374W6+vMONzaj93PtIaW79vSgK2Ni9IeBISQuRMEHw6f6cfuw2Hn9uYGbF5dTp07QkjSxGtvbKwvS3mHSCrLd549i3uaqnDwePusypRJvwsh8YTH6U1LCrFxdTn2HG7LqHY9DcVMsM4RR6hiAgDBK2LXoVM4028Ndeqk5bufaUVLnzWdxSWEzNOZfmuoUwcEz+3DrTjTT+c2ISR54rU3OkccaSvLpsaKUKduNmXKpN+FkHjC4/RTtywJdeqAzGnXU8cuwQZtQuifLBG8IgZs7pjLB21CKotHCEmw+Oe2O00lym3Hzg7iS4+dwqWhiXQXhZC0itfesNhT366QysIY5lSmTPpdCIknPE7HHN6MbNdTxy7BSo0aaJSRf1aNUoYyozrm8lKjJpXFI4QkWPxzW52mEuWuixY7dh06DQ6Oe3/+Btw+f7qLREjaxGtvlOSlvl0RXpa5lCmTfhdC4gmP00K9MiPb9dSxS7CaIj32b18bUcHt374Wq8tN2LelIWL5vi0NaFxkSmdxCSHztLrchH2bJ53bmxuwupzO7UT7yZ87sLG+DB+9rgrlJg0ONfeku0iEpE289kZNkT5tZTlyuhc71tfNukyZ9LsQEk94nP7Xy5exd3N9xrXrGedTTmCelZqamnhzc3Pa3l/KmGOxCzAbNJDLgH6rgGK9GhNuL3rGBcqcl93m/SR3umOUJJbT5UHrgB2DNjdKjWo0lOVBp1Wls0g5F6NOjw83/NMxfPeuRuTrVDh1ZRy/P9OPI1+8Jd1FI7OXc/GZLuHtjZK89GSSDM8SqFMpwLkIxljcrJjxsl9mwu8ShmKUhPh8Itr6rei3Cig3aZGvU6DfKmBRfiArphTLjanLihk3PqlXkQQyGUOt2YCaIn1UlqedG+rw6KtdGHN6KOMTITnA5xPx+3cGcf/TV7NiPry1AVvXVEChoEERifJ6xyiqi3XI1wU6zKsrTHjkxCVcGXVicaEuzaUjJD2k9kat2ZCW959tNsvptk/n70JILD6fiKdP98a9xlcVpruEkajVkUSxsjwdONaObesqKeMTITmird8aqvCBwHl+/9OtaKOsmAn15wsW1IcNcZHLGBor8/FS+3AaS0XIwjbbbJaU/ZJkm2y7xlPHLoniZXli7OrPlPGJkOzWb42TCddK53Yi/eXiCBoWGSOW1S8y4sXzljSViBAy22yWlP2SZJtsu8bTUMwEksaHjzjcUMllkDEGjVIWERAapQzSY40apQxapRyiyGk4JiFZqtykjXmel5kom1uiOD0+dI86UT0pkcKqciN+80Y3OOdgjOpQQlJNyhI4uf4zGyLrP6l9FK9dVJKnifvsHSHJNPn5ufpyIxQKWSgejVpFVl3j6Y5dgkjjxv/2F2/gzctjuOeR1/Clx09h54bI7FA7N9ThyZM90Chl2LG+DjseexvPtg1AFHMviQ0hC8HyYn3MrJjLi+k5kURp7bWhukgPpTzyklVkUEMuY+gedaapZIQsbLGyWe7cUIfLIxOhdo3UPvrwwZditov2b1+LqgJdaJuP/fR1fPjgS9Q2IkknPT93zyOv4XP/fRL3PPIqnj7dC4/HH4rHrxxqiYrZh7c2oD5DM1/THbsEkcaNf+aWWhw83g7BK6LfKuDRV7tw3221uHZxPqoK9XB5fXB5/fCLwK9e60K/VcCuQ6ewYset9MAwIVmobdCOH7/Yjs/cUgvGAM6BH7/YjlqzHk01GfZUdZZq6RnHkuLYCVKWl+bhra6xqLt5hJDkk8kYVpXn4b7baiHyQP0nJYj7fbBdE/5c3eR2UXWRHjVF+rjP3lHbiCRTvOfnaor0MWO2vtyEMpMa9eWmjE2ORh27BJHGjTOGiNu1/VYBB49dxGP33YClJQa8emkYB49djNhXGl9OlRch2WfAJqBrxIUfvxB5Xg/aMnP8fTZ6p88WN/PlkmI9Tl0Zx7Z1lSkuFSEEuNrOmUxq10x+ri68XSS1e6Z69o7aRiRZ4j4/N0XMrllckOpizkpmdjezUPhs9LFmoi/J00RtF2s9ISS7lMc5p0uNdE4nytkBG6oKYnfsaor0ONObmdnJCFkIpmvXzKTdQ20jkg7SM/LhNEoZyrI4HqljlyDSOPMjp3uxY330+PGa4DChWOPRw9cTQrLL6kUm7Nsy6Rm7LQ1oXJSZ4++zjV/kuDzsQOUUHbvzA3Z6FoeQNJmuXTOTdg+1jUg61Jcb8fDWhqjn5xoXmbI2HmkoZoLIZAwb68uwoiwPow43Hr/vRjg9/qjMTqHtdtwKi11ASR5lfiIkm6lUcmxtXITaYn0om1vjIhNUKnm6i5YTrow6ka9VQhvn72nQKJCnUaBzxEFDtghJg+naNTNp91DbiKSDQiHD1jUVqCsxYMAqoMykCT0/l63xSB27BJLJGGrNhmkbFzPdjhCSHVQqOSVKSZKO4QksytdOuU11oQ4XBu1UpxKSJtO1a2bS7qG2EUkHhUKGNYsLsGZx5PJsjUcaikkIISRjdQw5pn1ecVG+FucH7CkqESGEEJKZqGNHCCEkY120TKBsmo5dRYEOZ6ljRwghZIFLW8eOMSZnjL3NGDsafL2EMfY6Y+wiY+xxxpgquFwdfH0xuL4mXWUmhBCSWpeGJlBmmrpjt7hAiwvUsSOEELLApfMZu50AzgIwBl9/B8APOOePMcZ+AuAzAP49+H2Mc76MMfbR4Hb3pKPA0xFFjs4RB0YcbqjkMjg9fhTr1Zhwe9EzLqDcpIZBI0fnsAtmgxpKReAhzAGrGxqlDCaNEivLjJR0gZAsM+4ScGHAgUGbG6VGNZaX6ZGvzfy0yNmge9Q57R27cpMWPeMu+PwiFHIaiELIbEntFykB1EwSRYTvk6dRwOnxw+ryIl+rhF8UoZTLMeJwo9SoRX25ETIZC22vUyng8ftRpFeHMg3GWldVoEP3mHNW5SK5wePxo6XPigGbgHKjBqtjJCULb3czMIw63CgzacFFjsEJNwq0Snh9HGX5V2PH5xPR1m9Fv1VAuSkQm4mYbHwu51AypKVjxxirBPBXAP4JwC7GGAOwHsDHg5v8EsCDCHTstgR/BoDfAfgRY4xxzjMqt7UocjzbNoDvPHsW9zRV4eDxdgheERqlDDs31OHRV7sw5vRgzx31+M3rXbAKXnxxfV1oxntpu64xJzauLKPOHSFZYtwl4LnWIew+fPVc3re5Abc3mKlzN09unx+jDg+KDOopt1MpZCjSq9A96sy6B90JSTep/bLr0KlQHbZ/+1psrC+L2zAN36dAp8K9N1XjwLGr7Z4H76jHv//5IrpGXNAoZfiXuxohYzJ85bdX32PH+jo83tyNBzatgsfHI95fWvfF9XX44fH20HGmKxfJDR6PH0+39GH3M2HX1S0N2Nq4KNQ+nqrd/c0PrYDLK2LH8xciYvr915Tg8Jm+iLb3w1sbsHVNxbw6d3M5h5IlXR9t/iuArwGQpnUvAjDOOfcFX/cAqAj+XAHgCgAE11uD22eUzhEHdh06hU2NFaHgAgIz2B841o5t6yoheEXsPdKGz962FJsaK0KBFb7dRcsEWvposl1CssWFAUeoUwcEzuXdh1txYcCR5pJlv96xwOgG+QwujBX5Wlwaor85IbMltV/C67Bdh06hcyT++RS+z7Z1laFOnbT/g0fasKmxIvS63TIR6tRJyw4eb8emxgq09Fij3l9ad//TrRHHma5cJDe09FlDnTogeF19pjWifTxVu3vY4cEPgp06admuQ6fQ0meNanvf/3Qr2vrn1+6eyzmULCnv2DHGNgGwcM7fSvBx72OMNTPGmoeGhhJ56BkZtAkQvCIYQ+gfK5GWSz+7PL6424k8cCySe9IdoyQ5Bm3umOfyoM2dphLNXabFaPeoc9qMmJIykwaXhiaSXCKSTpkWn7lCar+EE7wiLPb4bZHwfaZr9wCAyONvM9W6yceZrlzpRjGaGANxYjK8fTxVuzteTMU77oB1fjE1l3MoWdJxx+7dADYzxjoBPIbAEMwDAPIZY9LQ0EoAvcGfewEsBoDgehOAkckH5Zw/wjlv4pw3mc3m5P4GMZQaNREz1IfTKGWQBo5qlDJoVYq428kYZtyQIdkl3TFKkqPUqI55Lpcapx4+mIkyLUavjDpRnKea0bZlJg0uDFIClVyWafGZK8LbLxKNUgYGho6hCYhi9JMvk/eZqt0DAHIWf5up1k0+jkYpQ0le5raRKEYTozxOTIa3j6dqd8eLqXjHnS5B13TinUPpiNWUd+w45//IOa/knNcA+CiA45zzTwB4AcBdwc3+BsAzwZ8PB18juP54pj1fBwA1RXrs374WR073Ysf6uohg27mhDk+e7IFGKcOeO+rxsxOXcOR0Lx7e2hC13bISAxoXmdL5qxBCZmF5mR77Nkeey/s2N2B5mT7NJct+XaNOFOln1kEuN2pweZiGaBEyW1L7ZXJ75EuPn8KHD76EZ9sGojp34fs88VYPdm6IbPc8eEc9jrb0hl4vKzHg+3dHvseO9XU42tKL1ZWmqPeX1j28tSHiOPu3rw0lWyG5a/UiE/ZtmXRd3dIQ0T6eqt1dpFfhy+9fHrFs//a1qC8zxjzuylIj5iPWOZSuWGXp7CMxxt4L4B8455sYY7UI3MErBPA2gL/mnLsZYxoAvwJwLYBRAB/lnHdMddympibe3Nyc1LLHEp2dx4PyfDV8Po7ecQGlRjW0KjnOD9hRnq+F4PVBq1Jg3OmFXiWHUaPEKsqKmQ3m/SRsumKUJF7H0ATGnQ74/AoM2gWU5mmgkPuQr9OnM5FHTsTo5371FpaVGPDuZcXTbjvq8OD+p8/g7d23p6BkZJ5yIj6zVazsfUDgOaGuEQfevjKO3zb3oD84PE2jlOH3O26Nqs9iZcW0ubwwaZUQuQiFTI4RhwelRjXqy02TsmLK4fWLKAzLinl52IHuUQf0wayY5SYdqgsDWTEtdgEleSnNNEgxmmZSVkwpThunyYoJDgxNuFFu1IAxhqEJN0xaJaxOL0qCMdg95sTXfncK995cC5cn0AZ/9JUOfPeutfO+XktlSVGsxj1wOqc7AOf8RQAvBn/uAHB9jG0EAHentGBzJJMx1BTpcW7AHpUZ58OryyGTMbzZOYJBmxvfCsvIs2N9Ha5fUoC1VQXp/hUIIbNkdXlwfsCNvUdPhs7pPZvqsbJcme6iZb3ecRduWjqzXFkFOiUErx82wQujhv72hMQyVfa+WrMBgzYBB49djNhHelZocsNXJmOoNRtm1SCOt70ocpwfjG47LSnWz/o9SG5QqeRoqimccpt47e4fffxaeP0c9/7nGxHxZM5TobnLiuautyOOEyu+Z2su50My0IQ/CTZdZhyVXBaVvefg8XYoae4lQrKSXwT2Hm2LOKf3Hm2DT5xmRzKtvnEXiqeZ6kDCGMOifC06aTgmIXFN10ZJ17NCmZRVkGSXWLETK9PqrkOnoJLLMuZZuGSh3kSCTZcZx+nxx1zv9PhTVkZCSOIMT8TOijk8kX1ZMTOJdPctXzvzu2+lRg06R5xJLBUh2W26Nkq6nhXKpKyCJLvEip14WTGdHn/GPAuXLGkdipmLpE+7wgMq/NOAeOspEyYh2ancpI15TpfPM8vWQjdgFVBkUM/qGYWSPDXdsSNkCtO1UWQyho31ZVix49aUPtc2XbkIiSdW7EhZMWO1tW9YUpTy+E4lumOXYNN92pVJmXMIIfNXX26MynD78NYG1JdTdtv56Bt3oVg/s6kOJCV5GnQM01x2hMQzkzaI9KzQjbXFqDUbUtLopbYRmatYsRMr06oUT+mI71SiO3YJNt2nXen6NIwQkhwKhQxb11SgrsSAAauAMpMG9eUmKBT0udl89FsFFM6yY1dq0uCNztEklYiQ7JepbZBMLRfJfPFiB8CCjCfq2CXBdJlxMiVzDiEkMRQKGdYsLsCaxekuSe7ot7pQMMuOXZlRgy5KtkDIlDK1DZKp5SKZL17sLMR4oo+UCSGEZJzecRcKdbPr2OXrlHB6/HC4fUkqFSGEEJK56I7dPMWa6DP8Vq/PJ6Kt34p+q4Bykxb15cYZDdGa7riEkMwhCD6c6bdiwOZGmVGN1eUmaDRUvc5H77iA62pmN7enjDGUGTXoHnViZbkxSSUjJHeFtz3KTRr4xcAcX/Nth4giR/eoA4M2NxweH6oL9VhSTO0aEt9s2sHh25bkaSCXBYbzJ6r9nE1tcmp5zMNUE33KZAw+n4inT/fi/rDJyB/e2oCtayqm7NxNd1xCSOYQBB8On+nH7sNXz/N9mxuweXU5de7mYcDqQpG+bNb7lRrV6Bqhjh0hsxXe9ijQqXDvTdU4cKx93u0QUeQ4fn4Q7YMTCTkeyX2zaQfH2nbnhjo8+moXxpyeecdZtrXJaSjmPEw3oWZbvzXUqZPW3/90K9r6rfM6LiEkc5zpt4Y6dUDgfN19uBVnpjnPydQG5pA8BQDMeRpcGaW57AiZrfC2x7Z1laFOGDC/dkjniAMtPdaEHY/kvtm0g2Nte+BYO7atq0xInGVbm5w+Tp6HqSbUrDUb0G+NXF9u0uDem6ox7vLiubYBLDXrwTlwZcwJvVoBt8+PRSYdLPapj0sIyRwDttgTlA/aaILyuRK8fri8fuTN4Y6nOU+NyzSXHSGzFt6mYSz2BM8XBu2wCz7YBA90SgWUcgaHx49ykwY+P0f3mBN6lQKlRjWqCgPD1QZtAkQOFOhU2LauEix4k+OJt3qoXUNCwxxHHG6o5DI4PX64PP6Y8XfJMhHKPi0Nh4zXFpfibL7t5+na+pmGOnbzMHlSxHKTBnc3VcLl8eOtzlGolQwPb1mFQr0aTq8fxQYVukec+LtfvYUCnQqfvXUJ/uWP50O3dh/YtApn+2xYXZk/64k6Zzr+N5vGCROSDRYXatBUbcK9N9fC5fZBp1bgl690oLKAJtadK4vNjUK9CjI2+7qp1KjGy+3DSSgVIblHFDm6Rhzos7ow4fbhGxuvwS9f7YJBLceODcsg8sB2T7zVgzGnB2d6bfjS46fwT3euhk7px7kBG144Z8GHVpfjsTe7samxAnIZcO3ifPSMO6FWyOH0+PDupYUwahTY/6cLoTbP7k2rUG6iejJbJaLdKQ1z/M6zZ3FPUxUOHg/c1d25YVnMdrBCIcPbV8Zw6Kkr2PX+a1Br1sPrF1FdpMWmxopQZ+7I6V5UFWjwy09fhzGHF3LG4PH4oVLJZ/17xpoAfbo2eTpRx24epEkR441H33fHKsjlcuz67emIcb8FOhU+cUNVqFMHBHr/Dx19B5+5pRbfeLIFD21pwAPPXH1mZ6qJOmc6/jfbxgkTkg1UMhnubqrC13539Tzfu7keKjmNdJ+rAZsw64yYkpK8QPIUQsjU4j379tUPXgOVXIZ/fb49ou2iU8rxkxMdELwivvXUGXzmllr8/OUO7N++NqphLuUUeOyNLqxfUQbGEDUUc9/Rd/DIJ5uwuIA+YM42iWp3SsMcP3NLbSh2AOBQcw92bqiLiMudG+rwzSfPYMzpwY71ddj//Hl8Y+NKHHqzG597zzLsPdIW2vahLQ1QKRj+7ldvXW2Tb2nA1sZFs+7chbf1Z9ImTzdqecyDNCni73fcin+9Z21UpaVTK0OBJi2Txv2aDeq4t467Rlz40QvtePy+G/HYfTfg9ztunbLzNdPxv9k2TpiQbGAVfNhzOPI833O4DVaBUu7P1YBNmPUcdpJigxoDNgF+6VYDISSmeM++/csfz2Nowh3VdrG7fei3CqFl0nDNcwM2bGqsiGiYSzkF7r050GAv1Klitnmau0apDZKFEtXulIY5Th76228V8OirXfiXu9bgO9tW477bavHoq12hR5wOHm/HpsYKnB2w4c53LY5qaz/wTCsuDTkin31/phUtfbN/9j28rT+TNnm6UcdunqRJEUXOoyoth9sXt/OmUyugUUb++TVKGXiwLdI14oLL68eNtcWoNRumDKCpxv/OZTtCyMyNTHhinlcjDk+aSpT9LDYB+TrlnPZVKWTI16rQb3UluFSE5Bbp2bdY9dfkz0UErwjBFzkUTWqviByQy2Ifx+XxBT/ojt3mkaZTINklUe1OaZgjgKj4GHN6cG7AjivjLhw8djH0oYJ0DLkM8IuAK05bO1YMD9rmFmtSW38mbfJ0m3fHjjG2cybLcl14cEr0mtgVmYwBveNO7PrA8oiA3rG+Dk+e7Am9nun43VjvHWv/mW5HCJm5UqM65nlVmqdOU4myX79VQL52bnfsgMD/hIZjEhKfKHLoVArIWXSDWmqnxFs2ub1y5HQvrl2cH/M4WlWgHdQz5sTuTaui2jxHW3qpDZKFEtXulIY5Hjndix3r6yLiY8+mehxt6Q29nnyMFWVGHG3pjfuhQawYLjXmfqwl4o7d38RY9qkEHDerSMEZHpROwYs9d9RHLPv2natxw5JCLDJpUGxQYeeGOvxg+xr82yfW4fHmbvRbhVmP34313rH2n+l2hJCZqyvTY9/mhojzat/mBtSV0Xk1V/1W15zv2AGBzJjdI9SxIyQW6bmnHY+dRKEu0A4Jr7/+6c7VaKw0RSx7aEsDGhaZ8I0PrcAPtq+NaK/83W1LYRc8eHhrQ1TD/NFXOrBjfR0ee7MbRQYVHvlkE3ZsWIbP3FKLx5u78fWNK6kNkoUS1e6Uhjn+16euR1N1Pn7+N034h9uX4zO31OKJk93Yc0c91lSa8PCWyNh6YNMq/OfLl/DR66rw0xOXomL4GxtXYKlZH3ld3tKAxkWmlPx90olxPrfnEBhjHwPwcQC3AHgpbFUeAJFzvmH+xZubpqYm3tzcnPL3Dc/8o5TLYBc8KDdpYBf8GLC5UZqnhsPjwZUxAdVFelhdXpQZNfD5RBh1Srg8fky4fagq1GNJ8eweJpbe22IXUJI3fXai6bYjU5r3HyxdMUoSr2NoAk6PC063DIN2AaV5GujUInQqbTpTIWd1jH7k31/BhxrKUD/Hi/CTb/fAbFDjaxtXJLhkJEGyOj6zXcfQBD588CUIXjE0DdPiAh1UchnKTGqsKjeFEltY7ALMBg0U8kC22nGnF0adAjIwTLh9KDKo4PVx2AQvlhTrYXV60W8TUKRXweP3QyWXw+HxoUCnQv2k42Z4G4RidBrJaHcKgg9n+q0YtLlRalTDbFBhwO5GaZ4Go04POocdKM5T4+LgBDg4qgoDWTEr8rXQqxUYcbhhNmgglwF2wRsYfml3o8yoQeMi05yyYmaouPE5n6yYrwDoB1AM4Pthy+0AWuZx3KwljcGN1Zh79dIwtj/yWtTyx+67ATfXmZP63nPZjhAyM4M2AR/76RtRyx+77wY6z+ZoyO5GwRyzYgKBzJiXhycSWCJCckf4c0/9VgHfefY8gECd1bi4ILTd5LZCddHM6rM106ynNkhuSEa7U6NR4LolRRHLasx5AICBS8P4ym+juxeP3XcD1lYF4rYOeTMtfs6ac8eOc94FoAvATYkrTu7KtnkwCCEzQ+d2YnHOE9CxU+PP5y0JLBUhuYPqLJKNKG5nJhHJU7YxxtoZY1bGmI0xZmeM2RJRuFxCz7cRkpvo3E6sCbcPAId2HkNmSvLU6BmjrJiExEJ1FslGFLczk4gJyr8L4A7O+dkEHCtnSQ+IrthxazaMLSeEzBCd24llsbtRqJ9fRlGTVgnB54dd8CJPM/ckLITkIqqzSDaiuJ2ZRHTsBqlTNzP0fBshuYnO7cQZtAkomEdGTABgjKHUqMGVURdWLaKOHSGTUZ1FshHF7fQS0bFrZow9DuBpAG5pIef8yQQcO6uEZ8UsNQY+SRBFjrZ+K/qtAsqMWsgYx5UxF8x5ari8PhhUSow6PNCo5CjQKbHcnIcr4y70WZ1QB7NJVRXoIJcz9FuvHpc+oSAkc4y7BFwYcIQyeS0v0yNfS+P+58Jic6NAP/fn6ySleYG57FYtMiagVIRkL1HkuDzsQNeoA3qVAqVGNaoKI9sRPp+Itj4rhhxuGDVKONzRbY9KkxZnB2zoswooMqgw4fZCLZdDo5SjyKBCZb4O3WNOjDjc0CrlcLj9cHh8qJ5Dpm+S+8LbzCUGNVw+P3rGXDAb1JDJAK1KDqfbj95xIW3X1Vjt+kyP40R07IwAnABuD1vGASyojp00L8yuQ6cgeEVolDL8xyfXYcjuwf1Pt4aW7bmjHr95vQtWwYvPv3cZ/u7wydC6b35oBc722/GjF9pxT1MVDh5vD63buaEOj77ahTGnB/u3r8XG+rKMDy5CFoJxl4DnWoew+/DV83zf5gbc3mCmzt0cWOwCjAkYPlmcp8YVmqScLHCx2iY7N9ShrtSA9deUQiZj8PlEPH26Fz88Hr/toVIwfP59ddj9zNV6bsf6Ojze3I2PXlcFvUqOAr0Kv3zlMu5orIDT68eBY1ePQ+0WEi5eXErt3D2b6vHEyW5sWFkWWpbq62qsMmZDHM87eQrn/G9jfH06EYXLJp0jjtA/HwAErwi7yx/q1EnL9h5pw2dvW4pNjRXYfbgtYt2ww4MHnmnFpsaKUMUqrTtwrB3b1lVC8IrYdegUOkcc6flFCSERLgw4Qp06IHC+7j7cigsDdI7OxaDNDZN2/h07s0FD9SRZ8GK1TQ4ca0dLjzV0frT1W3H/01O3PTY1VoQ6ddK6g8fbsamxAgeOtWPY4UG7ZQL33lyLEacn1KmTtqV2CwkXLy6ldu7eo2249+baiGWpvq7GKmM2xHEismIuZ4wdY4y1Bl83Msbun3/Rskv4vDASh9sXtUzwinB5fGAMUetEHlgWa520XPrZYhcS/0sQQmZt0OaOeb4O2txx9iBTGbAKyJ/nM3YAUGJUo3M4sy/AhCRbrLaJ4BUhcoTaEf1WYdq2x1TrpOOJHHC5faG2zORtqd1CJPHiMryd6/L4opal8roar4yZHsfz7tgB+CmAfwTgBQDOeQuAjybguFlBFDk6hiYgYyyUglWi1yiilmmUMmhVitDP4eQMEWlcJ+/H+dWfad4OQjJDqVEd83wtNc4vs+NCZbEL85rDTlKap8EVmvKALHDS3F/hNEoZZCxwVxsAyk3aGbc9Yq2TjidjgE6tiGjLhG9L7Rbi84k4fWUMPpFPG2talSJqWbKuq1Jb/tVLw+gYmoAo8rjnTqbHcSI6djrO+RuTlvkScNyMFR4Af7k4jL/9xRv40uOnsHNDXUTlWKhXYN+WhohlezfXY9zphlEtx8NbI9ctLtTi3z+xDka1HA9sWhWx7oFNq5CnkaO6SEvzdhCSQZaX6fHQpPP8oS0NWF5G5+hcWOzuhNyxM+epMWAV4Bd5AkpFSHaqKdLjhx+7Fjs2LMMX1i/Dzg3LcP9frUSxXoXLIxPwePxQKYB9Wxpw5HQvdqyvi6rLSo0qvHZpKKo9s2N9HY629GLnhjosKzHg5qWFOHL6Cgp1qqj2UHi7JVYjmuSeyf9nj8ePP7T149g5C9r6rNg9qZ27c0MdnjzZE3pOfdzhxv1/tTJiWaKuq+Flu2SZwPHzg/jwwZfwsZ++jg8ffAnPtg2gqkCXlfPmJSJ5yjBjbCkCCVPAGLsLQH+8jRljGgAnAKiD7/87zvkextgSAI8BKALwFoBPcs49jDE1gEcBvAvACIB7OOedCSj3nMR6mHLH+jr86rUuPPpqF+67rRbXLs5HdZEenAPH3xnAL/72egwF59x44q0uvHRxDPfeVA21Qobv3b0GPWPOYA+b4cEjbdjUWAEA+PnfNMHh9uHSkAM/On4RY04P/vnO1TDnqdA54siK7DyE5LpxhwCjVoHv3bUGDo8PepUCSgXDuEOg5ClzMDzhRn4C7tipFDKYtEr0jbuwuFCXgJIRkrlEkaN7NJCZNzwTpShyWF1ePHKiI9Rm+fadq+H3i+iwOCBnDD9+oR0bG8rx1dtXwJynwiOffBeau8bgF4EfvdCOj15XhY/dUI0/tvbh3z6+Dh6/iAKdEna3D1+9fQVGHW70jrng8Yn4xI1LYHW5UabQYv/da6BUyFBbbEB1oS6UXdDn57j/mTPoGnFlTUIKMjsxE4/cvQYuT+C+z4TbDxmAf/v4OnBw5GmU8IkiHihaha4RB37w/AWMOT14aEsDvr2tHhqFAiIXoYY8KWXbuaEOBTpVaFjyrkOn8Psdt2blvHmJ6Nh9HsAjAFYwxnoBXAbw11Ns7wawnnM+wRhTAniZMfYHALsA/IBz/hhj7CcAPgPg34PfxzjnyxhjHwXwHQD3JKDccxLrYcqDx9vxmVtq8eMXLuLgsYt47L4bUGs2oKVnDHVl+fjUf70RCp5/vnM1lpfl43vPnY/oGPo4j5mR6oFNq6BTykPv9Y9PncFnbqnFz1/uoMqQkAww7uToGHJEZIDbuaEOpRk+XCMTuTx+eH0cetX8L95AYJjslVEndexIThNFjuPnB9E+OBGVibKqUBuVxO2bT53BfbfV4uCxi6gu0uJzty3D3qNtEfXXb5t70G8NPEt04Fg77rutFnWl+fj7X5/ED7avxV8ujeCREx0o0KnwyRurI9otD29twM9OtKOl14bH7rsBS4r1cT8Q77cK2HXoFFbsuJXmJsshsdrKNpcHYy5fxIcMOzfUoWGREff+5xsRsSHt88AzrfjuXWvwt795HRqlDI9++npcv6Qo4WU7cOxqO15aZrELoTnzsik2E5EVs4Nz/n4AZgArOOe3THVHjQdMBF8qg18cwHoAvwsu/yWArcGftwRfI7h+A2MsbT2Z6R74DB9/6/aK2DMp8+XlEUeoUyctO3i8HWaDOmZGqoeOvoMRpwfb1lVGvFe2ZOchJNfZBV9UBrgDx9phd+f0iPSkGLK7UaBXIlFVfIlRgy6a8oDkuM4RB1p6rDEzUY45vXGTpwDApsaKUKdOWidlIpy8vdT2ODtgCyVI2bauMqrdcv/TrfjsbUtD7aF4H4iHt2syPSEFmZ1YbeXyAl3Ma6XV5ZsyNqS7fIlKnjJdOx7Ijmfp4pn3HTvGWD6AewHUAFBIF2TO+Y4p9pEjMNxyGYAfA7gEYJxzLrWEegBUBH+uAHAleEwfY8yKwHDN4fmWfS6khynDgyL8AeLw8beD9uhsefGyRenUCshlsddJFWr4e0nrpE8UCCHpMREn++2EQB272UpU4hSJ2UCZMUnuG7QJcdsWgtcft80CTJ3tMnx7GQP8YuBnvxjYT6OUxd1f8PhC7aHXL4/M+ANxkhtitZUdQuxrpWPSh6CTYyM84WAikqfEa8fLwt4zG56liycRyVN+j0Cn7gwCnTXpKy7OuZ9zvhZAJYDrAayYbyEYY/cxxpoZY81DQ0PzPVxcNUX6qIcpv/ORRrzvmuLQeFxpaGR5jIw68bJF9Y87sbYyP272KqnjuGN94OFSaR1VhtkjVTFKUsucp4p53poNieugpEq6Y3TInpg57CSlRg0uU8cuZ6Q7PjNVqVETt22xpEiPf7pzdcwkFeHbTd4vvJG7c0Mdqot0ONrSiwc2rcLRll488VYPvvz+5XHft9ZsCLWH4mUXjPWBeLajGA2I1VYuzoudQXrU6YlaJsXGnjvq8bMTl0LJU1aXGZNStv3b12LbtRV47L4botry2YZxPr9sRIyxk5zzdfPYfzcAF4CvAygL3pW7CcCDnPMPMsb+GPz5VcaYAsAAADOfouBNTU28ubl5rkWalihydI44pn2Y0uPx4+mWvtCknoFO4GoIYUM0pefobC4v3u4ewQcbKvCtp85EjD9eUqxHkUEFl0fEA/TAcSaY9x882TFKUsfqEvBc2xAeCDvPH9rSgNvrzTClL3lKVsboL1/pxCsXh/Gpdy9JyPE6hibwy1c78dyX35OQ45GEycr4zFRTQbWHRgABAABJREFUPWO3sb4MPp+IVy6P4GT3GFRyGYwaBb79h3MQvCKqi7T4wvvqIuqvh7c2wOn2Qa2QQ69WoECvhNcv4mT3OF48Z8GHVpfjwLF2FOhU+L/vqYVOrQg9xyftv3VNBRQKWah8k5+x+85HGlGRr0GhXp2pCSkoRudpclu53KDG0baBqFhTyhm+/sSZsGWrYdIqUGxQQcYYukddKDWqsbrMCG2CPvibaTs+g8UtbCI6dl8GMAHgKAKJUQAAnPPRONubAXg55+OMMS2A5xBIiPI3AJ4IS57Swjn/N8bY5wGs5px/Lpg8ZRvnfPtUZcqkk8nj8aOlz4pBm4AyowY6lQwDNgF5GhW8fhEleRrIZcCATYDZoIFCDlhsboy7vDBqlCg1qlFVGAi4HAjEXEEVPolgdQk4PxDISFdqVOOaMn06O3VAlsbov/zxHAZtbnwk7Pme+XC4ffjib97GO/s+mLDn9khCZGV8ZrLwrJhOjw9VwayYUhshvP1QZtTALwJDE4G2RFWBDt1jzlDbYvJr6W5avP0rTVqcHbRhwCqgzKRBfbkp1KkLL1+WtV8oRpNAEHw4028NXSsbyoywON2w2Nyw2N0o1KugV8mx3JwHjSYR+R1zVtz4TMRfzQPgXwB8C8EpD4Lfa+NsXw7gl8Hn7GQADnHOjzLG3gHwGGPsYQBvA/h5cPufA/gVY+wigFFk2eTnKpUcTTWFEctWLorerqb46nNy1UWxn5mTyVjWZechZCEwaTW4fgkNi56vAauAAn3ihrDq1QqoFDIM2d0oMdL/h+QumYyhptgQ0ZaYvH5y+2FpydWfJ6+L1daYav81iwuwZvHU5aP2C9FoFLhuUlbLaq0ybruXzF4iOnZfAbCMcz6jZCac8xYA18ZY3oHA83aTlwsA7p5vIQkhhGQ2i92NJXEapnNVbtKgc8RJHTtCCCE5LxHJUy4CoHzShBBC5mXI7ka+LnHJUwCgzKShzJiEEEIWhETcsXMAOMUYewGRz9jFne6AEEIImWzI7k7odAcAUJKnRsfwxPQbEkIIIVkuER27p4NfhBBCyJz4RR5IGqVN7APzZUYNzg3YE3pMQgghJBPN+wrKOf9lMLtlFef8fALKRAghZIEZcbiRp1ZAIUvEEwJXlZm0+H3rQEKPSQghhGSieV9BGWN3ADgF4Nng67WMscPzPS4JEEWOjqEJvHppGB1DExDF+U1PQQhJPDpP52/I7k5oRkxJuUmDK6NO+p8QEobqLJIqFGuplYgxLw8ikM3yRQDgnJ9ijMWb6oDMQqxJPWlSckIyC52niWGxu1GQ4MQpAKBRypGnUaB33IXFhbqEH5+QbEN1FkkVirXUS8SYFy/n3DppmZiA4y54nSOO0MkAAIJXxK5Dp3CmdzzrPvGgT2xIMmRCXMU7TztHKBPjbAzZ3TBpE9+xA4BF+Vp0UGZMkkPi1X0zqROpziLxzOWaOtU+FGupl4g7dm2MsY8DkDPG6gDsAPBKAo674IgiR+eIA4M2AaVGDQZtQuhkkAheEecH7BiacGP9NaUxP/GYfJyaIn1aPxmhT2xIMmRKXA3aBBToVNi2rhIs+LZPvNWDQZtAk/HOwpDdDWOSOnblRg06hibwnuXmpByfkFSKV/fdvrIUz50djFj+o49fi6XFBljsbjg8PlQX6jHqdMdsW1jsU9dZmda2IIkVK66+fedqrKvKR1Vh7P+1KHK8dNECu8sPh9uHEYcHV8YcuHVZCWQyFrcdO12skblLRMfuiwC+hcBUB78G8EcADyfguDkrvHIsydNALgOGJtzoGxfw9SdaUKBT4e6mSryrqgAapSzipNAoZegZd2HE4cEyswE1kybzzZTGbrh4n9is2HErndhkzjIlrkxaBe69qRoHjrWHzrmdG+oSnt0x1w1YBeQnqWNXZtKgfZCmPCC54fJw7Lrv0H034tyADZ+9NfA0zInzFvSNudAx5MD+P10I1U/f2daI6iItukZcoWNqlDJoFXK8emk4ZqctE9sWJLFiXVO/+dQZ3HdbLZaaDViUr0GRXh0RG1fGHOgbd2PvkbZQXOy5ox5XxhxYXKCHTqWI2Y4tydOk5XdcCOY9FJNz7uScf4tzfl3w637OuZCIwuUiqXL88MGX8LGfvo6/+uFL+EPrAF7vGA116j55YzUeOdGBbzx5Bjs31EGjDPybNEoZdqyvw2+be3DgWDsGbe6o42fibe+pPrEhZK76x10x46p/3BVnj+RwuP2hTp1UhgPH2uF0+1Najmw3aBNg0iY+eQoAVBTocMFCUx6Q7CeKHGf7bTHrvs4RJx450YEfHb+In73Ugc+9dxkcHn+oUydt9/UnW/DQltURbYs9d9Rjx+Nv42M/fR0fPvgSnm0boCF1C0y8tprIga8/0YIXzw9HxcaA9WqnTtp+75E2DNs9eLZtADseO4kd6yPbsfu3r0VNkT61v9wCMu+PlBljfwJwN+d8PPi6AMBjnPMPzvfYuShW5XjgWDv23lEPwSti27pKHDweaCT2WwU8+moX7rutFhUmLbrHXPjVa13otwY6RE6PL+r4mXjbu9SooU9sSMIpFbKYcaVUJDZd/nQGbbGHNQ3aoz94IfFZbG7cVJucO3YV+VpcstAdO5L9OkccaLfYY9Z9F4cmItoW5wZsqDBpY9ZPHp8f991WC5EDy0vz8P3nzoXu4MUa/ZCJbQuSWPHaapwH/teMRcfG8ETs65/D4wu1dX/1Whc+c0st5DJgw4oSrK7Ip7u8SZSIFlCx1KkDAM75GICSBBw3J8WrHM15amiUMqgVkSdVv1XAwWMX0Wt14ccvXAx16jRKGaoK9VEPrZbkaUKfjEjS3YmqKdJj//a19IkNSagxpzfqk8Ad6+sw5vSmtBzlptjnXJmRPriYDcuEG/m65NyxK9Ap4fGJGHN4knJ8QlJl0CbgUHMPvvz+5RF138NbG/Db5p6IbUUO6DWKmPWTUiHDdTWFeFd1Pjw+P+5YU4Fy09U6S/CK6BpxZHTbgsyNzyfi9JUxPNvaj9becVwctOPVS8OQMUS11Xasr8OTJ3ugUcqgUcjw+fctw2dvrUXPmBNn+8dRHGy7htMoZXB6/KG2bL9VwI9fuIiDxy7C5fVTpy7JEvEQiMgYq+KcdwMAY6waAKU8jKPYoI75icj5QTu+fWcDtHHGI6+tzA8tlzpG1YW6qDHvP/r4tdi/fW3UOPh0dqJkMoaN9WVYseNWWOyB5wrpoWsyXyV5Knz79934zC21YAzgHHi8uRs/2L42peVYvciEfVsasPuZ1tA5t29LAxoXmVJajmzGOcfwhBv5SZjuAAAYY1hcqEO7ZQLXLylMynsQkgqlRg1UCgaNQha646ZXyVGSp8aYM/KDiyOne3F9TQN2bqiLegb4nT4bDhxrx5476vGb17twwTKBHevrQqOCNEoZ3r4yjoPHLmZs24LMns8n4unTvbj/6VYU6FRRz4f/8GPX4qf3NmHQJqB71IlfvdaFMacn8EGCQoYfvXDu6nVucz0uDIxj3+Z67D7cFrG8zBi7rUsfBCQf43x+fTDG2EYAjwD4MwAG4FYA93HO/zj/4s1NU1MTb25uTtfbT+lU9xhe7RiJOJGkyvQzt9TgV6914b7bluKho+9ErD9+bgBf3LAcb3WN4bY6M9ZVFaBzxIEPH3wp6sR5duetEDmoE5U88/5jZnKMZouTXaN4/fJoVIPlhiWFWFed2sa7x+NHS581lC2ucZEJKpU8pWWYJKti1Ory4sZvH8N/fuq6pL3Hz1/uwHuuKcEnb6xO2nuQGcuq+Mwkosjx8sVh3Per5tC1//PvW4ajLb24p6kq9CiHVB++0TGCTWsXoWvECZEDMgYU6VT4yYmOUAfuu3etwY7fvA2NUobP3FKLn7/cgZ0b6vDoq10Ro4QWWNsiJ2P09JUx3PPIaxC8Ij7/vmX4+csdUW3I+26rxW+be7BtXSXUChnqSgy4MurA/ufbo7b9j0++C7ufacWmxorQB6xHW3rxo4+tw5UxFyXbSZ64f8R537HjnD/LGFsH4Mbgoi9xzofne9xc1TPuwqOvBsYbVxVq0T169bm5cZcPXSMu2AVvxF0Iaf1AcFhmfblxyjSyAzYBN9YW07h3ktN6x4XQuSSdK4++2oXKAh3WpbjtrlLJ0VRDd4LmasguoMiQnGGYkop8Lc722ZL6HoQkm0zGoJSziGs/Y0DXiCv0LBNjwDWlefj278+i3yrg3OAEtq2rxPISAy5YJkKdOiDQZnAFn9cXvCKqCrX4l7vWhPaVUNsiN/Rbr7YbpWfmwknJUqThk0DgcYPdm1bF3Hbc4UXXiCu0raRv3EUjtdIkUfm4/QAsADQAVjHGwDk/kaBj55RyowZjTg9+/MJFfGF97E9LJtz+mMulYZplwXHwlJSELGSlRnXoXJJolDKUGtVpLBWZC4vNjYIkDcOUVBbo8IfW/qS+ByGpEO/aH94Y37lhWWhoprT8Rx+/Nm7bQvq5e9QFxhA1rJPaFrmh3KSNiJ1YcTS57zXm9KDYoIq5bb5eGXN5mUkDmYyh1mygDwJSbN7JUxhjnwVwAoH56/YGvz843+PmKul5HI1Shife6omYzuDI6V48tKUBR073RiWF2Lu5Ho++0oGHtzagvjzw7A4lJSEL2fIyPfZtboiI/32bG7C8jOI/2wzakzfVgaSqUIcLgxOY7+MHhKTb5Gv/kdO92HNHfURdaM5T48FJy5yCN2rZnjvq8bMTl0IJWI629Ea1TahtkTvqy414eGvsNqhGKcP3716LZSWGyOvqlgasLjfh+3evmXS9rcf/vHYZezZFxlR4O5WkXiKesTsD4DoAr3HO1zLGVgD4Nud8WyIKOBeZOK45XPjzOBX5WnDO0WcNPJtTalJh1O7BuMsLtVKBUYcb5UYNXF4/3H4/9ColHG4fqgr1WFIcyIr5Tr8VfVYBRq0C5UYtqul2d7Ll5Nj7bDTuEnBhwIFBmxulRjWWl+mRr6VPlZFlMfoff76EM71WfOKG5I6h/eJvTuKpv383Fhfqkvo+ZFpZFZ+pJIocnSOO0PO6VQU69Iw7MWhzw+nxIU+jxLjLA6NGiTyNHBNuP1QyGUadHuRrlfCKHDaXFyatEqNODwp0KtgFL4waJQSvH0aNEj6RY9AuoNigRp5GjnGnL/Re3WNOWOwCyowa+EVgaGLBDqPL2Rj1+US09VsxYBVQUaCFRiHHsMMd+j/7fCIuj9phdfoxaHejzKjG6vLAc+MXLDZ0j7igVspQpFPB7RMx4fYiT6OEw+OH4PWjtkiPJWbDQouXVEveM3YABM65wBgDY0zNOT/HGLsmAcfNWbGex7kWgQr98vAExlw+WGxueHwulOVr8M6AHY+cuBT1YPT3714DwSfiW0+dCS3bvWkVusccuHVZCZ1UJKdZXQL+1DaEB8KyUT60pQG315thos5dVglMTp7coZhA4E5HW5+VOnYkI4kij8h0XV2kxT/cfg16xlxRCdceb+7Grg8sh18EvvnUmVCGw2NnB3DnusX4wm/eDm3/z9tWQ6eSw+nxQy5nMGqUMOepUaRXR3XYpKFzUgeTbnDnHoVChjWLC7Bm8dVly5AX+lkUOU5fsWP34bBMz5sbsLHBjJYrttDy21cV49O3LAUH0DnixDfD2qLfvnM11lXlo6oweR8ITP4QZAF++BBTIjp2PYyxfABPA/gTY2wMQFcCjrugiCLH8fODaB+ciKjAH97agEdOXMKmxopQpw4IPLR6ftCOR050RCzbd/Qd/GD7WnSPOlBTTOOaSe5qH3SGOnVAIP4feKYVS4pvQFMNdeyyyYBNwJIU1FeLC3Vo7bVhY0N50t+LkNnqHHGEOnUAsKmxAu2Wiajr/MHj7fjMLbW4NOQIrdu2rhKPvdmNr29cGXGMAp0KA1YB//jk1Ub3zg110Cnl+M9XLuPrG1dGZSqc3MGkjIYLy5l+a6jzBgRibvfhVtQUXx9a/r7lxdiwshxff6IFX9+4MtSpk7b/5lNncN9ttVhRZkxK3FCMxpeIrJh3Bn98kDH2AgATgGfne9yFQvrEYcjuRkuPFc+c6g1ltQKAx97owr4tDRhzePHZW2tx4rwFty4vAWNAhUkbM0vR2QEbCvUq6tiRnDZkd8eM/6EJd5pKROZq0ObGtYsLkv4+S4r1eLNzNOnvQ8hcTM50zVhgkvFY9dzkdYwFOoLnBmwR23/mlhp877kLKNCpsG1dZTAToh9yBtz9rsU4N2ADA1CSp0Z9mRF9dgGdIw6cH7ChQKcKZVHcdegUVuy4lRJh5DhR5HB6/fj79y7DkmI9esedmHD78cRbPRi0ufHh+lLcdV0V/H6O//OrZnzmltqomAOuZtdMVtxM/hCEYvSqOXfsGGOxcnufCX43AKCr5zTCP3H47K21MKjlUcMt92yqx+5nWtE14gq9/smJi+gacWHnhmUxsxH5RcAZTF9MSK4y6RQx49+kSVSyX5IqQ3Y3CvXJTZ4CAEvNBvz85cvgnIOxhf2pLsk8sbJdylnszIWcAwpZ5Dq5LNDZk5Y1VhhRbNCgQKfCJ2+sjmhbPLBpFco1Cnz1dy0Rw+2eP9uH594ZjphjV+rcWezCgm8057JYd8F2rK/DkdO9uPemalTma3Dj0mJ8+hdv4rO31kLwishTKzDh8cWN0WTFTbzpvihG55cV8y0AzcHvk78y72nRDDT5E4fKfF3UcMu9R9uwqbEi5utDzT3YvWlVRDaiHevrcLSlF1WFlL2K5DaNQh6V0SvwOq0Tg5NZ4pzDYhdQoEt+x65Qr4JSznBl1JX09yJktmJlu1xWYoiq56TrfJFehS+/f3kow+HKcmNEVu3P3rYUl4cncHdTZVTb4qGj74CBRSzbfbgVn7hxSej1wePt2LauMvS+NN1Bbot1F+zg8XZsaqzAgWPt8HOO3YfbIqZKWLkoL2Ym94e2NODJkz1JixvpQ5BwFKMBc/5om3O+JJEFWYjCP3F44q0efPWD18QdchHrdb9VwGNvdONHH1+Hlp5x+EXg8eZu7NywHEuKqWNHclu/NfYE5VWUGCOr2N0+MDBoVanpkC8rycPJ7jFUFVGckMwik7GoSZ2lrJjrqgrg8vhgCGbF/N5dazDq8ODbfziLz9xSC7kMKNQr8Xe3LcV/nLiEz9xSC1HkONTcg10fWB6zbdEx7IhaNu70RrxmjKY7WCji3QWTJjIPn9z8ibd6sGN9HcadHtzTVIXHm7tDcbiizIjhCQFjTk/S4kb6EGTyM3YUowmaoJwxtg3ALQA4gJc4508n4ri5LnzYRb9VQL/VFfd2drzXFywT0KlkUMllELiILWsrsK4qf8E/PEpynzkv9gTl5jyaoDybWGwCigzJv1snqSsx4I3Lo9h6bUXK3pOQmYo1qXNNsSHmM/OiyFFm0uDYOQv8ItDcOYZDzVewqbECjAU6emNODyx2IWbbwidGNuI1ShnydcqI17cuK8a2ayso4+ACEG/ie86v3g0Lb7P+6rUufOcjq7H/TxdCMecXge88exbfvnM1fr/j1qTFTawPQShGAxIxQfm/AfgcAs/XtQL4HGPsx/M97kIwedjFoeYr+Padq6MmDz3a0ht6vW9zQ+TrLQ3Y/9x5fO+5C/jZSx1YUWakYZhkQaAJynPDoC01z9dJrinLwxuX6RFwkv1kMobVFflYUWbEz1/uwH+/1o1P3FCNn7/cgR8dv4iDxy5g3+Z6HGq+EjVU7p/uXI2lZn1U/fk/r10Ovd6/fS2uqylELc1JtiBMbpOGD/vduaEOz57pxb7NVycjH3N64PL48PfvXRaKuZ+/3IEvrq/DDTVFSY8b6UOQG2uLKUbDJGKC8nMAVvLggRhjMgBtnPOVCSjfnGTqpJCxSFkxw4ddXB5x4PKwAzqVHCatElaXFxNuH4oNamhVMrg8IoYn3Cg3abCy1Igeq4s+sUitnJ24NNvQBOVxZU2MPnmyB0+/3Yv/+95lSX8vAPCLHH/338048dX3ochAd3fTJGviMxuEtyPKjBr4/BxXxpzQqRQoz1djdMKLYYcbeWolbC4vSo1qrCg1YmDChYFxNywTbpQZNWgIZsWk9gSABRqj4XPD6VRyeP0i8rUqCD4/esdcqDVrMe70h665Rq0cA1Y3tCoFRh0elJs0qC83QaGY930jMrWkTlB+EUAVrs5dtzi4jMxArGEXdaV5qCvNm2KvSJP3J2ShyNdqcP0S6shls4EUTU4ukcsY6stN+MulEWxesyhl70tIssRqRywLa0NUxcphDqCq0ICqwsi2Q62G2hMLWaxYkjRU5Mfc55qyJBeKzEoiutR5AM4yxl5kjL0I4B0ARsbYYcbY4QQcnxBCSI7qHxdQkMKhmACwapERL563pPQ9CSGEkGRLxB273bPZmDG2GMCjAEoRSLbyCOf8QHBevMcB1ADoBLCdcz7GApMNHQDwYQBOAJ/inJ9MQLkJIYSkWb/VhYZFppS+57qqfOw53Aa/yCFfuEPNCCGE5JhEdOyaAbg45yJjbDmAFQD+wDn3xtneB+ArnPOTjLE8AG8xxv4E4FMAjnHO/x9j7BsAvgHg6wA+BKAu+HUDgH8Pfs9Z4WOcS42Bce6iyHF+0IZRpxcOtw+FehUm3F6YNCqUmFQYsLqhksvg9PhRbtLALwIW+9X9F/A4eZLD6Bm77DdgFXBbnTml72nO06BAr8KbnaO4sbYope9NSCzSdX/EcfVaXmoMPHffNepEn9UJjUKOcZcXJQY1fCLHmNMDY/A5fJ1SDoNaAY8ookivpus+mbHwNueifA1GJzywuX0QvH6Y89TQKWUYnvDCLvhQbFChxKjG4gKKr0yViI7dCQC3MsYKADwH4E0A9wD4RKyNOef9APqDP9sZY2cBVADYAuC9wc1+CeBFBDp2WwA8GkzO8hpjLJ8xVh48Ts4RRY5n2wYi5ub4j0+ug83lQ8+YCweOtYeWf/n9y/HrN97BF95XB7mM45tPtaFAp8K9N1VHbLd/+1psrC+jk5DklHGXgOdah7D7cGso1vdtbsDtDWbq3GURiz21WTElNywpxO/e6plRx07w+vG/Lf14u3sMOrUCH1hViutq4jy4RMgsSdf97zx7Fvc0VYUmE9coZXh4awMee6MLH1hVjh88fwHLSwz42A3V+MmfL0Ztu3NDHXRKOf7zlcv4+saVdN0n0wpvc960pBBb11Wgb1yIaEM+tKUBP3qhHV0jrtDr3nEnblxipvjKQIl4xo5xzp0AtgH4N8753QAaZrQjYzUArgXwOoDSsM7aAAJDNYFAp+9K2G49wWU5qXPEEerUAYFJIe0uP9otE6ETTVr+g+cDc4c88EwrVHIFBK+Ibesqo7bbdegUOkcccd+TkGx0YcAR6tQBgVjffbgVFwYo1rOFzy9i1OGBSZe65CmSW5aZ8cfWAdiFeINLAl65OIz3fe9F/M/rXWCMYczhwY7fvI1P/+JNjDo8KSotyWXSdX9TY0WoowYE6rT7n27FvTfX4gfPX4DgFfHZ25Zi75G2mNseONaOEacHmxor6LpPZiS8zfmpW5bg0pAjqg35wDOt2NRYEfHa5wfFV4ZKSMeOMXYTAnfo/nemx2WMGQA8AeBLnHNb+Lrg3blZzcPAGLuPMdbMGGseGhqaza4ZZdAmREwOCQAOtw8iR9RywSuCscB3h8cHAKHXk7ez2IXkFpxMK1diNFMM2twxY33Q5k5TibJfqmN0eCIwlEwhS31q7EK9Co2L8/E/r3fH3ebnL3XgC795G5+6uQZf/eAKfHh1Obatq8R3P9IIvUqOzT96GV3UuEmZXK1Dpet+vOu3y+0LLZd+jretyK+2A+i6n3rZFqPhbc4xh3fKtmb46zGnl+IrQyXiavolAP8I4CnOeRtjrBbAC1PtwBhTItCp+x/O+ZPBxYOMsfLg+nIAUsqyXgSmUJBUBpdF4Jw/wjlv4pw3mc2pfV4jkUqNmtDkjxK9RgE5Q9RyjVIGzgPf9SpFxPLJ25Xk0dC0dMuVGM0UpUZ1zFgvNdLcZHOV6hjtt7pQlIZhmJItaxbhP/58CSMTkR8G+EWOfUfa8ItXOvHgHavQWJkfsV4hl+HjN1Tjg/Vl2P6TV9E5TJ27VMjVOjT8uh+rTtOpFaHl4T/H2lbGEGoX0HU/9bItRsNjr1CvnLKtGf66QKek+MpQ8+7Ycc7/zDnfzDn/TvB1B+d8R7ztg1kufw7gLOd8f9iqwwD+Jvjz3wB4Jmz5vSzgRgDWXH2+DgBqivTYv31tRMWdp5FjWYkBOzfURSz/8vuX42hLLx7a0gCP3weNUoYn3uqJ2m7/9rWoKdKn7XciJBmWl+mxb3NDRKzv29yA5WUU69mi3yqgyJC+jt3iQh1uW27G53/9NpzBUQ8Wu4BP/+JNvHF5FLs31cM8RePl/StLsXntInz0kdfQPeKc0XtyzvGXi8PY9fgpbPzXE/jwwZfw4OE2XBmd2f4k90jX/SOne7FjfeT1++GtDfjlKx348vuXQ6OU4acnLmHPHfUxt925oQ5FOhWOtvTSdZ/MSHib879evoxasz6qDfnQlgYcbemNeK2Qg+IrQzHOZzXi8eqOjP0r5/xLjLEjiDFsknO+Oc5+twB4CcAZANL93m8i8JzdIVyd7Hw753w02BH8EYCNCEx38Lec8+apytbU1MSbm6fcJKNJGYosdgEleZFZMcecXkyEZcU0alQoNakwaHVDOSkr5tBEYP+qAh26x5wRWTbpgdd5mfcfL9tjNBFiZX+dbVxSVsy4siJGf/ZSB97qGsO9N9Uk9X2mIoocP/9LB9r6bKgrycPpnnFsWFGKj6yrgEI+s88+nz87iKMtffifz96IZSXxJ3du6RnHnsNtGJ5wY/01JagrzYNf5Hi7ewwvnB/C/X+1Enc3LY67fw7JivhMJak+HHVcvZaHZ8XstzqhVshhdXlhlrJiujwwagJZMbXBrJjeabJiJqLeXSByPkbDY0GnUsDrD2TBHJ3wwB4c8ltsUEGnoqyYGSjuH38+WTF/Ffz+vdnsxDl/eYoCbYixPQfw+dkVLbvJZAy1ZgNqzYaIZfUV+XH3WVwQ3ZhYWmKAzyfilY4RNHeNQuTAkdO9lC2LpF2s7K9zyd5qVKtRbPDBL3IUG9QwqmkYZjbpG3ehQJe+O3ZAoG79P7cuRdeIA0MTbnzihirkz7JM719ZCpVChrt/8gq+e9cafGBVacR6i13A95+7gOfaBnD3uxbjPcsjs8ktL837/+ydeXyU1fX/389MZjIz2TeSkJBASNgCYTEqKqAmStFGccGltlotlq+tGJSvLW1/KnVr61L9SrW11N1WxUqrSC1VQUUqqKDsW0IgISH7nplMJjPz/P6YmYeZzDNJgCyT5L5fr7xIZnnmhpzn3HvuPedzmJOZwJMfHsLcYefWC8b1ye8mGDqozfsexo8KZ7x7w8B7MZ4RH35KgVlf+V3B0CeQLcxKiyU9LvDmVKBric2C4OG0AztZlne4//1MkqQE9/fBXyk6gnA6Zf61t5IVa3crN25hXhaPbTjApKQI1QlEIBgI1NRfl7+9k0mFc3ttl2KRMvSpaGpnQmLEYA8DgPS4MNLPILVoXlYCiREGHnhvLy98XsL87CT0IRq2H2tg08Ea5mUl8Pii6YSHqk+7KTFGfnX5JB58fz9jYk3kT05UfZ1g5HKmPq8v/K5geNBXtiDm4eDjjGrsJEn6tSRJdcAh4LAkSbWSJD3QN0MTnCnH6s1KUAeuG3fVpiIKclKEmpFgUFFTfz1VFbdAE5OQYB46VDZZB6WHXX8xMSmCx6/N4dxxsXx1tJ7PDtUQa9Lz+LU5/GB2esCgzkNChIHC/Czu/fsuqpqFjxb4cqY+ry/8rmB40Fe2IObh4OO0T+wkSVoOXACcLcvyUfdjGcCfJEm6R5blp/tojIJTwPtIvL3ToXrjGnUajDotW4/UKcfmgDhKFwwYHiUub/s8VRW37iYmsfs8NKhsthIXNrzSZ0O0Gs4bH8954+NP6/0TEiPIn5zIirW7eeW2s5Ek4YdHCt7z9+hoA03mTipbrCRHGclOjjxjn9cXflcwPOgrWwhkk/srW2i12slOjiQkZODb2YxkzuR/+2bge56gDlyKmMAPgFvOdGAjGadTpqS2ja1H6iipbcPp7J3AjedI/PJVn/O9v3zJruNNqrK12aMjuWH1Nr73ly+5fNXnbNhXxaZD1cr7PI/19nMFglNFTf31VFXc4sPV2x0Mt0BhuGKzO2m02IbViV1fsXDGaI7Vm/lgT9VgD0UwQHjP37/94ABfHGnghr9s446/fsMNq7fy7q4KRgXweQnhvVuM94XfFQwPTtUWAq1LR0X4t+gy6DQcqzMrdmu3O9UuKegnzkQ8RSfLcl3XB2VZrnX3qRP0Eu9dulERBo7Wt7H0jW9POV+565H429tdrQ+e2VikXOu3V0/juU+K/I7Nl8zL6FWutSiSFfQFGo3EguwkJhXO9VF/PRVbMnfYWX7pBJ766LBi38svnYC5w96PIxf0FVXNrjRMrfAffoRoNPzwvLE8vH4/eZNGYdRrB3tIgn7Ge/6+fd54fv7OLp85+b539/LuT8/jt1dP45f/3KP4vGX5WRytb2NcfM/+szd+V8zxI4NTmYO7q6PTavBbZy6/dALpcWHcPjeD4w0Wdpc3ER2mV64vbKx/OZPAznaazwm8ULthluVnEWPSU9lsPaWC1q5H4pXNVv69p5I//eAsvi1rxOGE/9t4mBty06ho6qDSXcNh7XTS9XBOLb1DFMkK+pLuVOB6Q21bB6FaDUvmZeCUQSNBqFZDrbmj5zcLBp2KpnYSIsTpaiAmJ0cyLiGMF7aUcFde1mAPR9DPeM/f7W6peW9iTHr2VLTy7CdFLJ6TgVYD01Oj+evWYzyzsYgPeil60Z3fFXP8yKK3c3B3QivVLVZe21rK4jkZSBIYQjSEajUse+vk4URKtJHn/l7MigWTmT85kQ8PVAsb60fOJLCbLklSi8rjEiAStntJWYOZg1Ut3D43A6NOg0aSaO908KvLJ/ObDw4owV1vcujVcqYvmjSKn/x1h89jqza5JobnPikGXMfmXe8ntVxroaglCCaijDruevNbvxqB1247ZxBHJegtFU3txIk0zG65/qwx/Pr9ffzg3HRixP/VsMZ7/jaFhvjN5dflpnL/e3uxdjp95u7HF03nk8N1NLg3tNROQXp7QiLmeIEa3dV2JkYaaLTYFJu88+JMnv3koI8NPbBuH48vms7BqhZGRYSq2tjEu+YqLT0EZ8Zp19jJsqyVZTlS5StClmWRitkLnE6Zb8qaWL25hGc3FfOHTa4b4+/by/nZO7u4eXY6yVGGXhe0quVMTxgVoXpDevruenZLclKjesy1FopagmCirq1D1R7rxYndkKCi0SICux5IijJw7rhY/vjpkcEeiqCf8Z6//7L5CCuvyPaZk8cnhKv6u3abnfQ4IxVNVtU6+a61993V0Is5XqCGZ9PBG8+6tOu6U6tB1YaKa1pZtbGYzUW1qs8fqGoRug59xJmc2AnOkGP1Zn7lzpUHl3E/s/HkadqqTUUsy88ie3QUVc1WWq12bA4HcWGhAXfcpiRH8Opt52Cx2UmLdQVmBp2GGJOea2alIkmglWD+lETOHx9HUqQBh9PVQHfNkvPodDiIDXB9oagl8GC12tlT2UxVSwdJkaFMS47CYBhYd+IRT+lqj3HhIr1vKFDaYCFOpGL2yMIZKfziH7v58bxxwtcOcyaMCucP35uJQaclIULHmh/PprLFSoxJ70pzU/F3kQYdDy+cxpLXt6uetAG9PoUTc7zAG7vdyb7KZiqbrbx869n8/sODbC9tVjb/U6OM7ClvQh8i8dqPzsHSYSc6LJTVm0v8bMjh/tEpq9vx4epWpiRHipPhPkAEdoNIoN0xj7q1tdNJaoxRcdieBuNrtpex/NKJjI42KEEeoJobP39yIs/eNJOi6jaf4tYxsSaunDaajw/V+L1nVlqsatDo2Znp+nqhqDWysFrtrNtTyQPr9ip28NCVU7lyWvKABncdnXZWFmTz4Pp9yjhWFmTTYRfiKUOB4w0WJiVFDvYwgp7YMD1zMuP506euUxzB8MGTIllv7qCyycrP3X1nPbX2qTFGGs027l6zkwmjwll5RTYPvu/l767IJlQnEaKRAp60ybL6CYpaeYeY4wUe7HYn7+6q4L53T87zDy+cyn3fDSPSqCc1ysi6PSd8nl95RTZ6neRnQ4V5Wby+rRSAtTvKub9gCg+v3+/3/Pnj40Rg1weIwG4QCbQ7Jssnvy+qafNrML54TgYr1u5m8ZwMXtxSwlPXz2ByUoRPrV5EaAhOp8zGQ9XEhYUqQR24irDLGixsPFSDRnLtEu6uaOkx19lbRam6xYpJr8XmcHKs3ixUjUYQeyqbee7TIqVYGuC5T4sYF2/i7HFxAzYOgy6Etd8U8fii6bTb7Bj1Ibz2RQkrFkwesDEITp+KxnYSxOlqryjIGc0v/rGbn1w0XpyeDBO8hUo8c3nX7J0nF03HFBrC7XMzWLujnDe/LGXVjTMJ1Wlotdox6bTYHTJtDju/WDCRV7eWKqJo3idtvT2F6wu1YsHQxemUOVpnprTeTKxJR1mDhdvnZgDugOy9vby9ZDYZCeHsOt6oBHXgstkH39/Hk4umkz06kg8K51Jab0arkbj/vb2KXVY2WzFbOxXRM1mG17eV0mixCd/WR4jAbhBR2x1blp/Fa1tLMeg0/ObqaTzxn0M+7/Gc6Hn/+9iGA9yVN0E5/vbsnDzx4UFK69t57Nppys2XHGXg5tnprNpU5PNavixVgruD1S0BpZM1GomxcWEcrGrltle+FqpGI5AWayc35Kb52FBhXhYt1s4BHYel0861s9IUWXDPiZ2lU5zYBTt2h5Patg7iw0WNXW+IDdNzQWY8f/6shPsLpgz2cAR9gLdQSWiIRvVU7bC7LsnjYzfsraS4ps3H93rWDI0WG8svncDL/z1Go8Xmc9J2KqdwZ6pWLBiaeG80TBgVzs3njfVZU3pO1Y7VW5iaEq0I+3lj7XRittk5Vm/m4kmJVLdYWf72Lr81Z0qMCUmSxMlwPyECu0Gk6+5YQrgBrQZmpkUzKsKARoJGi2/nCM+Jnuff5CgD/zt/kl/Pmwffd6kQHa5uVQRYrJ1OrpmVqtxgXV9b+Oa3GHQadBoNeyqasDmc6LUaLDaHj5KWUM4a2UQYdH42tGpTEa/9aGDVKI26EI7UVPPKbedQ695d/mhfBeMTUgZ0HIJTp7LZSrRJT4j2tPW7RhwF05L55T/38NOLxos60mGAdynGuPgw1VM1T12Sx8c+vmi631zvXZf/1EeH+cstuUQZdUSEhvDl0XoSIw3Mn5zIB+IUbkSjpowKKI+Z9CE8tuFAwD6KqzYVsWReBsW1beypaCI5yqhqs2H6EEx6V2iRHGXgutxU7E6ZJxZNp6LJgsXmIHt0JGmxYeJkuJ8Qgd0go7Y7Njbe9b3TKavmKq/ZXqbs3t08O53imtaAKkTPbiomPc7Ig1dms3LdPuWUr+tr2212DDoNv1wwiXqzjUc/2O9zKpMeZ+ThhdPQaSU0kqT02fO+Rm9aMgiGPjWt6mqUta0Dq0Y5OiaUCUnR3PryV161ftmMjhWL3mDneIOFRCGcckrEhYdyXkYcqzeX8MvLRbrxUMe7FKOiycI9l0zg6Y8PK/PtigWTKa5pY2leJmt3lFPZbKWj09FjXf6XRxt44fMSn5M8T0aNmJ9HJmr9CZ+9aSY2u6xaC6fWR9Ha6WRCYgQltWaON7YTGxbCwwunKi04PNlfFlsniZGROJ0y+ytbfU79luVnkZMaRVpsmDgZ7kdEYBfEdK1p02k1tHV08tCVU3lg3V4KclJYtamIu/IyVXdOskZFKJPCHz8t5rXbzsFqd5AeZ6QgJ0WZDN7fVUFqjJEnFk2n0dzBg+/vY/GcDCWoS44ycENumo+Ii2fSUMvnFwxvkiJDVW1o1AAv1KuabDywbp9fv5y/Lj6X1OgBHYrgFDlWb2FUpPAXp0pBzmj+37t7uOPC8aKv3RDD+8QkOcqALMs8ctVU7nt3Lw6nzNvby3j6+hl0Ohx0Ok8qWabHGbm/YArlDRbS40ykxxkprW9Xrtu1Lt8jlvLMxiKeWDSd33xwQGTUjHDUsqx2lzf7qFd6TuWeuXEmJp2GwvxMnDLKpoJHudKTGrwsP4vLpyXx8m1nU9PSQbRJx/F6MwnRRtJiw1Q/85mNRfzrrrniZK6fEYFdkONd07b87Z3EmPT85MIMFs5IISXKSIxJT7g+hGX5WT6ql8vys/jNBwdotNiUXZh9J5pJjzfx04syWbnupLLWg1dm88LmErYebeChhVMVaWXPDamWvvnMRtexvOcmF/nRIwejXssdF2b6qbOZQrUDOo6qAKqy1S2i51Kwc6zeLIRTToOEiFDOHRfL6s9LWLFg0mAPR9BLvE9MYkx6bp87jif+c4gYk57ll2SRlRTOTy/K5HcbDvCLBZP5+dqdPpuq3qcqKwuyeX5zMaX17X51+d7qg9ZOJ0U1rdw8O53Xt5WKjJoRjJoCu1NFLTXGpKeurcNPsXLN9jJuPDuN17aetK1nNhYxKy2Gc8fGcazeTE2rlfMzE5SUykCq77VtVtGIvJ8Rgd0QwHvn45pZqfzm3wexdjpZmpfJdbmp/HbDQWJMeh5fNB2rzU55U7vPaZonNzouwsChqjYfhUxrp5OV6/ax9OJMpqREU95o4YErpqCRJOUUUJLw6YMHrl2cmWOieWvJuX750Wq53GKHZvjQYO7k+c+KfVQxn/+smEevmjag40gOoCqbKE6Cgp6jdW1MTooa7GEMSa6cPpr73t3LkrkZ4tRuiHCs3sxjGw6weE4GaTFGLJ12nrlxJk1mG6NjjISHamjvcHLv/Ek4ZbnbTdUH17tq4otrWpmcFMnxBjMPXpnN3hPNvL7NN4vG4Tw5/4uMmpGLmgK7VqUv4rK88ZxosfooYa7aVMSLP8zl3r/v9iu/sdjsAVMqRU/EwUMEdkMA750P7yBLr9WQER+GtdNJZbOVw9WtADy7qdjn/dZOJ2kxJk40WTDb1HP0kyIN3OeVK7380gn8csEkfrvhIOGhWm45L93vRHBcfJhSD+hBLZdbKGYOLzodDlVVTJvDMaDjmDY6iocWTuUBL7t9aOFUckaLgCHYKa23cPHExMEexpAkIcLAuRlxPP/ZEVFrN0SoN3f4+UzvGrgHr8zmj5+6TuGW5Wf6bKqqqmVWu+rnC/MzSYs1kTdxFG0ddkVszfv0zlMbJTJqRi5qCuyxJr1PXef8KfFotVpVJczyxnZVIb+02MA2JXoiDh4isBsCJEYaSI8zcuPZaUxOjmR8QhjH6sy8+VUZ1+em+uyKqO3CGHQaV9qa3Rnw+bJGi8+u4FMfHWbpxZksnpPB2Ngw7lbJlZ4/JclvrEIxc/gTHto3qphnerKr12u5Kmc0GfFhyjVyRkeh1w9sSqjg1JBlmeMN7SRGilTM02Xh9NH86p97WDx3nNgBHwLotRrVcgaPmuXKdfuU79/eXq6UVoD6fO1Rxp4wKoKx8SZCQjTMHBPNk4umc7imFYcT5fTOoNMwOSlSbKyOYDx6DSlLZrPxYA0OJzy/uQRAsZnZGXH8yN3CCnyVMGtbOyjMy/LZmPjN1dMobWijrcNOdnIkISEa1c8UypcDj9CaHgKkxZi4d/5EAO746w7uWbOLP28u4ebZ6XxysIZl+VkYdBrW7ignLkyv/Awop29/+7KM93dVMDY+jPsLpvg8f3/BFP6+vdznM62dTqx2J899UszeypaAudJdCZRXXdMq6p6GC7V9oIrpOdm9fNXnfO8vX3L5qs/ZsK8Kp1M+pbHo9Vpyx8by3ZzR5I6NFUHdEKCqxbXY9EhiC06duPBQ5mYlsOrjosEeiqAXWAJkynirWXq+r2y28trWUp5cNJ3wUK3ffF2Yl8X63RUsy89CRmZSokuB8EhdGw3mDow6LS9uKVGCuqeun8G4eHFKMtLRaCSmpUQzMTFSsY9Gi40Gcwcp0UZqWtTn9XHxYfztyzLWuMV9nr5+On+4cSbPbDzMj17ZwQ2rt/LurgrsdqfqZ2YkhDM7I56MhHAR1A0QYmYdApQ1WiiqaVNVMFo8J4PXtpbywi25WGwOIgxaDla28sSi6Vg67NjsTkbHGHigYAoRhhBSog3Um20smZeBUwZDiIb48NCA/fIg8Cmg2k6xyKse/iREhKr+jU9FDEOc7I5cSmrNpEQbB3sYQ54rp4/m52t3cfvcDMaKhXtQE2he7Kpm6aHRYuNAVSvPfVJMcpSBxXMyCA3RkDs2BovNzkMLpxJt1JGdHEVIiIaS2jaWvvEtMSY9t5yXzhOLptNuszMpKYKpKdFiQS0AXIHWZVOTmJA4h6N1Zox6LaEhEuGhIbR1OFRtNDXayN35WZhCQ9BoJKparH46Dfe9u5esUeFMHxMzWL+awAtxYhfkeNLV1BSMPLt8jRYbOq1LNEKr0fDYfw5x15vfsuIfe7h/3T4eWr+f0VEGbA4nNa02jHotRp2WFz4v4ckPD/ObD/az8opsn13BZflZ/OObcgw6DXFheh6/Nsfn+a650k6nTEltG/XmDh7r4bWCoU2UUctDV/ray0NXZhNl6v1pmTjZHbmU1LaRFCU2es6USKOOy6Ym85sPDgz2UATd4HTKaDXwm6unBZxjH7wym/W7K5TnHrlqqvJzZbOV5z4p5o+fFvPf4npuf3UHP3zpa9o7HUr6m8efVjZbeWyDa/7/+do9WDodIqgT+KDRSGQlRjA/O4m5WQmcMy6eSUlRjI4J5aErp/rN6w0WK/+3sYifvbOL3eXNAXUaqprF3B0siBO7IMQTzNWbO2i1dhKi0TApKcJvNyU9zsikxAgeuzYHc4cdp+ykxWrnpR/m0tJup7m9k7hwPVa7kxv+sk3Jjf7VZZOYlBzO6pvPwtLhIMqko8XayZol52FzOOiwO9lf0cy1Z6USGaplQlIEbVY7L992NrZOB6OjTei0El8erScx0kBajIkPD1QrJzC56VG8fOvZNFpsxIeFEmHUsqOsgbiwUJFjPQww6jRMHxPBa7edQ3Wrq7YtyqjBqOv939VTN+rfC08s+Ic7xTVtQrm0j7hsajL3vrOLr442cM642MEejqALdruTbcfqqWq24nA4WH3zWVQ1W4mPCCXCEMKYWBOxYXpONJq5d/4kJGQSIgw0mDt47JocWq12DlS14nA6SYszUdvaQU5KJBdNGkWjuZOtR+qINoUwKtw3iyI5ysB1ualYbA5KatvEvCvwq2lPjTJyoKqFWnMHEaE66ts6GBNrZNWNMzHoNITrQyhtaGP/iTbu/c4EYkw6yhvaSYo2Kj3uwKWc2WixERum51+7T5AUGYosQ01bBynRJtX6O0H/IgK7IMNbVfJXl01CF6Llwff3EWPS+/SqS48z8tOLMrn3nV0+SpbRhhBK6y089dFhH/WtGJOeymbXrt66XRVcn5vGc58W+yl1PXX9DOZPTmR0lJEGcwcnmqzc+vLXPtdqttr5/YeHlD46j12bw1MfHVL67uRNSuK2V3zfY9JpeemLo6xYMFkoZA5x7A4nu463Ks3BPTt7uemRvb5GWoyJu/KyuO/dk4qWj1w1lbQYUz+OXBAMHK5uY25W/GAPY1igD9Fw49ljeOC9vfyrcC5a4VeDBrvdyfo9lfziH7t9+n2u3VHGFTkpWDodtHc6lBKLnJRIbjo3nXvf+UpJqfRWor53/kQ+3l/F985N9+shmhSl5/fXzeB//75T9b1CmXpk01WtPD3OyJ0XZfHcp0XckJvGmu1lrn6Jf9/ls27zqLYuy8+ivrUDg05LWb3FRzlzWX4WKdFG7n1nFza77Gd7j1w1laump4jgbgAR/9NBhnftUXp8mOLAPQXVS+ZlsPoHZ/Gz+ZOUJuNwUsnSFKpTgjrP489sLOKaWanKZ9xyfgYPrNtHQU6Kn1LX8rd3UtpgISMhnNiwUH6+drfftYpr2ijISVEeW7F2t/JzoGbm9RYbBTkpLH97J8fqzQPznynoF+raHEpQB66/8QPr9lHX1vt2B2WNFiWo81zjvnf3UtZo6ZcxC4KH4po2UkUA32eclxFHiEbir9uODfZQBG6cTpltx+qVoA7cPeje38ct52dQb7HxzMYinxKL2+eN59fu+f6aWal+dUxPfniIW87PUNYE3tc0W12L9Q8K5/J/N8zwe6+Yd0c2XWvaC3JSeGDdXmUNqLYW9KwbPd8nR5uoM9t48sNDfq+raGqntL5d1W7ve3cv+yqbB+cXH6GIwC7I8K49ajR3+qReVjZbWbWxmPZOBwerW1XznM02e7fqWwCy7FQapaq9tqzBTEltG4cDfIZTRrmep7A7LdbI0rxMQkM03b5H1FENfaoDqGJWn4IqpqixG5k0t3fS1mEnPlw01u4rJEnilvPG8vRHRVS3iPsnGDhWb6aisV3Vx7Xb7Jj0WhbPyWBMtJFl+ZkkRxmw2U/WLgXqX9ceYH432+xUNLaTkRDu0+Dc+zXCt45cus63Hvvq+q83XVVbLR32gFoPZpvD57pdnxf1dwOLCOyCDI96FkBoiKR878Gg0xAdplOUKrs+F6YPUX3ck4GRHmfE4YQXt5RwvKld9bVajcTlqz7nSG1bgM/QIsuuoO6OeRloNXC8sR2tBNmjIwJ+vqf3jqijGtokRYaq/o1PpS+Zt517X0PYxvCmqLqVtFgTkiRSwvqSMbEm8iaN4r539w72UAS4FtJRRp3i45KjDNx5cabSUDw1xsSLW0pY8Y89/HlzCT+5MINYk97HJ6r5R1OA+T1MH6IIEgnfKuiKt00kRxmYmBhBYX4mExNPrtfUbMZbtRVJDrju9M7wVXteiGUNLCKwCzLGxoXx1PUzMOg0/OnTI35qlSsLsnlly1FiTer96iwdnSy/dILP4/dcMgGjTsvSvEx+Nn8Sv/rnHqydTtbuKKcwz/cay/KzOOjuW6eRJL/PWJafRfboSNbvruCW89KxuGsEnt1UzJ83l3Ck1syz35tJYX4mS/MyWZafya8um0ScSc/63RVCIXMYEG5QV8WMMPReFdPbzj3XELYx/DlQ1UpqjGh10B8snJHCwcoW1u8+MdhDGfEkRhqU+TM3PYqleZm8uKWEVRuLue2VrzneYCHG5Dq1tnY6qTPbeHD9PmU+Xruj3G/uveeSCbz6RQkPdvG9K6/IRhcikZ0cBQjfKvDHYxPpcUZunp3Oz97ZxaqNxTz54UEevDKb93dVqK4FPaqt9xdMIS3WRFyYnnsu8V1f/v66GWSOCg9ot49cNVWxTcHAIMnyqTUEHgrk5ubK27dvH+xhnDYe9aKaVivJUQZqW22U1LZh0IfwwuYj7K5oIT3OyNPXzaCqxYokSWglCVmCo3Vtyi7LuPgwQnVafr1uryJ08shVU7n377uVz0qOMnDNrFTSYo2UNbTzj2/KufasVJ7dVMzSvEzW7ijnmlmpSO4Tt398U84Pzx9Lq9XOWWnR/PSNb/z6nvzpB2fxk7/uUIpnf3dNDuMTTDhlV6PWxEjDUFfpOuOBD2Ub/byolmc+dtV7tNvsGPUhvPZFCcsumcjcrIReX8fbzkdFDHmbCDaC0kZXvLMbo17Ld7KT+vS6AhfFNa089dFh/nP3PEYFt/JoUNrnmeCtOjgqwkB5o0vZOsZk4Cd/2+E3Ty6ek8FznxQDsDQvk2c3FSvzsSRBmF7L2Lgw9lW2kJseg4RMtEmPJEFHp5Oa1g5iw/REG0PIGuWrPCh8a58wLGzUbneyr7KZymYrcWF6bn7pKz919Z/NnwQSxIfr+epoIxoJtBoJs82BLEOEQUtKtBGjTovdIRNl0tHWYScjPpxx8WE4nTJ7TzRT0dTuq4oZZSR7dJQQTukfAtrnoKhiSpL0ElAA1MiyPNX9WCywBhgLHAOul2W5UXLl7DwDXA5YgFtlWf5mMMY9UGg0EhkJ4Uqj5jExMjWtHUrxq0GnYcWCyTiQ+ekb35IcZeDm2ek+6pb3F0zhWL0ZWYYV35nE/qpWZNmVIuIti1zZbOXFLSXKJON9rG7UaWi02JTJB1wTUqvVznOfFPPYNdNU86m/LWv0KZ79xT92s/rmXJa8vl2odA0D2m0Otpc2s730W7/HT4Wudi4Y/uw74WqjIugfMkdFcPGkUfzv33fx2o/OESmvA4Sa6uDSi7M43tjOsXr1WjvvP40nxc3Tsw5OBn8vbilhSvIMRkXoe90AWvhWAbiCund3VShCZYX5mX62WFrfzsHqVl74vIRXbzubP35a7LcJsWReBlFGHbe89LWyvkyJNjB+lMu+NBqJGWkxzEgTDcqDgcEKo18BFnR57BfARlmWs4CN7p8BLgOy3F9LgD8N0BiDBo1GYkF2Eh8UzuWtJefyQeFcFmQnERcWqkwGr28rZfGcDArzM1l9cy7//OY4rVYHDqdMbLiebUdqAYgwhPilcngfud87fyJzsuJ4+dZcJidHBGxcDlBn7lDNp3b4+g2snU62lzb0SqXL0+h865E6SmrbcDqH34nyUMek1wao/+h9KqZg5GF3ODlSayYtVihi9idXz0yhpqWDF7ccHeyhDFu856ljdW3sKW/yUx189pMiUqKMOOXu65IMOg3pcSbunT/RZ64tzMti/e4KVl6RzUtbjhAb1vsaZoHA6ZTZWd7koz4dyBZltyhKk8XOo1dP81vzZSaEY3c4+cP3ZrL8kizM1k5iTUIAK1gZlBM7WZY3S5I0tsvDC4GL3N+/CnwKrHA//prsyhndJklStCRJybIsVw7QcIMK78xZT9708rd3Kidvj1w1japmC9eelebT6+bxa6dR0WQlVKul2WJj6cWZWO1Ooo0hpMWG8avLJxFt0mPu6GTHsSaffnlPXz+DE03tTE2JpLrFSqPFBsDb24/z6yuyFYlmg07Do1dPY9XGwz5jNug06LW+zsSj0uW9o9h119P7ZA/waa4pUksGD51W4leXTaLObMMpu3ab48L06LTi7yEITFFNG3Hhekx60T61PwnRaPjJReP59bp95I6NZcaY6MEe0rDCe57y9Ixr73T4nHJEGLT86PxxhIWGYAjR8PT1M/jdhgNKScTKK7JpstgozM9kSnIkLRYb63ZWsCw/i6xR4YSFhlDbauW6s8bw/GfFrFgwWdTICXzwTrFMjjIyOTGC403tlDaYCQ8NocFso9Xqq6K6+VANKwuyeXD9yTVbYV4Wr28rdW3OhmpZ+00pf/7BLCw2J6ZQLWF6Las3F/Ph/jrFdk06CVvXHXxB0BBMM2yiV7BWBSS6v08Bjnu9rtz92IgJ7LoLeBZkJzHxrrkcqGrhcHUrv//wENflpioNJAFiTHoqmqw+TSML87LYfKiGBVOTefSD/dyQm0ZRTRuAz3tL69u55+2dPH39DPaeaMHhcLJkXgYhGg2Zo8J5acsRFs9xKWNOSookLFTDjWen+XzWsvwsuq751VS6uvZa8ZzsTVk2l/2Vraq/vwjuBh6DTkuoTuvTpNR1CixO7ASB2XW8ifEiNWxASIw0cNsF4/jJX3fwQeFcYsLE7npf4T1Pefp23T43w6fEYVx8OCW1bfz2nZMNn+8vmILZ2sn4URHUtbRjtjnQSHC0zswzG4tYMi+D9Lgw8iYlKp8zKtLA5dOSxUamwIeuKZbpcUbuvDiLB97b67PumjEmyscu504YxfObi1l6cSZJkQbKGi28vu1kE/JOu4MLJyYpfY61Gt/1oKdv4v9dP0OcIAcxwRTYKciyLEuSdEo5eJIkLcGVqklaWlq/jGuwCBTwTCqcS0ZCOJIE9/59l/J8iMa3l5xa08hVm4p4fNF0fv7OLhbPyWDVJtfk5Hneg6eYW6ORSIwwUN7YzuSkSH634QA2u8z/u3wyB6tbcTjh4fX7+d45abz5VRmL52QogiuvbS3l0auzefZ7MzF32AkzhBBh0PrtQAbqbVbZbFX9/VN+PJtpqdFDZsIbLjba3N7Jyi4Nyleu28dfbj5rkEcmOFP600a/LWsSpw4DyDnjYimubWXpG9/w2uJz0Q4RP9kdweBDq1usykndxMQIpLkZhIdq+cP3phMeqqeurYMYo85vzn14/X5e/GEuj/37ILsrWpTrLc1z1T3NSI3moomjlPlM1MgNTQbCRvdVNitB3cUT4vnxheP50Stf+zUOf/GHuTy8cCr3v7eX88bFMiczjqxR4cSG6Xj3m3KSY8K49qxUJiVGYHc6+b+Pizhc06as3wL1ret0ysKXBzHBFNhVe1IsJUlKBmrcj1cAY7xel+p+zAdZllcDq8GlRNTfgx1IumvmnJEQ7vN8cpSBLLf0bG+bnXo/7ynitnY6FVGWNdvLCNNr/cRZrDYH8RF6Xnjn5I6OzeH0E1zJTY+ittWmBAMGnYaHF07Fbnei96rL8vRa6arYVBXg9994qIaKZuuQObkbLjbaaXeq/j1EasbQpz9tdHtpA7ddMK4vLynogRty03hsw0Ee23CQX10+ebCHc8YEgw9NigjlJxe6NkF3ljcBMC7eSKPZwV1vfh1QpMLa6aSisd0nqPPUNxl0GsbGi1O54cBA2Ghls1UJ6hZMS2ZbSb36GrGlg4yEMJ6+bhqtHTK3uYM/T5bNhj2VbD3awJ9vPovf/+eQYptaDTicEKLBb01m0GlIizEKWw1igkmDdB3wQ/f3PwTe83r8FsnFbKB5pNXX9dRw1Pv5a2al8rsNB3x6kgRqKpkWa/Ipkl27o5yJSScFU66ZlcqqTUUU5KQoQR2c3H1MjDTw5H8OsrLgpMDK+7sq/HqcFeZP9Dvhuf+9vew43shXR+s5VteGzeagtb2TJxZN59mbZpKTEolBp+EXCyZzrM4cUKRl+ds7OVpnFoIrA0iEV+NdDwadhgiDbpBGJAh2miw2KputYpd3gNFqJJbmZfL+rhOs3VE+2MMZFjS0d2LtdGC1O3lvZwWyDDFGAw+s61mkIjHK4Ds3ugVSHrs2R9wbgl6THGXEoNNw65xxrFy3L6C9RRp1/PaD/cSFG33s05Nlc9uccSzLz+IXa/coQZ1BpyEnNZr1uyvISAhjxYJJPjb7m6unkT1a9KULZgar3cGbuIRS4iVJKgdWAr8D3pYkaTFQClzvfvkHuFodFONqd3DbgA94kPEWSfGuMfNMBN7PS5KrLu71baU8sWg6h6pbMei03Dt/Ik9+eMjnxOx4g4XCvCzWbC+jMC+LVZuKONHUrihspsUY/U70PFg7ncjIbC9txmYv5fFF05WeZtFGLU9fP4NOh5ND1W0BT9xqWjpY8Y/d/Ow7E0mICOXn7+xWxvfQwqlMHBXOZ0V1vL29XBlf14Jfa6eTA1UtSiqqqL/rfxotnap/j0ZL52APTRCkbD/WyITEiGGRDjjUiDTouOeSCTz8r/2kxZk4e2zsYA9pSFPZbGVMbBi/23CAG3LTWLWpiElJ4T5z3Nod/nPWwwunUtvSzuI5GYSGuE7oTjRZKMhJISXaIOYrQa/JTo7kkaum0mjuxNrpDGhvD63fR2l9O9Wt6muw5nY7qTFGRRDP1et4Gia9xC8WTKbVaiPSGMKSeRk4ZdBILmV1YavBzWCpYn4vwFP5Kq+VgTv7d0TBjafdwaTCuUrD0bQYk49K5PzJiXxQOJfatg5e+LyEymYrh9y9STxplR6Rkznj42m0WDHp9Tz3aTG/uyaHPeVNPL5oOja7g9L6dp77xNWg3HunputxvOekcHdFC4Vvfqs8/qfvz2JfZQvnjo3lxS0lPLFouur7o8N0WDudPPGfQyyZl+Gzm/TAe3v56+JzcThdqZ2eQLWoxlXP9/q2UiqbXT35Dle3Bqw/FPjj3Uj3dBRGY0w61mz3raNcs72MJ66d3o+jFgxlthTXMikpYrCHMWIZE2vijnnj+Z/Xd7D2J+czLl6cDp0uY2NNtHTYuXf+JIprWokx6f3KCCqbrazZXsart53DsTozCRGhxITpsNll7ntvv99ceO2sFL/POVM/LRi+hIRouGp6Ct8cb/RreaXVwJzMeJraOymtbwfUy1wMOg2JEaHsKGtk9c1n0dTeSWKEgQiDlozYcPZUNhMWqmXJ6zv83vdBl/WVsNXgIphSMQXd4Gk4OjsjnrFxYXx4oJrLV33O9/7yJZev+pwPD1QzNi6Ms9Njeer6GUpq5bL8LOXGf3FLCYYQLT9bu4vWDifnjo1lxYLJHKxswe6En7+zi2P1FiWY8+wCvb+rwie103NCY7bZ/R5flp/Fr/65lxc+L6G1w3Wy8+oXJT7pmh7J3NI6Vx87a6eTEI1/O4S6tg6mpUaxLD+LRouN33xwAKNOy4tbSpSg7jdXT+Pv28v93lvTau3Xv8dQxaOw6m07G/ZVnVL6apRRy50XZfLilhKe3VTMi1tKuPOiTCJNQhVToM5nh+uYliLSdwaT6WOiWXRWKre8+CW1rR2DPZwhid3u5EBVKz965WvuevNb/ry5hJtnp9PS3uFXgnDnRZk0tXfwx8+KsdqdVLd08Oi/9itzsud13tk3HvrCTwuGNyEhGmakRPPQwqk+a7zMhHDqWjtwOGXFzrYcrvazz4eunIos23nr6zJCNBrMVgdP/OcABl0IBkMIZ4+LQ6fVqGdbea2vhK0GH8EkniLoJT2pZHqf7iVFGrhgfBwfH6zxOem67929zEqLYUF2Ensqmil86xsWz3Gpe91fMIWH1+9Xdh1/fcVUjtW18fii6RyrM9Nhd7JmexkrFkxSTm7SYoxUNLfz2lbX9QEOVbXy7s4KrjtrDLHhOlbffBbVLR0YdVosHZ2s+qwEcDmZjC47yAadhuQoA9NSoslMCGdWWgwWm52E8FBy02No67CTFhuGVoOSRuD93q6tFAQuerKd3mDucDI6Ws9rt51DdauVxAgDNkcnlg4hniLwp7zRQoPZxlhxSjToXDxxFA1mG7e8+CVv33GeqIvtJZ4TibrWDu5/z7dWadWmIp5YNJ3DVU28ets51LR2MCoilMa2dn7zwUGWzBvPS1uO8IvLpvCr704mKdLA/ClJ1La5sm/UTjf6wk8Lhj96vZarckYzLs5EZYsVDRJVLe20WO28t7NCSc9c9clR7skb5zNnx4ZpWfzaN9xxYSYmvZa135TxoznjfTYZAp30ea+vhK0GHyKwG4L0pJLpOd3z3FRbj9SxamNxwNdPS4lixYLJys2ZHmfk2Ztm0dHpYH9lK+/vLOf8rAR+7tWT555LJvD8p0eUGoPb52bw7Cbfz3h7ezn3XDKBB9btJcak57rcVMYnhBMaouGJD48op26FeVmEaCXFgbjyvKeSnRyFRiMxNj6csfHqDsLplLutPxT40pPt9IZGi43yhnbqLc04ZXfjaZOeVFG6I1Dho/3VnJUejUYSqTnBwDUzU2ht7+RHr3zN64vPFf0ne8Bud/KvvZWsWLubB6/IVle7bLIQF2Hihy9/pcx1abEmrjtrDKs3H+HOi7OYkRpNSMjJzJTxowL7277w04KRgV6vJcak5+aXvsLa6WRpXiZwUmvBu2fdsjU7abTYeHjhVDQaAz+bPwmdFjrsnTy+aIbfJkNP+g4gbDUYEYFdEOKdrzwqwoBW48rZ9+Qud7eLopbr3NOui3cNX2m9mW+PN3H/u3t57NppvLjFVaNXXGvm8UXTkWWZw9VtvPLFMSqbrdS22Vg8J4Nzxsb4fUajxYa5o5MnF01Ho4GUaCORBh23vvIVBTkpPvVZL9xyNmuWzKaq2UpSlIHs5CifSTAQavWHIr87MImRBtLjjMr/P7iUTE/lhDMsNISXvjiqXMPhhJe+OMrvrsnpp1ELhjL/2l3JhRMTBnsYAjeSJHHLeWN5fvMRlry2nb/8MJfQEBHcqeF0ynxRUs+KtS5hL1NoiOpcmp0cxfFGM3+8aRYddieRxhAMIVqMOi2PXjWNuHAdGo3kMz8nRxlwOKGm1b8uqTcnJQKBh7JGi4+teJTQK5utPPnhYZKjDFyXm8rKK6YQF6Yn3KjlcJWZ5EgD7+wo5Y6LJvgFYR5bTYjQs2bJbCw2Bya9Fqcss6eiCYvNQWKkgeQoYavBhgjsggxPvrL3Dsmy/Cxe21pKo8XGU9fPYP7kRNVdlLQYk997u3u92qmWQafl7PRY3ttZwbE6i3KUv7uihZ+/s4vnbpqlBHuAktcdZchSVUp8ZesxViyYrKhUOp2yz+mgZyzj3SeN08f4DalHup5QCgIzOsLAnRdlKdLHnlz70afghI06DXdcmMmD75/sS7jyimxMOlGyK/CloqmdwzWtFOZnDfZQBF5oNBL/M288z35SxB2v7+DPN+ei78VG2kjjWL2Z7aUNynz3l81HWFmQzYPrvXxfQTal9W088sFBv8Xtz78zkTvf+FaZ5/QhEkvf+FZpcO5pYt5Vzbk3JyUCAbjWjAadRgmu1u4o5455GSzLz1Lsq9FiIy3WxG//fYDS+nalj90LW4r5weyMgDWe3vb3yFVTeeurUvImJfms8566fgbP3jSTpW98K2w1SJBcopPDi9zcXHn79u2DPYzToqS2jctXfe43QSyek8FznxQrikRj48I4Vm/2OaU6Vm9WfW+g13t2B9Vu4seuzWF0lIF739nlc7r2ZUktV88aw8Pr9yuv/c3V03jiP4cAVx89j5RzRKiG9LhwvxM0z07QED5hO+PBDpaNbj/WwA9e/NLPRv66+FxyeymDvuNYA2UNbei0IZhtdsL0IXQ67KTFhnOWkFIPFoLCRld9XMSeE838SDQmD0rsDid/+KQYo07Ln28+ayDTMoPCPnti65E6/nukXlGXBshJiWTJvPE4ZZkok47SejMOh4wpNETp12rQaVh+6QRe/u8xpebcoNOwZF4GqzYWc+fFmT4bpJ7nvdUGh8E8OdQJehv1rN3KG8w4ZJRALj3OyEMLp6KRJNptDsobLXx+uJarzxpDu3vONlttrPjnPt788bmcNz7e57qB1qGPL5qulOR4P/6vu+YiSQhbHVgC/geLE7sgI1C+sidtzjt3uespVU+5zoFOtdSKX1es3c3fFp+r1NB5n8Kt+colmJKTEklWYgQayZV2ae108twnrjo7NUlcD+KEbfAI1FOwuqX3KqItVhst7Q7qLe1Kb5s4k55Wq+hjJzhJp8PJX78sZfmlEwZ7KIIAhGg13JWXyfOfHeGHL33FCz/MFYIqXiRGGhRVaM88eLimDYvNztMfFylBG0BylIEnF00nLFSLSR/C3Wt2+jxv7XTiEQoM1BvWuy5JzJOCnvCs3WJMeu6Yl+HTb67T4SRvYiIf7q/iofUHAPjkcJ3yXk87q8RI/2ydQGvJ9g676uO1bVZmZ8QLWw0SRO5FkOHJrffGoNPgOVjtLnc50Ht7ynUOdBO3WDtd/ckWTacwP5PFczJ4fVspuytaeHFLCVmJEWQkhJMWG6a0WPB8pjiKD06SA9iImnMPRKhOy0tfHMXhNhlPjZ1OpHIJvPjnNxUkRRlIF34gqAnRaPjphZlEGnVc//zWU9rkGe6MjQtjxYLJivpzYX4mT18/A4vN7qfG3GixcaCqFaNeS0JEqKpas/chxunM1QKBN561W2Wzlec3lyhz8gXj48mbmIhGI5EcZVS1NY1EwHVaoLWkp8a06+PCboMLsRILMjy59V17w/3jm/IeAya19/YmwAp0E6fFuia1Jz88iCHEt3+c93U9AiYfFM7lrSXn8kHhXKVWQBBcTBsdpfS9AXc/m4VTyRnd+x5jyZFGbjw7zaeP3Y1npzE6ythfwxYMMdptDp7++DBXz/RvvCwIPjQaidvOH8v0MdFc+Yct7DzeNNhDCgo8c9vLt57D3Kw4Fk5PQRci8fIXx7i/YIpfb9f1uyuUVDS1uTgnNcqvx6z382IzVHAqeK/dKputPPdJMS98XkJCRKiy/spOjuSRq3zn/IcXTuXqGSkB12lq9vvIVVN59YsSv97Fwm6DD1FjF4R459YnhLtUMataepe7fDp5+Wo1dp5CbnAd9zeYO9BpNYoS0gjPoQ763PvusNkc7D7RrCin5oyOQq/vfW2N0ymz6VA1u8ublbSPnNQoZYdQEBQMqo3+9oMD7Klo5q48IZoy1Pj6WAMv/fcohXlZ3HbBWKT+aVMxZH2oZ45tabfR1G7nm7JGHE5Yv7vCTyis61wMKI8lRbpUMbvrZycYVILeRrtbu3nbkt3uZF9l8ympjne137QYE2WNFrEWDB4C/qeLwE4AiELtUyToHX5/I+wl6Bk0G910sJqf/X03j1w1lWiT/kyHIRgEqpqt/OmzYmLD9Pzumpz+aC4/LHyo8IPDmiFho8IGRyxCPEXQPaJQW3AqCHsRqPHJwRruWbOL5ZdOEEHdECYpysADBdls2FvJlc9u4ZpZqfzkovGnVIs7EhB+UDDYCBsUdEUEdgKBQCA4I2parTy7qZh/7a5k+aUTmJAYMdhDEpwhWo3Ed3NGc0FmPO/vPkH+7z9jXlY8V89KZU5mPMZTSN8WCAQCwcAgAjuBQCAQ9Bprp4PD1a1UNlspqm5la0k9u443Mzcrnt9eM03I5Q8zok16bp49lqtnpvLFkTpWbSyi8M1vmZAYztSUKMYnhDM62kB8eCjRJh0mfQgGnZbQEA1hoWKJIRAIBAPJsKyxkySpFigF4oG6Hl4+1BiOvxMMrd+rTpblBWdyAS8bPV2C5f9LjMOXYBlHv9lo1Pk3joqe+4MxZ3Jtwcig6q8/299RcaBd5alg8KH9RbD4gP5guP5uar9XX9hoK3DoTK4RxIwkWwhGAtrnsAzsPEiStF2W5dzBHkdfMhx/Jxi+v1d/ESz/X2IcwTmOwWKo//5i/IIzZTj/DYbr79Zfv9dw/f+C4fu7DYffS/SxEwgEAoFAIBAIBIIhjgjsBAKBQCAQCAQCgWCIM9wDu9WDPYB+YDj+TjB8f6/+Ilj+v8Q4fAmWcQwWQ/33F+MXnCnD+W8wXH+3/vq9huv/Fwzf323I/17DusZOIBAIBAKBQCAQCEYCw/3ETiAQCAQCgUAgEAiGPSKwEwgEAoFAIBAIBIIhjgjsBAKBQCAQCAQCgWCIMywDuwULFsiA+BJf/fV1xggbFV/9/HXGCBsVX/34dcYI+xRf/fx1xggbFV/9+BWQYRnY1dUNhabxgpGMsFFBsCNsVBDMCPsUBDvCRgWDwbAM7AQCgUAgEAgEAoFgJCECO4FAIBAIBAKBQCAY4oQM9gCGO06nzLF6M9UtVhIjDYyNC0OjkQZ7WAKBoA8R97lgMBH2JxAIBC5Guj8UgV0/4nTKbNhXxfK3d2LtdGLQaXjq+hksyE4aUUYmEAxnxH0uGEyE/QkEAoEL4Q9FKma/cqzerBgXgLXTyfK3d3Ks3jzIIxMIBH2FuM8Fg4mwP4FAIHAh/KEI7PqV6harYlwerJ1OalqtgzQigUDQ14j7XDCYCPsLfhrMNpa99S03rt7GN2WNgz0cgWDYIvyhCOz6lcRIAwad73+xQadhVIRhkEYkEAj6GnGfCwYTYX/BjSzL/PRv32CxOZg5Jpofvfw1B6taBntYAsGwRPjDfg7sJEk6JknSHkmSdkqStN39WKwkSR9JklTk/jfG/bgkSdIqSZKKJUnaLUnSLK/r/ND9+iJJkn7Yn2PuS8bGhfHU9TMUI/Pk+o6NCxvkkQkEgr5C3OeCwUTYX3DzyaEaqprbufW8scybkMANZ4/h3rd34XR222NYIBCcBsIfDox4ysWyLHt3afwFsFGW5d9JkvQL988rgMuALPfXucCfgHMlSYoFVgK5uLqt75AkaZ0sy0GXz6CmxLMgO4lJhXOpabUyKmLkqfMIBMMdjUZi/uRE1iyZTWWzleQoI9nJkeI+FwwIwv6Cm79sPkpBzmjl73HhhAQ+PVTL+j2VXDl99CCPTiAIXk5H3VKjkUb8unswVDEXAhe5v38V+BRXYLcQeE2WZRnYJklStCRJye7XfiTLcgOAJEkfAQuANwd22N3TnRJPRkI4GQnhgz1EgUDQDzidMh8eqB7RKlyCwUPYX/BS02JlT0Uzd1w4XnlMkiSumpnCqo1FXJGTjCSJv5FA0JUzUbfUaKQRve7u7xo7GfhQkqQdkiQtcT+WKMtypfv7KiDR/X0KcNzrveXuxwI9HlQEUuLZUdqAzeYY5NEJBIL+QqhwCQYSp1OmpLaNrUfqKKlt42hdYPvr+lrv9L/unhP0DR/ur2ZWWjT6EN+l1vTUKOwOJ/8trh+kkQkEwU1fzKu99XFn4guD0Y/294ndHFmWKyRJGgV8JEnSQe8nZVmWJUnqk/8Fd+C4BCAtLa0vLnlKBFLi+by4jqP1Fq7KGY1erx3wcQmCh8G2UUH/UNWkfu9XNVuH3I6hsNHgRm0X+8lF01Xtr7rFysGqVtUdb2BI9noaavb56aFapqZE+T0uSRKXTE7k5S+OMicrfhBGJugvhpqNBivdqVv2Zl7t7YnfmZwMBmvPvH49sZNlucL9bw3wT+AcoNqdYon73xr3yyuAMV5vT3U/Fujxrp+1WpblXFmWcxMSEvr6V+kRbyWe5CgDd16cSWF+JlmjInjukyJ2n2ge8DEJgovBtlFB/6ALkUiPM3LnxZkszXN9pccZ0WmDd4EcCGGjwY3aLnZRTauq/Zn02oA73kP1lHko2afd4eTLo/VMUwnsAM4fH8+XJQ3UtIwcGfaRwFCy0WCmt+qWgU7MeuvjzsQXBqsf7bfATpKkMEmSIjzfA/OBvcA6wKNs+UPgPff364Bb3OqYs4Fmd8rmf4D5kiTFuBU057sfCyo8SjzpcUZunp3Oi1tKWLWxmJ+9s4sbctNotNgGe4gCgaAfMNvs3DEvkxe3lPDspmJe+LyEO+ZlYrHZB3togmGG2i72JwdruPPiLB/7uysvC6csB9zxFr2e+p/D1W1EGXVEm/Sqzxv1Ws4dF8vab8oHeGQCQfDTG3VLz4nZ5as+53t/+ZLLV33Ohn1VOJ1yr33cmfjCYPWj/XlilwhskSRpF/AV8C9ZljcAvwMulSSpCLjE/TPAB0AJUAz8BfgpgFs05WHga/fXQx4hlWDCo8TzxKLprNpU5BPBr9pURLRRN8gjFAgE/UGYPoQH1+/zuecfXL8Pk34wtKkEwxm1XeyLJo3igff2+tjffe/uRSNJAXe8Ra+n/uebskayRnWfMjY3K4G3vy7HpRknEAg8eNbUHxTO5a0l5/JB4Vy/FMfuTsx66+POxBcGqx/tt8BOluUSWZanu7+yZVl+1P14vSzL+bIsZ8myfIknSJNd3CnL8nhZlqfJsrzd61ovybKc6f56ub/GfKZoNBJ2u/ouaadDOG6BYDjSKe55wQChtos9YVSEqv1ZbI6AO96i11P/s6O0ocdaoAmJ4XQ4HOwuF6UaAkFXPOqWszPiyUgI96tb6+7ErLc+7kx8YbD6UbGl3MckRbsieG9jM+g0JEWJnVCBYDgi7nnBQKHWo0mWUbW/xEgD546LC9jPaaT3eupv9pS38KM547p9jSRJnD8+nrXflDN9TPTADEwgGCZ4Tsy6+r5REYZe97M7k753wdozr7/bHYw4gjWCFwgE/YO45wUDSddd7HHxge2vux3vnnbDBaePtdPB8UYLqTHGHl87JzOe93edoNPh7PG1AoHgJD3Nvb31cWfiC4PRj4oTuz6mawSfEG5Aq4Evj9aTGBkc0bxAIOg7NBqJ+ZMTWbNkNpXNVpKjDGQnR4n7XDAgCPsLPoqq2xgdbUSn7XnvPDHSVfP4eVEteZMSe3y9QCBw4b3erm6xYtJrsTmcHKs3j+i1tgjsTgOnU+ZYvZnqFqtqsOaJ4MfGhbHpUDW7y5txyqCVYFpqFHkTE0eswQkEww2nU+bTohrlPj9Q2UJtW4e4zwU+9DRvnMl1PzxQ3at+Tf3x+QJ/9lc2kxZr6vXrzx8fxzvby0VgJxCcIhqNxNi4MA5WtXLbK1/3up/cqfrDoeQ/RWB3ipxKQ8KyBjMnGtt9HjvR2E5Zg5mx8UOrcbFAIFCntF79Pi+tNzNuiDUoF/QPp9rI9lQWEYGU4SYVzlXEO4K1ke5w5VBVK6Oje07D9DA7I4571uykxdpJpEEoaAsE0Hs/2Bsf2PW6p+qPh5L/FDV2p8ipNCSsb7NhtjlYvdnVX+jPm0sw2xzUt53saReouaJAIBga1LSp96wJ9Lhg5HEq80Z3vZnUqG6xEmPS+zQojzHpfXopBWsj3eHKoepWUk8hsIsw6JiaEsWGPVX9OCqBYOhwKn6wNz7Qm1P1h0PNf4oTu1OkO3nVrjsDVruDZzae7GkXY9LT3umgpq2Dkto20mJMvUqhEQgEwUugFlSiNZXAw6nMG8fqzTy24QCL52QguaeBxzYcICXawLSUaL+5ITnKwC3npStzjUGnYVl+FkmRJ1VZT+XzBWfOkRoz15015pTec8H4eNZsP871Z5/a+wSC4UhZg5mDVS3cPjcDgLU7ygOewiVHGbjtgrE89dFhxQcuv3SCjw/05lT94VDznyKwO0W6k1ftemxs63Qqr0uOMnDr+WN5+uOThvfYtTk89dGhXh8fCwSC4EMC5WTee2EttmYEHpKjDBTmZ+LZbF67o5xGi021kW29uYMbctNYtelkoFaYl8WXJfVUNFn9Nv4cTnw2EK2dTp7ZWMT8KUnKnORpVq42bwn6FnOHnaZ2Gwnhoaf0vplp0bz436OU1VtIi+t9fZ5AMBzwXj8nRxn4pqzJZ04tzMvi9W2lqsGU3SErQR24fOBTHx0mb+Io1c/qbh2vNqah5j9FKuYpoiav+ti1OTS323h/9wmfY2NjqFZ53ffPTVOCOnAZ3oq1uynISfG5vmcXQCAQDA06HbLqwlo0KBeAa3Gwv7JVScl/4fMSbjkvnWdvmqnaEkOv1ShBHbjsadWmIpKiTarpPzWtgXeTPalMd6/ZybL8LNGSYwA4WmcmOcp4ylk3IVoN54+P4+/bj/fTyASC4KRr2uU/vq3gV//c4+cDr8tNVQ2myhotqj7weKNF9fN606LIe0xDzX+KE7tTpKu8aqdD5v739lCQk8KLW0p8DHH38SYK87JYtamIhPBQVcPrqoYczLsAAoHAn7YOu+q9be5wDNKIBMGEWn3GMxuL+Nddc1UX/xabQ9WejtWZsXY6qW7x3bEOtPts0msVlbjKZiuvbS1lybwMZo6JJj0uLKhV3YYyJXVmkqJObw6/cEICT398mLsvnYBW/G0EI4SuPtIpo+oDJyRGqAZTYfqQAD5QPcTpTWNx7zF5+8+UKCMVze3oQ4L3/hQndqeBp51BYqSBJa9vp7S+HUnyN8SWDgdrtpexeE4GCRGhSrTvwaDTMDMtZsjsAggEAn8ijSGq93a4QTtIIxIEE4HqM2oDiOt4AjVvDDoNHXanErB5E2j32eZw+nxuZbOVVRuLMeq1QdNIdzhytLaNxIhTS8P0kB4XRqRBx+bDtX08KoEgeFHzkWo+cHJSpKrfSowM9TtRW5afRWJk4Puwp8biXcfk8Z/Hm9pZtbGYpW98K8RThiNd//Bddwze31XB8ksnsmLtbiIuyWJZfpZfgXtGvIkPutk1EAgEwY0xRMvySyf4FW6bdCKwE/S+nsODJ1DzFtUqzMtizfYyCvOy6HT4LoAC7T4fqzcPqbqQ4UJJ7emf2IHr1O5vX5Zy8ST1+iCBYLjR1Ueu3VHut15+6voZjItXP/RIiw0jKzGcJfMycMqgkSArMZy02NM/JAnktz2iaCNaPEWSJC2wHaiQZblAkqRXgAuBZvdLbpVleackSRLwDHA5YHE//o37Gj8E7nO//hFZll/t73H3Bu8//Nod5UrapccQVyyYzCUTRzE2zkS9uQOrzelneGNiwpSdA4FAMPSIDdeTFBnqc28nRYYSG64f7KEJggC1QK27zAyNRmL+5ET+uvhcSuvNxEeEUlzdRkFOCmu2l7FgapLqezISwn3mkVP9XEHfcLTOzIy06NN+//ludcyqZusZBYgCwVChq69qtNjISgznX3fNpbbNtVmVFmMK2NNOo5HIm5hIRnx4nx2SBNpge31bKRDcm2QDcWK3DDgARHo99jNZlt/p8rrLgCz317nAn4BzJUmKBVYCuYAM7JAkaZ0sy439PvIe8P7DVzZbWbO9jNU352LUa9BrNZg7HHx5rIH73ttDaX076XFGHl44DZ1WUgwToKS2bUh0sxcIBP6kRJkoqWsjNz2GBnMnsWE6HLKTlCihbCdQP1HrbpHidMp8WlTD7vJmnDKUNViINelZv7uCFQsm9zow600diaDvOd5oITGAzHpvMOq1nJ8RxxtflrJ8/sQ+HJlAEJwE8lUAkuTKjqtobFfW0mqtwdQ2t3rb4LynMXnraVQ2W4N+k6xfAztJklKB7wKPAst7ePlC4DVZlmVgmyRJ0ZIkJQMXAR/JstzgvuZHwALgzX4beC8JNGF37U33QMEUWqydAOw70cy4+DBM+hDsdicfH6oRfewEgiFMRbOFmhYbK9ftU+7jB6/MpqLZQnqcOIkX+C46PGprgfx+WYOZklqzj9T38ksn8NxNs5iSHKU6N9jtTvZVNlPZbCU5ykh2ciQhIRrVxY6g/zB32LHYHEQbdWd0nfzJiTz+n4PclZ+FrqvCmkAwDOnqq5xOmX/vreJ//37ST947fyLrdlYwd8IoDla1kBJtZFqKv090OmXKGsx8U9akqGuezvq6q99++dZzhsQmWX97jP8Dfg44uzz+qCRJuyVJelqSJE91YwrgrfNb7n4s0OM+SJK0RJKk7ZIkba+tHbjC464FmKUNFj8FtIfW70eWXQ2Ln9lYxIPv72fjwWq+OFo/pLrZC86MwbJRQf9S29qhBHXguo9XrttHbWvHII/s1BE22v8crfNXyVz+9k6O1rn8fk1rB3/7spTFczJYmpfJ7XMz+NuXpbTbHAGDund3VXDD6m3c8ddvuGH1Vt7dVYHd3nXaHfoEu30eb7SQFGlAks5swTcm1kRSpIENe6v6aGSCgSLYbTTYcTplSmrb+OpYgxLUgctPPvnhIe6+ZAIvbilh1cZibli9lQ37qnA6ZZ/3b9hXpdoy4UzW1z2JrQQT/RbYSZJUANTIsryjy1O/BCYBZwOxwIq++DxZllfLspwry3JuQkJCX1zytChtMKsqoKXGmHhmYxExJj03z05n9eYStpc2Buw/JBh+BIuNCvqWujab6n1c32YbpBGdPsJG+59Ac0RZg2vB0W6zc0NuGi9uOdn37obcNCw2u+r19lU2c9+7e30WMPe9u5d9lc2qr/fgWUBtPVJHSW2bz+IoWAl2+yyrtzCqGyW+U+HSKUm8uOVon1xLMHAEu40GM96947YU16m3EfJqB6MWrHnaFARqmVDTau1T3xeMfrQ/UzEvAK6UJOlywABESpL0V1mWf+B+vkOSpJeBe90/VwBjvN6f6n6sAlc6pvfjn/bjuE8bp1PGoNOoKulY3L2urpmV6tN81qDTEGPSc82sVCQJtBIknUF+vkAgGFiijDrS44wU5KTg2ah/f1cFkWeYjiUYnvTUc8moC1Ha5Hjsac32Mp64drrq9QK1U6huCXxi3FM6qOD0KGuwEB/eN4HdWekxvPFVKbvLm8hJje6TawoEwUzXfnZqfjKsS7uXruqU1S1WYkx6JiZGqM7LCeGGU/J93dXpBasf7bcTO1mWfynLcqosy2OBG4FNsiz/wF03h1sF8ypgr/st64BbJBezgWZZliuB/wDzJUmKkSQpBpjvfiwo8ETrXx+r5/3dJ9hb3uzXT+P+gilEmXQYdBqffndrd5TzywWTuOW8dNbvrnClawLHG9qHZRqNQDAcccoO7s6fgKcURivB3fkTcMriHhacxDNX6LSSas+lUe7eZzaHgx+dP87Hnn50/jhsDvWG93Fh6j1S48ICq7KqNU0XZQBnTl8GdlqNxCWTE/nL5yV9cj2BINjx3qTyKM17fFt6nJGn3f05//C9mfzisokkRxn81CmTowzccl46r35Rwh3zMn0yH+7KyyJES8BU+K4nb94niN/7y5dcvupzn9TPYPWjg9HH7m+SJCUAErATuMP9+Ae4Wh0U42p3cBuALMsNkiQ9DHztft1DHiGVwcY7Wl88J4MXt5QQY9Jzx7wMlszLYFxcGJFGHQ+t34fNLrMsPwtrp0PZhahstuKUZbQSLJk3nofX71ei/seuzeGKnNFi91QgCHKMOh21bW1+YhfpcUIVU+DCe65Ylp9FmF7r0x4jTK9VdpWjjXo6HK1+9hRlVA/ULDa7X6udwrws2jvtAXebA53yBWtfpqHC8QYLM8fE9Nn1Lp44inve3ilaHwhGBN4txCqbrWzYW8mTi6aj1Ui0ddi5x+tkbFl+Fj+5MIPRMUYfdUqH06VlsXhOBg+u9619v+/dvbx62zmqvm9/ZTM/e2e3z8nbxMQI1cBt4l1zkSQ4XN0alH50QOSWZFn+VJblAvf3ebIsT5Nleaosyz+QZbnN/bgsy/KdsiyPdz+/3ev9L8mynOn+enkgxtwbvKN1z0lcZbOV5zeX4HC6+lvd+cY3lNa3U9ls5bWtpYTptTy8cCoGnYaclEjCDTrabA4lqAPXdVas3T3oUb9AIOgZa6dDaU7u+tnp/ln9hEUw8vCeK8w2B3/6zDVHgGsh8qfPSqhqcdVWt3bYVe2prUO9xk4fomXTwSoeXzSdx66ZxhOLprPpYBU6rdZnt/m2V75iS3EdXxTXAaie8gVrX6ahQnljO/ERfXNiBxAWGsKczHhe+ULU2gmGP54WYgadhuQoA5dNS+bed3ax90QL97/nW0f8zMYi6sw2xsX5CpnUtFp91uTeWDudWGx20uOM3HlxJkvzXF/pcUaKatr8ArhA9dCHq1u57ZWv2HuiJSj96GCc2A0buu56eu80PPdJMUbdBJ/nK5ut/Obfh/jt1dk8c+NMdBqJn77xDbfPzQjKqF8gEPRMq9Wuev+2WUVgJ3DR3G7j8UXTae+wkxxtYNuRWp77pFh53nsx0NLeqWpPre3qgV1SVCjXnpXGz9/Zpew2r7wim0ijlh++7Aomk6MM3JCbxpLXt2PtdJIeZ2RlQbayo+3JEgnWvkxDhcpmK/HhgVNgT4fvZCexct0+7srLIixULNkEQ5tAWQSexxMi9KxZMhtrp5MfvvxVt0GaU4baNivjR51cJ3tO/UC9Rm9sXBh35WUpglOe9kR/czce975+WKh6PfSBqhZuyE1jw95Kv2yJYOhvJ7zEGeB9bOzJB/b+A89Mi/YzivQ4IzIS+064FMu6KxId7KhfIBD0TCDnbwrVdvMuwUjBbndSXGNWdpw9CwkoY3tps99iIMKobk9hBnV7sjvgwfd9U44efH8fr/3oZMpRV9Gu0vp2nt9czOOLpnO4uhVZhpRog0j9PwOa2ztxOGXC+zj4Sow0MCkpgr9vP86tF4zr02sLBANJILGR+ZMT/fo/P7louurBiffPGgmMOi1bj9QpQaLn1O+xDQdUgy6njJ+K8Mp1+1gyL4PdFS0+10+MCOWp62f4jKswL4vXt5XSaLGxeE4Gr29ztabJSYlkYlIEDid8ebT+lBui9yUisDsDPAa0/O2dVDZbWbO9jNU356LTSiRGGkB21dU9s9FlWLnpUfzv/Enc9srX3D43A3AZj1pQGAxRv0Ag6BmPGIbnPvfk/+u0YpEscLUj6JpGtHLdPl7/0TnUm21KQ3HPAiA5wqBqT8kB1JI9qUfeWDudmDvsymJIbce7tL6dw9WtPLupGINOw7Wz/NrDCk6BE03tjIoMPeMedmpcNjWZF7aUcPN5Y9GK4FswRAkkNrJmyWy/x4tqWrs9OFmWn0VqjJHCt76ltL7dR5FyQXYSk5IiaDB3sGbJbCw2hxJofXm0XtVfpsWYlM/zZDCkxYaRFhtG3G3n8HlxHbIMr28rpbLZlTYvSa5T+he3lLBh2Vz2V7YGhUKmCOzOAI1GchlQ4VzVbvSbDlbz2lZXNJ8YqSc0RMsOr9517++qUIz19W2lLJmXQUZ8OGNijThl17F0MHe3FwgELtTEMAQCcE38aguJ8sZ2Hv/PIRotNp8FgKSRiDaG+NhTtDEk4DxgCtA+IdakVzYePY91fY0sIzYS+4gTTe19pojZlQmJ4Zj0Wj7aX82CqUn98hkCQX8TSLSpstnq0/YL4Hi9mYeunMoD6/YqByd/+v5ZSJKMURdCWKhW0bDwXGf52zuZVDiXjIRwMhLCGRsXxrF6MxbbybII70w7Dwadhtq2DhbPyUCrgdz0WM7PiFN8bkJEKC98XtKt/3Q41dU2PeMZSERgd4Z4utGr/eHC9CE0Wmw890kxq743k99/eJBfLJisnNLdev5Y3viqVDGmyUmRgOwq2uyyAyGCO4EgODHqtEQYddSZTzYkjzDqMOpEcCeA5Cij6kIiPjyU/50/gWP1Fh7bcIBJSRFkJIRT29aBze7b5NZml6lr62BsvP8845SdfvVyKwuykZGVjccGcwdZo8JZsXa3z450SrSBa2eliA3EPuBEU3u3LSbOBEmSWJCdzOrNR0RgJxiyBAqqRrtbFHhnKTy8cCpfH63l2Ztmsbu8CYcTfv3+Xu7On8C8GaP48mi9EtR58Nam6C7ts2t65VPXz2BKcgRVLf4HNOCbnRfIfwY6CRwMrQwR2PUjiZGhSkpNe4edgpwUfueV92vUafjZ/EmYbXZM+hD+9Gkxh2vaWHpxJk9+eHhQI36BQNA7OuxO/rbtGLecn0G7+15+9YsSViyYPNhDEwQB2cmRPHr1NP7fP/f4BF73vbdH2cArzMuiwdxBRkI4eo2Gl744qjTWdcrw0hdHWXXDTNXraySJ5zcXKw3NZRme31zMqhtn+mw8znLKTEuJUs0uEZw55Y3tRJv6J7ADOGdcLGu2l7HzeBMzxkT32+cIBP2FWoD01PUziDDolKAOXAHRs58UcX9BNkvf+MYnYPrlP/cwfUw0oyJ8g8TkKAPX5aZi6XBQUtuGRlI/QfugcG7ATDu1jTPoOTsPAgetg6GVIQK7fiQtNoysxHCWzMsgOdpARXM7pfXtvL6t1N2gNoR7vZTMCvOyqN1WSoJXOodQxxQIgptGSyd5k5J8VAkL87JobO8c7KEJgoCQEA2jwvVK4DUhMYLXvihRAjeANdvLuCAzDoDWjk5uyE3z60vX2qFuTxabg9L6dh+VTc/j3nSXXSI4cyqa2kmL7b/elVqNxPwpSaz+7Ah//MFZ/fY5AkF/EShA8j7tSo4ycM2sVNJijFg7HcSY9EpNG7jWxNUtVpKjTtYix5j0fid+v7l6mup7PevpU/WFPfnPQEHrYKS4i8CuH9FoJPImJpIRH05ls4UZY1wqmZXNVhxOmQfW+RbUr9pUxJJ5GZi8VLWEOqZAENxEm3Q+ioOee/m1284Z5JEJggGnU0ajkXhxi6tG4xeXTSRvUpJf4GZzN7bTh2jV7elH6vYUaKc4MYDYiqB/qGhsZ2Y/n6RdNDGBe9bspKKpnZRoY79+lkDQH6gFSJ7TtxiTnptnp/uJpLy29aRgiUGnwSHL1LZ1KBoWk5Ii+Jl7YxVcPvNX/9zDknkZrNqo3lamP36vnk71BooBaVA+knE6ZVqtnTRZ7MSadDxylas5eUJ4qGo+7rj4MCqbLIAoahcIhgLNFvW+Y83ixE6ASwnuV//cwz2XTMCg05ASbVIN3PQa13Tcag3Qx86qbk/eTX1BzBuDRWWzlbh+Ek/xYNKHMG9CAi9tEQ3LBUMTp1OmpLaNrUfqKKltw+mU0WpgWX4W1+Wm+vnGZzYWcV1uKuDybfcXTKGkpg2jTqtoWByqblX1mZkJ4QPqFz1B6+yMeDISwgct1V2c2PUjdruTd3dV+DRCfGJRDs/dNBOdVhNglzWU1Ggjz/9glp8MtkAgCD4MOg3pcUaf1Lr3d1UoE4pgZFPdYqW0vp1XvjjG4jkZdNgdfgpwa3eU02Bxie9EGnSqc0OkQad6/WDaKR6pOJwucZvYfhJP8eY72Un8v3/u4e5LsogIYBMCQTASSNAkxqTj33squfuSCUorsLU7yhVF4ZQoI4X5mUxOilS0KF697ZweVX/LGiwsmZfBhMQIJidFMi5+ZPhFEdj1I/sqm/nDpiKltgLg1S+OcvWsMZitnfzqsknUmW04ZdBKrgaxJ5qsPoGgUMUUCIKbSKOOuy+ZwNE6s3Iv333JBCKNYtE13HE6XW1pqlusARvSelIlK5utPPdJMb+4bKJfPciy/CzCDa7pWKOBx66dxpHak/aUkRCGppt9AlE/N7jUt3UQYQhBp+3/zZz48FByUqN566syfjxvfL9/nkDQE73xgxC4j907d5zHZdOSeXD9PgpyUtBq4IGCKUoQF24IgWaoabFS22bD2unEYrN3q/rraSRe2WzFoNPwQeHcEbOOFoFdP1Jv7vArgn944VSe/aSIKIOO789OZ/XmEuW5R6+axqpNh4OiD4ZAIOglMlQ1W33u5WX5WWSIVLhhTaDd564bcWPjwvjN1dP4lVsVU5bxU4B7ZmMRr3vV0Fk7nT729OCV2QP++wl6z0CkYXpz2VRXjeatF4wbkGBSIAhEb/0gqPexizHpabc5eOvrMr/18v0FUzDptdS3dbBqYzEGnYbFczJ4cUsJabFhqqq/h6tb2VPR4tNIfKSJEPa7R5AkSStJ0reSJK13/zxOkqQvJUkqliRpjSRJevfjoe6fi93Pj/W6xi/djx+SJOk7/T3mviLSoPfLF77/vb0U5KQwd8IoVq7b5/Pc/3t3DwU5KT7X8BikQCAITlo67KoL9ZYO+yCPTNCfBNp9PlZv9nutyd3AfmleJrFhetV6kNq2DgA6HbLf3LBy3T46HbLfdQXBQWWztd962KmRkRDOqIhQ/rW7csA+UyBQ41T8oCd7wUOyu3/d58V1FOSk+K2XH16/n6pmKzFhocpjWg08df0MxsX7bpx6grwJiRG8uKXERw1zpIkQDsRWzzLggNfPjwFPy7KcCTQCi92PLwYa3Y8/7X4dkiRNAW4EsoEFwB8lSRoSnX9tdqfqBK7VgCQR8DlvRppBCgRDjTarXfVebrOKwG44o7b7rLYRd6zezN1rdrJqYzHPbirmeGO7X/2lQachJcqlctjgTjXqet0Gs60ffgtBX1DV3E6MaWBTry+bmsyfPj2CLIuAXzB49NYPgr/Q03W5qTyzsciVcq5RXxObbQ4s7k1Sg05D/sRR3ZYnCTGpfg7sJElKBb4LvOD+WQLygHfcL3kVuMr9/UL3z7ifz3e/fiHwlizLHbIsHwWKgSGhI951dwJcRjYpKRKthOpzZ6fHkh5nVH5+7NqcEWWQAsFQIyFCr3ovx4cP3A6+YOAJ5N+7bsR5Fj7JUQbuvDiT8FAt9xdM8Vl4PHLVVLJHRwGQEmNSve7oKCFvH6ycaLL2a3NyNWaMicZqd/Dp4doB/VyBwJvu/GBXBUyABdlJfFA4l7eWnOuy4U4nmw/VcHZ6rOp1NJKrt6cnQJuWGt1trZxHTMrzGZ6G5COlvg76v8bu/4CfAxHun+OAJlmWPVvZ5YAn9zAFOA4gy7JdkqRm9+tTgG1e1/R+j4IkSUuAJQBpaWl9+kucLloNLL90Ak99dFjJGb7nkgk8/2kxi85K5cErs5WUG0+x533v7WHJvPHITifjR0Ugy64dX6FyNvQJRhsVnDkxJi2PX5tDcW2bInYxPiGc2LAhkVjgg7DR3tPbhrSJkQbS44w+9SO56VG89MOzabTYSIw0kDM6ipAQ16ImJixEmRtiTHquy00lIz4crUZSeuKNVILVPk80929zcjUkSaIgZzTPbSrm4omjBvSzBYEJVhvtLwL5wbQYU8DaO09dXEltG+lxRhZMTea+9/ZQmJflU2P3q8smkRYXhsVm52+Lz2Xa6Khe+b+RLibVb4GdJEkFQI0syzskSbqovz7HgyzLq4HVALm5uUGRm1Db1kGoVsOSeRk4ZdBIYNRpqG2zUWe28d7OCh5fNJ3imlYcTpRiz9Wbj7AsfwK3vfJ1r9Uxe6tKJBg8gtFGhzrBYPct7U5auvQYa7F20truDPCO4EXYqD+BbKy3bQbGxoXx8MJpLHl9u3JylzcpiR+9qu7fK5s6+Pv2Mp6+fgZWu4NjdWYe23CQRottxKskB6t9VjZbmdHPzcnVOC8jjn98U87Xxxo4e2zsgH++wJ9gtdH+QqORmD85kTVLZlPZbCU5ykB2chRljRYlqEuOMnDNrFQOVrWQEm1kWoorQOvqG1/f5mo4rtXAeRmxVDRZueOvOxQ/+chVU7lqeoqyCSZQpz9P7C4ArpQk6XLAAEQCzwDRkiSFuE/tUoEK9+srgDFAuSRJIUAUUO/1uAfv9wQ1eq2G32446Ndb48Uf5mKxOVi1sZjD1a08u6nY530FOSmKghr0rI55KqpEAsFwwemU2XSomt3lzcpJ2bTUKPImJg6o3Xc4nLRa7X6qmFbH0AvsBL4E8q3zJydS1mhRgr1zxsYFtDmNRkKnlZTedWkxRk40txNj0it9mrz9u83hIG9SEvd4faZHuluoJAcn1S1WYgc4FRNAq5H4bk4y//fRYf7249kD/vmCkY3TKXO0zsyByhaKalp5e3u5sgEVY9IpQd3Ns9OVk7jVm0t81qc6raSsdT0tYQBmpZ2ttP4C1zr4vnf3kjUqnOljYgbtdx4K9FvYK8vyL2VZTpVleSwu8ZNNsix/H/gEWOR+2Q+B99zfr3P/jPv5TbKrKngdcKNbNXMckAV81V/j7kssNlcj2jsvzmRpnusrxqSnqb2TvRXNPjUW3gQqIg2kjnkqqkQCwXChrMFMUXUbqzeX8OymYv68uYSi6jbKGgbW7jsdsqoqplAxHPqo+dbHNhzgX3sruXzV53zvL19y+arP2bCvCqcz8N87OcrA0rxMXtxSwop/7OHPm0u4eXY6yVEG5boe/x4ZqvNTh1u1qYhrZqUKleQgRJZlalo7iBlAVUxvLsxKoLi2jR2lDYPy+YKRiWfT67t/+Jylb36r+LQYk57lb+/EpA/BoNNwzaxUP3+2/O2dfH2sgZLaNkZFqNfoVTeri7J4q10K1BmM88wVwHJJkopx1dC96H78RSDO/fhy4BcAsizvA94G9gMbgDtlWXYM+KhPA4+U64tbXAvPFz4v4Zbz0qlosPD29nLuL5jC+7sqKMzL8gnypqdG96oo38OpqBIJBMOF6pYO1YCquqVjQMfRbnOo3n/ttiHhpgTdoOZbC3JSlEa40PNGmtMpU1pvYfXmIyye42p5cPclWUgS3J2fxdK8TNLjjIp/t3Sq25Mk+c4DXYUJugssBf1Hk6UTvVaDQTc4NbUhWg0Lp6fw+IZDg/L5gpGJ2qaX9wZUp8PBU9fPCHhQcazezMf7q6hubefJRdNZlp9JcpRByVCoM3cEECU7836Rw913DkiDclmWPwU+dX9fgoqqpSzLVuC6AO9/FHi0/0bYPzic6o1ol16cSWWzlVZrJwU5KYQbtPzlllwazDaO1Lbx163HWHlFNg++f1JY5ZGrppIWo16c7VEl6pryKdokCIYzZptdSW+T3Flwa3eUY7ENbJuBaFOI6v0XbRoQ9yroBadbi6nmW7vLqFBLkTxWb+ZQVYsinhJj0nPLeenK3NDVvwfy5xoJRZxFpN8HD67m5IOrgDt3Qjz/2lPJlqI65mTFD+pYBCODQAcKng2o2LBQZqTGkBgRqpQpeDDoNNS2dqDVSPzole0+frC2tYPXtpYC+ImprCzIpjfldd35+5HgO0UFYj9S06pu+B7aOhys311Bm9XB18caWLF2N6s2FjMlJZrnPytWdncXz8ngD5uKKGu0qH6O6NshGImMiwvjtgvG+pyI33bB2AG3e62kYfmlE3zuv+WXTkArCfcaDHgm8lNJnfSQFmNi9c25FOZnKidrgWS5u8uoSI42KQuUa2al+m343ffuXsW/q/nz+wumEK7Xog9xLTxE+n3wUN1iJXaQ0jA9hGg0LDorlUf+tX/YnT4IBh/vE64jNW0cq2tDI0kB2xN4VDE/PFDN8r/v9MtKK8zLQquRVP1ge6eDymYrlc1WXt9WypJ5GfzhezN5fNF01n5TRqSx+3utJ38/Enyn2FLuR0z6ENLjjBTkpCgnCu/vqmDGmGgK8zOJD9ezsiCbn77xDbfPzVAMTZKgtL5dKSL1EGhHuLfqbALBcMLulJVWIuBy0E99dHjApb+rWqy8/N9jLJ6TgSSBLMPL/z1GSrToOxYMBJrIexIhcTpl18LEa2f3sWtzODsthkeumqoU9vcmo2JHaaOPf+/uxM/jz1OWzGbjwRocTnh2UzGVzVYMOg0fFM712y33qM4drm4FEP5/AKlqsRIzCMIpXTl3XCwb9lbxz28ruPas1MEejmCYoHbCtSw/i3/vqWRZfpZP5sFvrp7GrLRo0mLDfPyuR+1yQmI4h6vbeH1bKdeelarqByckRigZC40WG2NiTDidTrRaDXflZ/W4cduTv++udGm4iFKJwK4fccpO7piXyYPrT6ZUrizIRsZlVKFaLQ0Wm2Jk3uk3aqk4EhIltW2qk/ZI79shGHkcqzcHzN3PSowI8K6+JyEilEaLzWcjxqDTkNAHtQCCM+d0J3K1BcKKtbsZu2Q2f9hUxOI5GUQYtIyONlFWb2ZfZYsi4+3N2LgwpW66O/8eH3bSXjQaSVFOVhu3d7pmV9W54ZhaFMxUN1uJMuoGexhIksT3z03jd/8+yHemJhEeKpZ3gjNHzQ8+s9Hl/17b6jpRO2dsDBEGHRabA8+Bsbff9ahd/uw7E3hxS0m3fjAhPJQ1S86jw+6grcPOg+/vo7S+HYNOw0MLp2K3O9HrA9ez9uTvR0LpksgV6kc0kqQEdeAyrgfX76PDDqs3u9TRjjdYMOg0rN1RTmFeFulxRsL0Wu4vmOJzdL0sP4u71+w8pTQiNYZ70ahg5GDUaVVTQYwDLGIQptfy+KIcJV1vWX4mjy/KISx06DUoH454JnJvejORB1ogVDZbKa1v5x/flON0ws/f2cWTHx7mhtVbVX2zRiNx7thYnv/BWRTmZxIeqvVL3V15RTadzpNiO06njEmvVWzKo57pGbd3umYg1bnhlFoUzJxoDo4TO4CsxAimpkTy9EeHB3sogmFCd7V04Grr1WDuZNPBGpa/vUtZo6qpXb69/TjP3DBD8YMPBFjn3rB6K+WN7UpQ5/nMB97by+4Tzd2Otyd/PxJKl8SWTj9iCaCWt7u8SXn87e3lynH2hr2VLJk3nofX7yfGpGfJvAzGxYdR1Wzlta2liszr6fYyGglFo4KRQ0RoiF8qyLL8rAHfqbZ02mm3OXz62D14ZTaWzoEVcRGo45nIu/q9nibyQDu7HuW2QAFVV9/sdMp8fKjG5/MfvXoq986fQFO7HVmG5z8r5pGrpimv7+qnC/OyWLO9jBULJisZG570+8PVrcM+tSiYqWxu55xxwdMc/Iaz0/jF2t1cOyuVKaMjB3s4giFOID8Yptf6ZQp499vcsGyun9+9v2AKHZ2yMlemxxlZfXMuDqeTb483+axzf/XPPSyek+GTCWPtdFLdclLtXU0kpSd/PxJKl3q1ApIk6TFZllf09NhIp6uReXYsut4Q3n2LK91B2xOLpiMB976zS9kVXrWxGINOw+I5GT69O0530j7dWhOBIBixOZ2YdFqWzMvAKYNGApNOS6dzYBuD2x2wcp3vyfzKdft4+dazB3QcAnVOdyIPtEDITo7iqetncLCqpVcBlZrf/X//3KuyaHGd2B2tU5cRX/Pj2UxLjVbG7Um/B/WUpuGUWhTM1LR0DEpz8kBEGXVcf/YYfvbOLt678wJCtCIxS3D6qPnBZflZOJwyz35S7OenPH6tqsXq53dlGb77h8+V95TWt7Pk9e28ets5qmnnXU3XoNOQGHmy3UuggwrP5zaYO9BpNVhsDo7VmxW/P9xLl3q7tX0prv5z3lym8tiIRc3Inr1ppt8NsfKKbJ7/zNeAGy024sJ0NLfbVRcKasadEH7qk/ZIKBoVjBziwkL575Eavj97HI3mTmLDdPx121HmTkgY0HE0mG2q91WD2Tag4xAE5nQmco1GYv7kRNYsmU1ls5XkKCPZyZGEhGiYPzmRURGumjin7Gqz4RE36RpQ9ZTKBC6fPs69o1zWoF472mCxqQajp3siKegbaloHXxWzKxdNSGDbkXpe+Pwod1w0frCHIxjCdN0YS4ww0GrtpKyxXdVPpcUalb6cXf3u1iN1qu+x2Oyqm1MzvGqTDToND105lWx3/XxPBxVj48I4WNU6IjPUug3sJEn6CfBTIEOSpN1eT0UA/+3PgQ011Ixs6RvfsmHZXD4onEtpvZlvjzfx5pel3HROOk9/fFgxtl9fkY3V7sAhy6rGPSsthmX5mby9vZxGi41l+VkcrW9jXPypHR+PhKJRwcghNcrItbPSaG2309HpoMUqce2sNFKjBlaNclREqHoReIQQTxnKOJ0y/y2ppbXdgbnDjt0p09TewQUZCX5qmV1TJb3pri+d5/vfXzdDWfyEhar3RQzTq0/XIyG1KFix2Z20Wu1EGgZfPMUbSZJYPGccD6zbR/7kUQMqJiUYfngCtLFxYWw6VM3u8mayRkUE9FP3zp+oqhIcyBemxfpvTv326mm89fUxHl80nXabHaM+hNe+KGFiUjjTx8T0eFAxkjPUejqxewP4N/Bb4Bdej7fKstzQb6MaggQysqoWK7Mz4qlusSpHzbVtNhbPySA0RMOU0ZE8vN5VIJoeZ+TXV2Tza6/G5L+6bBJ7K5qRgUeumkqIFn7/n8M8s7GND07RQMXOrmA4UVzXSoOlkwe97peVV2RTXNfKlNHRAzYOs83Og1dmK+mYSo3dADdKF/QtZQ1mTjR1+NlXUU2L34JhzfYyHl44lVarnaN1Zp9Nt7FxYX7tEe65ZAJOWea5m2YyOTlS8cEltW20WDv9GvMW5mVhczgCjnW4pxYFKzWtLuGUYAyiR0UaWHRWKnev2cm7d16ATqRkCs6QsgYzRdVtrN5cQoxJ71fjXpiXxRMfHuTGs9M43mhhnNsfeZcp/eXmXO57b4+idPnU9TMYFx/GuPgwn82pY/VtfLi/jg/31/mMobLZSoShjfZOh3Lg4SlV8j6oGMkZat0GdrIsNwPNwPckSdICie73hEuSFC7LctkAjHFI0NNpmHe9nUf6tTA/k6VvfOOTb9zSbuOp66bTarXT3G6jvdOp5DEbdBoeXjiVxXPGUVRrpsHcccqpRWJnVzBcaG63K4tucKvOvj/wtW0xRj2VTe0+tX5Op5PoHhqpCoKbqhZrQPvy9vPJUQZuyE1jyes7VFN+NBqJ7NERPLloOmabHZM+hL9sPsLhmjbWLJlNRkK4Tyr/7XMzeH9XhU9fxDXby/hO9jmAumCA8OGDQ3VLR9ClYXqTP2kU20sb+eMnxSy7ZMJgD0cQhJyKP6lu6VACOY8+xJOLpnO4phWHE17f5hI/eWZjETmpUYzr4ts8/vGxa3NIiTYQGxaqbGp1HUOrVT09M8qo4/JVn/vU+722tRR9iMTDC6cp4iqBNC5GQoZab8VTlgK/BqoBz/+SDOT0z7CGHj2dhmk1+O1upMWa/HYUnLjSKCqa23E48en5Ye10cv97rqL7F7eUkDUqnFlO+ZQmdbGzKxgu1AdJbZukgQfXH/CbQN7+n9kDOg5B31LXFti+vBcMPaljulrMtCvCWJ7FyI9jjGQnRwG+qfxrd5Sr9qUbFx8mlI2DjOoWKzFhwZWG6Y0kSfx4zjjue3cv+ZMTmZoSNdhDEgQRp+pPzDZfHYjKZisHq1t5dpO/8Emb1ZVhEKgf6Ade/lFtDJdMHOWX6fDwwqn8/sODPtd6ZmMRr//oHE40W1ny+vZuNS5GSoZab8VT7gYmyrJc39sLS5JkADYDoe7PeUeW5ZWSJL0CXIjrJBDgVlmWd0qSJAHPAJcDFvfj37iv9UPgPvfrH5Fl+dXejmOg6Ok0zLO74b0LW91i9dtRyIgP50htG2elx7CjtDFg0b3n5piWEtVjkCZ2eAXByJnaZWKA2rZRA1zbVtGknvJxoslKTuqADkXQS3pje562Bl3tKzHSwENXTsGk12HusGMKDemx1uN//+7f4Hf90jmEhLjS47o28319m2uuyEmJJCsxQhlfSW3biK0bCUaqW4Knh10g4sJDuencNO5es5N/Fc4hNET01xS4KGswc7CqhdvnZgAuEaju/Mm4uDAK8zOVJuSbD9UwKUm91i45yjUPn24t3AeFc7lqegpZo8KparaSFGXAKctsL232u1Zbh50Va3cH1LgYaRlqvQ3sjnMyEOstHUCeLMttkiTpgC2SJP3b/dzPZFl+p8vrLwOy3F/nAn8CzpUkKRZYCeTiOiXcIUnSOlmWG09xPP1Od6dhiZEGGi02H3nr9Dgj9xdM4eH1+7F2unp6NLd38tbXZfzo/HFMSY5UvWEM7sVAb/KFxQ6vIBjpC7sMN2h56MpsHvCqbXvoymwijAO7cAkPJHYxwP30BL2jt7Y3LTmKhxdO5f73Tu4YL8vPoqbVii5Eq5zALcvP7DblJ9DCpratg0y3qEXXVP7KZisvbinxq6MeyXUjwUhls5VIY/Ce2HmYkxnP9tJGnvm4iJ8vmDTYwxEEAU6nzDdlTT79Vz196NT8idMpc6Cq1acH3R0XZvLEfw761QQ/tHAqkxJdPRQDlSlJuDaqevJp08fEMH2M6/GS2jbVa5n06ptrHo2LkeYbu62mlSRpuSRJy4ES4FNJkn7pecz9eEBkF23uH3XuL7mbtywEXnO/bxsQLUlSMvAd4CNZlhvcwdxHwILe/XrBg1q3+xty01jzVRlL5mXw8q25rLpxJve/t5eCnBR+u+EgNS1W7i+Y4vOeZflZaN2Lj97kCwfaDTlWb+7H31Yg6J6+sMs2q4PnPi1m8ZwMluZluvrnfFpMa3tgkYn+INakY1l+lt99GmMK/gXfSKS3tqfXazkrLZol807a12tbS1n+9i6O1p1sSfD29nK/v793yo9nYeONQaeh0yHjdG99q80PamlDga41EupGgpGq5uA/sQNXSuat54/ljS/L2Ftxqnv0guHIsXozv/rnHh8/uGpTEdflpqr6k65+syAnhQffdwn/eTIMCvMzeXzRdJ77pIjy5nZA3bcty8/i7jU7uXzV59gdcq99WiA/mRgZKvyiFz1tKXs0csvcX3r3V69wC67sADKB52RZ/tLdQuFRSZIeADYCv5BluQNIwXUy6KHc/Vigx4cUnlTNiXfN5UBVC4erW3l9WymNFht3XJTJhRNG8eXReiaMCueccTGkxWSTHG3g5S1HfdI3X9tayrVnpfY6X1js8AqCkb6wy+rWDqIMOiYmRdDuTon7/LCO6taO/hhyQMINIYyONviIp4yONhBhECd2wcip2F69xYZeqyEhPBRTaAg/PD+dV78oVVKR4GSa/V9uyUWnlfxSfsbGhfH4tTn83J0q5FHFvP+9Pbx86zlkJIT3WthKKBsHF5XN7UOmbi3GpOfGc9K49++7eP+uOUIlc4QTyA9OTYlCll0957zT1Lu+3lMSBCiCgABL8zIprW9X/Km3b/O0/Xpta6miZHnfe3t47NocJZXSI66i1i6hq59MijTgcLo+X01tc6T6xZ5UMR88k4vLsuwAZkiSFA38U5KkqcAvgSpcAeJqXE3OHzqTzwGQJGkJsAQgLS3tTC/XL2g0EuNHhZMea2JMjJEpyZGMjjKi1cDHB6pIiAjle+em8z9e6morr8im0+6gps2GJEFKdChzMuOYOjqS0dFGnCriKd71IyZ9COlxRkrr25XnR/JOxmAyFGx0oOiLnopjY01879x0fu4lSrHyimzSY/0nhP6kprUDk17DeRlx1LZ2kBARSluHjdrWDtLjhtbmyUiw0d7antMpU9lk9VElXpafxU8uzMDa6ToVTo4ycM2sVLQaMOm0zEyLUU0l1mokll+SRXK0CYvNTmJkKHdeNJ7D1a0AyuKpJ2Grka5sHGz2WdPaQewQOLHzMC8rnm0l9fxlcwk/vThzsIczLAk2G1XD6ZQx6f1LCNLjjLTbHHz3DydVJ39z9TRmpUUrNccxJj3XzEplTLRRtd2ALPv7U49v82775aG0vp30WCOrb85le2kDRp2WE03tbNhXxcSkCDrsDsob20mOMpKdHElIiEbpqdeT2uZI8YtdkWS5u+xI94sk6X380yibge3An2VZtvbiGg8AFlmWn/R67CLgXlmWCyRJ+jPwqSzLb7qfOwRc5PmSZfl/3I/7vE6N3Nxcefv27T3+XoNB1/qO9Dgjv7xsMoer25iZFs2PX9vut+B4ctF0lr75rbuGaCrPfVqk7Eo8ctVUrpw2mvLmdqpbXBP90fo2lr7xrWLsj1w1lT9sKvLZyRA1dmfEGf/HBbONDgR9UWO3o7SB77/wpd/98rfbz+Ws9Nj+GrofB6ua+Lasxa/f2cy0SCYlRQ/YOLogbNRNV6GUtBiTX4NxNdsrrm6l4Nktfva1LD+LKaMjeeC9vdx0TjpPf3y42+uU1LZx2ytfcUNumk8dyqNXT6PJbKPF2sm01CjyJiaOJJ88LOxzygMb+MP3ZmIK0Dw+GKlusbJy3T7eXzqHtLiB3QQbYgwLG+2KZ+59bMMBP5+0+uZcRVnSg0GnYcm8DCYlRRIWqmH/iVYfdfdl+Vn8e08lF00aRUZ8OI2WDsbEmsibmAj4tjHQSLDgGVfQ6L0pdmFWAsv/vhObXfZTBL6/YAqt1k7abQ4yR4VzWXYyISEaSmrblLYH3mM91f7OQ5iA9tlbb1QCJACeYOoGoBWYAPwFuNnvEyUpAeiUZblJkiQjcCnwmCRJybIsV7pVMK8C9rrfsg5YKknSW7jEU5rdr/sP8BtJkmLcr5uP69RvSHK07mSesqf/0d1rXD8X5meqHo3LuI63AZ77tIj/nT9J2el966tStJLEL9250ifre/RUNruOzu97dy9rlsymvdMx4nZ4BcFJX5w81LR2qItSDHAqZpNFvZ/eK7cNbD89gT+BNhDmT07sUS3taL1Z1b4SwkMxW+08ctU0n404T63exLvmMn6Ur+BJQU6KX0uE//fPPUrrmmX5WWQmhDM2fkQsSIYFbR12ZFnGqBtaKpOJkQa+Oy2J//fPPby2+BxcSzHBSMG7Vs5TG6fVuHoeWmwOVZ+XEm3ksQ0HWHXDTCWoA1d6r1aCm88b6yMy9dT1M3A6ZdUNtGdvmsnD6/f7BJWrN5dQmJeFJOFzfWunk4fX7/fxkwerW5iaEi3KjLqht0nW58uyfJMsy++7v34AnC3L8p3ArADvSQY+kSRpN/A1LgGU9cDfJEnaA+wB4oFH3K//AFcAWYwrWPwpgCzLDcDD7mt8DTzkfmxIUtpwcrHQtf+R032E7Y1Bp6GoxtUn5IXPS7jpnHRFFVMrwf/My1SCOjgppX3NrJM669ZOJ+2dDkUdSAR1gmDAk55xunYZF6ZXvV8GumFwoH5ndW0D209P4E8goZSyRkuPthcWqlW1r7JGCxFGHU2WTtW/e1mDrwhLYqQBrQbV13rqVJ7ZWER1y8BuSAjOjKpmK7FhoUMyMLpsWjJlDRb+vbdqsIciGGC6tlZ57pNiVm0spr3TEVCcqaKpnRty06i3nNxMTY4ycPPsdNpsDiWog5M+dl9ls6rvHRcXzqobZ/ptdK3aVERqjH9v565+stHSCQghqe7obWAXLkmSkizs/t4TEquuXmRZ3i3L8kxZlnNkWZ4qy/JD7sfzZFme5n7sBx7lTLca5p2yLI93P7/d61ovybKc6f56+bR+0yAhzJ3XDL7Fp+DqIVKY56+u9/ft5YDrtU9/fJi9J5p5dlMxf95cQrNVfXHhPdcIYxcMR1o7Ov3ul8K8LNo6Ogd0HAnh6gFmfPjQqb0ZrnS3q9sTYfoQP1XiwjyXP7Z02NFq1DfiuqbljY0L46y0GNXXeiohrJ1OLDb7qf56gkGkusVKbBA3J++OEI2GW88fy6/X7aOtQ9jdSKK7gEhNddLj81ZtKiLScHKu8xxMhGg0qj62uiVARk2bNeDJYLvN3qOf9NQ391ZJeCTS28Duf3H1oftEkqRPgc+BeyVJCgOCrll4MJMUFcrKK7J9jNFDZbOVNdvLWH3zWTx27TT++P1ZPupB4DJsp5eRH2+wqN4Ing1oYeyC4Ypeq2XN9jKfdgdrtpeh0w5salSkIcTvnl55RTaRQhVz0DmTXd36Nhut1k6fdgceJWOHU0ar0ai2uQgL9bU/jUbivHFxPHr1NL8F0z++KVd+TosVPnooUd1iJXoICad0ZVJyJNmjI/n9h4cGeyiCAaS7gMhTIvHKbef4+DxPWY+t08FDC6e6+tC5DybGxYep+tgYky6g7w3klyclRfCbHvzkOPda1jPWDwrn8taSc/mgcK7QjnDTq5WHLMsfSJKUBXg6Wx7yEkz5v/4Y2HDF7oDnP3P13goP1fo0KDfoNNw8eyyl9RYe/eAAt8/NoNHieyDqvXsBrh5KXZs0e1SMzh8fJ2rqBMMWvVbixrPT/Aq59dqBtfWmdjtvflnK44um026zY9SH8MLmI4yNmzyg4xD4cybtAcJCQ3jzqzI/gYGHF06ltMGCJLmUML3bXJh0WmVH2Ru9XsvCnNFkJoRR3dKBPkTDynV7qWy2KmMaFy8Cu6FEVYuV6CHQnLw7bjw7jRVrd7PorFSyRw+Ntg2CM6M39e2ddicvfF7iJ0yi12l57pMiFs/JYNaYaHeapsWvQXlhXhZmm71b36v23NSUaKamRDNjjKuGrtMhc/97exQ/+fvrZvjUz/VGSXgk0m1gJ0lSnizLmyRJuqbLU+MlSUKW5X/049iGJTWtVkrr25WeH8lRBhbPySAt1khFUzuhIRpCtRJL5mUQZdDxyFXTuO9dX2GU17aWKtdrtNgwd9iVXncaCWalRTM2/vQL8buqyInAUNAVu93JvspmKputPjLEA4lOqyFM77uwDtNr0WkGdhyJkQYO17RR+Oa3ymMGnYbESJH+3J8E8lNdH++NUIoaiZGh3Hh2Gm99XaYIDExOiiQ+QseznxRxxfQU3vyqjIKcFCQJHE546YujvHzrOarXCwnRMH1MjDL2l289Z0S2LBguVDYN7RM7gEijjuvPHsMv/7GHf/70ArTCBoctav5SLSA6Vm/mmY2HWHlFto/S8++uyaHRYuOK6Sms3VFOhEHLsvws2m0O3t1Z4dNvec32MlbdOJN5WdEBA8jugktPsCb85OnR04ndhcAm4AqV52RABHanSNceSpXNVl7cUsLiORk890mxIi27amMxD105Ba0GluVnkRhpICI0hMrmduUUz9PKoKGtg398U06jxcZT1884pZSe05UCF4xc7HYn/95XSVFNG04ZDlS2UNZgVmSIBwqjXkN0mJ4688lT7egwPUb9wAZ2omn0wBNI7fKSiaPYdqyB7aUNOGV4f1cFKxZMZkF20inv6qZGm0iNMbJwRoqS/l7bakVGZvEF43jxv0f9TvN6+3cXO81Dn6qWdqYkD/1TrgsnJLCluI7Xth7jtgvGDfZwBP1AT+2FvNeBWo3E9WeNwWp3+GyatnV08tiGg+hDJO4vmEJlUzvRYTrMVjt3XpTFA+tOqmI+evU0bA4nx+rNAQPI3vbtFH7y1OmpQflK97+3Dcxwhj9qi8DCvCxe3+Y6hbN2OjHptdx5cSbxEQYOVbXwycEa7rhwPHe99S0xJr3P6VxtawfPbCzi/oIpmK2d6EN6H3yp3eyPXZvDUx8d8lMymjRyeoMIeuBgdQvlje2s3lzic5LskSEeKNqsDn7/4SGfE5Pff3iIJxdNH7AxgGvyuWTiKP66+FyqWqwkRxqYNjpKbIT0I2pql49tOEBHp8On9UthXhaPbTjApKSIU/Zf5U0WnzpJhxP+9FkJjRYbf7xpFgtnpKDRwNPXz8CJTERoCGmx6n3BRBbE8KOquYM5mUP7xA5AI0n86IJxPLx+P5dMTmRMABsWDF0CqQNPKpyr2uj7/oIpvPjfo5TWtyvXMOg0LL04E40k+fRhfqAgG30IvP6jc6ht68CkD2Hlur2n1DdZ+Me+pVc1dpIkJQK/AUbLsnyZJElTgPNkWX6xX0c3DPHOby6tN/Pt8SalOBUgNz2KuLBQ/u/jk7sfKwuyKalztUnwyNN6WJqX6dPrY+kb3/aqQaPTKbOnosnvZl+xdrdyeuhB9AYReNNo6fTrNfPMxiKmpgzs7nWDxeaT1uw9voHEbneybs8J7nv35D37yFVTuWp6yoCnp44U1NQuC3JS/Fq/rNrkqgc5Hf9V3dJBbZuNVRuL/Z5rtnbicIJJr0UXomF3eRNOGe5/b69yQuhZmPS0Wy4YmlS3WIkxDe0aOw8p0Ua+Oy2J/317J28tOU/Y5TAjkDpwab0ZWcZvHehZT3ZdB6bHmSiuaVP6JJfWt3PnG9/wpx+cxc0vfaX0mzuVgwHhH/ue3q46XgH+A4x2/3wYuLsfxjPscDplSmrb2HqkjpLaNpzOk8onBp2Ws9NjlVO29Dgjd16c5dcT5MH1+0iPU1ce8paB9agU9STl7bmRNh6sUb3Zte6PSY4ycOfFmRTmZ2LUhfiMXTBysXaqSxV3qIhG9CcmfYj7nslkaZ7rKz3OiFE/sKqY+yqblaAOXP8X9727l32VzQM6jpGEmqqa0Z3i7vFbS/MyuX1uBlEGbY8qmGp+2myzE2sK1MoilCiDFqMuhKVvfMOqja4+ozfkpvHYhgMcqz/Zyy7Qbrn3awRDC6dTpsFsI2aI19h5891po2nrcLB6c8lgD0XQxwRSoSyqbqW8ycLtc13Kv8lRLj/pvQ70fn2kWyzojnkZPq/9tqzRZw3qTdc1aVdfe7RO+Me+prd63PGyLL8tSdIvAWRZtkuSNLCruCFIoJ0IfYjE0je+9Ul/TIk2YNBpOVbnusnA1dfOIzMbSHnIk8LpCfJ6I+XtWWjcPjfDp97Pc53c9FjS44w+9SOrN5eIXRQBAIkRBlW7SYgIHdBxmHQa7rgw06fAe+UV2Zh0A3tKFmg3VDSc7j/UUtpnpcf4+S2DTsOjV01Dq4GtR+pU03wC+enJSREU1baxLD/LT3lVq4E2m4OnPvYN6NVOCAPbh8iCGKrUtXUQHhpCSNfV7xBGo5G448LxrFy3l7PGxnD22NjBHpKgj1Dzl79cMAmr3cn/vL7Db03ZaLExKSlSmec9zx2obOHPm0tYfukEfn1lNnsqmtFKrkMKD6prg3ADJbVtVLdYsTtk7ntvj5Kq+eSi6QGDQeEfT4/eBnZmSZLicAmmIEnSbEBsR/dAoJ3aJfMy/NIfNyybyzdlTfyqS32I5yZrtTr4xzflLJ6TgVGnYVJyJA+v36fIwBbmZbFme1mvivc9Cw1PQ/Suxf/nZ8Sx6saZ3LB6m6i1E/jR4XBwzyUTePrjw4rd3HPJBGwOZ89v7kNkUII6cJ9uv7+Pvy5WVyXsL+LCQlUns9iw4bObH2x4Uton3jWXA1UtHK5u5cCJFlYsmOznc//fu3sUQSq1NJ9Afvpfd80lXK9VVV5tszpwyuq701oNPptrJn2Iqn2YBvhkWdB3VLVYiQsffvd3QkQoS+Zl8JO/7uDdOy8gNUbU2w0HPP4y7rZz+Ly4DlmG1g47z35S7LcxtWReBmPjwnhpyxE/pcuCnBSsnU6e+ugwS+Zl8Owml09dfukEkqMMAdeUR+vbfA4zPGvbymYrRTWtqv6xN71GBer01O7gbuAL4OfAe0CGJEn/BRKA6/p9dEOcQDu1XTMaPbv7v1KpD1kyL4PUaBPPfVqkKGgW5mWx6uPDimjEeRmxGEK0TEqOIL0XipieY/nKZiuvbytVpLzzJ41iWko0Go2Exaaebid2UQR6rZY3vir1cfpvfFXK7IyB3eGtbbOp2mhdmy3AO/oHJ7LqabqMSF3uTzQaCUmCe/++C2unk6V5mbQHSBN2eqWsd92gCuSna1qtIMnEqCivPrupiHkTRwXMePDeXLM5HKr20TnAGyFdEYIFp09Vs3XYbtzMGBNDQU4H33/hS/7+P+cxSrRtGRZoNBIJEaFKfzqPPoM31k4n01Ki+Pv2UhadlcavvbJhuor8eftUT6C3amMxa7aXsfrmXHRaicRIAxoJFjzzuWpmw3OfFPP29nJ+c/U0n0ONoaQqHYx+tKcTu1RcDcgnAQeBj4DNwJuyLNf179CGPl1bG4Br4u/6NzfoNJhtdtWbbEJiBKEhGgpyUpiQGIZW0lDe2M6P542noslCu82BRpL4/otf9rrw1PtY3hMsPnX9DCWo627sYhdFYHM4/NLdBmOhGhHqqrHzbHCAS94+PLS3iQh9Q6wplDXby/x2N7+TnTSg4xiJeAdla3eU80DBFFW/JXvF2N4bVE6njN0hk5sexS3nZ9DeYccUGsKrX5Rg0mspfGs3t8/J8PnMEEmi2dqpujv92LU5nJ8R5+N748LU7WPB1MGzDyFYcGZUtViHVX1dV76TnYS108G1z3/Bq7edIzZzhwlj48J47NocVqzdDainTUYZdZyXkUBSlIEnFk0n0hjCocoWXv7ipMifmk9NiTJSmJ/pc0AArhR4tbWtZ85utNiYlRZ9Wr1GB5tg9aM9tTu4F0CSJD2QC5wPXAT8UpKkJlmWp/T7CIcwannN91wyAUOIxid3+anrZ5AeG6Z6kx2rM5MeF8b63RXcdE66T/pbYV4W7+6sICw0hAmjwpk7YRSSBIeqWpiSHBGwQbm3MmegG0n05hIEIi4slE0Hq3h80XSfhfBAL1SjjTrVGrso48Aq1Wk1cOPZaap1WIL+xXsDqrLZyp8+Leb+gims3nyEgpwUV1Px5Ej+5KXu5r1BdazezOvbSrguN42fv7NL+fs9dOVUJMmltPnoBwf8/PLT18/gnrd38vq2UpbMyyAt1sSEUeFM9VrQeBgbF+aTIhoMvrQ7+XOxiO+ZyibrgPuZgWbhjBQiDCFc86cveKBgClfPTEGSgn+xLQiMRiPx3anJxJj0HKxs5v6CKTy8fr+PX2rr6MRqd3LHX121d+lxRlYWZPP9c9Ow2p28v6uCG89O47Wtpcp1DToNxtAQV3q63TeIC3RI4NGE8PRe9vSsG0oEqx/t7da2EYgEotxfJ4A93b1BkiQDrtO9UPfnvCPL8kpJksYBbwFxwA7gZlmWbZIkhQKvAWcB9cANsiwfc1/rl8BiwAEUyrL8n1P5JQcL7wDqcHUreypaeOWLYwDK7u3czHilSLlrIHV/wRRarZ3UtVpVa0c8x9l/+7KUJfPG+9ygY2LDqG3rIC4sVHX3o6fGj70J/k6FYDyuFpweaTEmbjwn3Wch/MhVU0kb4HoMs83B858VK/cSwPOfFfP4tQPbx66y2cprW31TU1/bWsrMtOiAmyuCvqHrBtThmjZSYwwsv3QiK9bu9gm0a9tsNFpsPkFVdYuVguljFFsGl299YN1e/rr4XEVp0xvPbvOTi6ZjttmJMekJN2gx2xxKQ15v39bXvrQv6C79dKgtrgaDE83tJI2AFMW8SYmMiw/n2U3FvL6tlHsumcDcrHgR4A1hQkI0zMmMJzXGSIO5gzVLZmOxOTDptdgdMjtKG2jvdHD7XJeeQ7g+hJ++8Y3iSx8omEKI5DppA5SWXL//8CCl9e288Lmv0J7aIYFHMPDaWSmD7gvPhGD1oz3V2K0GsoFW4Etc9XZPybLc2ItrdwB5siy3SZKkA7ZIkvRvYDnwtCzLb0mS9DyugO1P7n8bZVnOlCTpRuAx4AZ3z7wb3eMYDXwsSdIEWZaHhCqn9y7E3WtOBmbPfeIqOr1mZopi1Auyk5iwdA77Kls4UtvGs5uKabTY+NP3Z1FU3RZwgVGQk6IEdZ7H73t3D48vms7nRXWcnR7LeRlxp9xTq6fgr7cE63G14PQoa7SoyvvPSosZUGfWYu1UTQltsQ5sH7vESAONFptPzx+RtjwwqAVNsgz/87pvTcczG4t49bZzSIjw3ehKjDRQ3tgeoFazg7PSYwKmK932ytfEmPTccl66z2mtmm/rK1/aV4hU+zOjqtnKlOTIwR7GgDAuPoyHF07lv0fqeOC9va6G5nPGce2s1AFvLSPoG7z9kWd9dtsrX3P3JVlEGnQ89bFv9omnb52108lD6/ezLD+LNT+ezfGmdpDhCXdQB/6nVsG4sdVXBKsf7Wmln4brxK0KqADKgabeXFh20eb+Uef+koE84B33468CV7m/X+j+Gffz+ZJrW2gh8JYsyx2yLB8FioGBlb3rAzy7Fp5eImrpOBqNhEYj8dRHh3A44dqzUrl9bgZvfnWMrMTwgH3stBp1dbbimlZWbSzmx69v5197KwetD53o4zS86E6+fSCJNuqUoM4zhlWbigY8Rao397ag7/H0Q/ryaD0A54yNIyMhnJrWQKJVLv/35dF6pVfd2Lgw0uNMqr41ISKUEK1EYV6Wz9+2MC+LPeVNWDudXDMrVQnqPJ8zFHybsNkzo6rFSlzYwLZ3GUw0Gom5WQn85upp3HRuGu/trGDOY5t448tSZFmIRA1lvNdn6bFhPNTlkOCZjUVcMytVeb2108nYuDCyR0dx+dRkTKFaJajzfo137zpPIDk7I14J9oYDwepHe6qxW+AOrrJx1df9LzBVkqQGYKssyyu7e78kSVpc6ZaZwHPAEaBJlmW7+yXlQIr7+xTguPtz7ZIkNeNK10wBtnld1vs9Q4be7lrUmzv8TiGeun4Gv35/n1+hvqeW5IGCbNVdA4fT1WT8mlmpHKltY09FM9NSogD6PS3SO/UykFLdYB9XC04PT2PwrqIlJt2p7d6eaXpuo0VdFbPJMrAndsN5RzJYcTplth2txe6ABnMnnQ4nVS0WZo9LCGifAJev+pwYk57rclOZMCqCycmRGN270n41khLEBBDGKchxTUHdNeQNZt8mbPb0kWWZmpaOYauK2R2SJJE9Oors0VEcrTPz8n+P8p991fzhpplEGoZ3zeFQJ9B8671Ra/ES8fOsHSUJJiZGkBxlUNprOZwyW47UMS7eRHqMSdXfJoQP/9P/YPWjPdbYya7tmL2SJDXh6l3XDBTgOjXrNrBzp0vOkCQpGvgnLnXNfkGSpCXAEoC0tLT++pgzojfpOBokn1OIGJOeVmsnpfXtSmsCzwIjIlTLIwun8czGQ35B3z2XTMCo07A0L1NJ01y9uYRnb5qJzS73a1pk19TLZfmZQXlcPdAMBRvtDdbOTu6Yl8mD671ESwqysdrtPb/ZTV+k54Yb1PuDhYcOfHpQsKXanS5DxUbLm8wcb7Cyct1JG3zwymxSY8xIksxPL8r0eW5lQTZldW3EmPTcPDvdx1c+ctVU/r2n0q9GMnNUOFNHR3Pv/IkU1bThlCFEAz/7ziSe+M9BZSxD1bcNRZsNBvtsabejkRjxaYjj4sN44IopvL61lO+t3sabS2aL4I7gsNGudDffeqcTxpj0GHQaVT/p6ZV849lpPPrBARotNh5eOJVx8QbuystSyjM8vlgXMjK0FYLRj3abiilJUqEkSW9JklQGfIYroDsIXAP0ummVLMtNwCfAeUC0JEmegDIVV4on7n/HuD83BJdIS7334yrv8f6M1bIs58qynJuQkNDboQUd/5+9Mw+Pqjr/+OfOlpns+0JCEkLClhAW41qglqhFi4L70moXW35tpaG1tnZRKS5trdZWxC64tJXWiopVoZSqgBVbUMNOZAuBhIQkZJ0ks2SSmfv7Y2YuM5mZkDBJZhLO53nyQO7ce+dM5r3nnPec932/LSab14rJnZfkcKrdoujOPbu1klVbKnnhwyoON5r4pLqVuvZuJAmeuGkGv7llBi997SKSY5zaS31z7/bVGoMKi3SHP20/1qyEM/Wlb+jlq+W1LCstCLvt6pFmrNioJKkUpw5cwuAbKpDOGtl9hqEIz41Qq33sallpARGa83vCFQyjxUYb2rsVxw2c9vO79ytp7rDR0mXzeW3FhgpyU2J47Poin/DdB948wOVTUpW+9dmtztzmWL2W2nYzpzu7nYtiWyr54wdVNHd28+Orp6LXqli307dv+/n108+7vm2kCAf7rO+wkBxz/oRh9odGpeIrl+UyLt7At/+6C3uI0j3CiXCw0b70N956hhP2OGSWlRZwc0mW3zSHX95QzL/21yv5dqu2HqXT6vDJuV/+dgV17Vbe3FPHNSu3cftzH3HNym1sqmjA4ZAHNI8UnDtn27HLBV4DvifLcv1gbixJUgrQI8tyuyRJBuBKnAVRtgI34ayM+WWcwucAb7t+3+56fYssy7IkSW8DL0uS9BTO4ikFwMeDactoIkqnVlZPbpjtfLgSInU+ZWk9V0/uvMSZvO9O5G/qtNJls5MZZ/AJE3LI5x46NNBdlr45WO6qgX/56kXIyGGzXS04N1pN/kMgW80DFwYfimpSLSab32qUE8No5UwwPDR2dnvZT0acnq9dNoFTRmtATdD/HmsO2P9lJ0Z6SdAsKy0gLTaC053dPPHvw16Tll9uOsRf776ItUsuYfOh0wAs/Vw+1l4HKglmZ/tKHgjGDvVGK0nnYRhmICRJ4suX5vKLfx3k9+9XsnR+QaibJOjD2cZbdzhhm9mG0awlOiLS7/k7q9tYUJRBU5eNeqOVhcWZ7D7Z7vfcky1mHuqzwHbvq3uY/J25HG7sFMX0hpF+l9hlWb5XluV1g3XqXGQAWyVJ2gd8Arwry/IG4H7gXkmSKnHm0L3gOv8FIMl1/F7gR642VACvAp8Cm4B7RktFzHNBrz2zC+HO36g3Wln7cQ1P3TKTstJ87p6Tx9ryGpZ+ztmBuldWbpidxSuf1BCl17L6gypOunb6PFFL+C0UMJDQoYHusri39j1pM9tIiYkYc8mz5yPJ0Tq/NpQ8iMmOPxsZbAibQadWqlF67rSc7yFS5wNpsRFe9nPXpTmYe+zc9/peTrb59nvunGP3//u+lhwdwZJ5eSydn8+SeXlkJhjIio/EaOnxO2lpM/cwPTOeKemxPL35KE++c4Tnt1UxJT2W7ESxWzeWaTBaiR/D4uTnglol8c3PTuS5bcepPN119gsEI8rZxlt3OOGs8QnkJEchqSS/5+elRLO2vEYppqJWOTcL/J1r0Gn89p01raKY3nAzbBK6sizvk2V5lizLxbIsF8my/LDreJUsyxfJspwvy/LNsix3u45bXb/nu16v8rjXY7IsT5RlebIsy/8arjaHA0nROqJ0apbMy+NCV6ltgH11Hfzh/UompcZQkBrNDz4/BVl2kJlg4O45zgnJlPQYbrswW9nZW7ez1qeiW2KkzimS7nHs8RuLBxQ61N+qjyfhWilIMDT0usI1+oZA9g6iOtpQ2IhGBT+5egplpfksnZ/PstJ8fnL1FAap6iEYhcQZ1Ky4rlCxn/EJkUrxE3/93oMLp/HGrtqAr63ackRx/OwO+PU7h6lpMxOr15KTZOCezzltbOn8fHKSDMTqtUri/Mayubyy5GI2ls0Vq87nAafaLSREilyyviRHR3DdjHH87O2KUDdF0IfBjLfWHge//NdBHlw4zaca8OObDrKwOJMIjYqy0nwmpcYQG6Hme1dMUvrJstJ8fnPLTNrM3X4dvsgADl/feaTg3BmoQLlghMhOjGJcQhfNJhsqCaVaW0KkjqunZ3Cfhyj0I4sKsfU6eOHDKq9KmW7NkXqjVSm4MiktmpOtZv7wQRU6jcSvbprBkcZO9BoVWfEGPjrectbk1oFqdoRrpSDB0NBm6vEbAjkheXCOu04jsWReHg4ZVJLz98EQpdMQoVWz+oMz9r/iukIidaJbG+u0mnr56Fgzf/rKhTR3daNRS0q/5Nnv5SQaSInV8+yWI9QbnROHNTuqWTIvj+mZcaRGR/DR8RbKq42UVxu93uN0p5WMOD3f/Gw+K9Z7FGK5tpD0OGeOVTgmzguGl5Nt5lFRHCcUXFWYxg9f38f/Kpu5LD851M0RuBjonOxEi4lGo5XqFgud1h6vMX7NjmrqjVbUKijKjOXbf9ulVBguHBfrU0Dle1dM4scLpvCLTYeUY4/fWExqTMSoLTg1WhBr22GGSiUxb2IK8wpS0KglZffugS9M9dJLSojUER2h9UlafWTDp9xcckZzpN5o5YUPqzjVbuHJd47QZrbxtcsmUNNiQqdWMTE1mntf2+OT3OqPwaz6jFXdEgGkxui8nDDJ5ZQlRw88POlEi4mlL+9m5WZnGOXKzZUsfXn3oMIxZFn2KZKx/O0Koat0HpARp6cgPZav/vkTvvP3PWhUktfO2o0XZLFhXx0xei0v/fc4N16QrfRbbWYb2YmRfG5SKnGRWrKTogKGKfXaUZw6cBViWV9B75hNBhCcjVPtIscuEBqViutnZfLkO4dD3RRBHwYyJ2vssGK29VJWmk+CQYdGBet21vLs1kpF6qA4K54V6yuUypmrP6hiX22Hz1z0N+8dobO7lyXz8vj1zcUs/Vw+T717mGPNXSKia5gRS9thRm+vg7f3n+KBNw+QEKnjW5/NY1JqDF3d3gUBbpidxcGGDr9b2nnJ0V6FAO69chIX5Say+s4LiIpQU3Gqg1VbK70KsbhXY+59dQ9Tyub6XYEWO3ECgAiN2u8uhn4Q1SiHonhK3wIaZ+4x8CIugtGJ3YHXQtffdlRzz+X5SrK+2yZ//34l++o6aDHZePKmGUgSZCUYKMyIQ6NR0dTVTYfZ5lOcyl3Z8qPjLQHtdGKq2KU7H6lvt5AULapiBuKyicn8Y3cd5SdaKckdcPF0QRiQEadnf53RKwpmWWkBL22vps3VT55qN1PdYuGez+Ur9R0C6XmmxERQ127hdGc3T75zBIClL+9m07K5bBTzyGFD7NiFGRX1RmXlo95o5ff/qcJk6/UpCCBJgZNWk2N0PHnTDB6/cTrLSgtIj9OzbO1ulqzZyb5aI0+9e8SnjK07GfZssc5iJ07QZu7xu4vRZhm4MPhQFE/Ra9V+79H3mGDscbrTe2FgWma8TwW2Fesr+Ma8iSydn09Tl43HNh4kzqDFbLNT02bG4ZDRqVU8tP5TVm2pVHKVl8xzhq6rVBKROk2APBFRoOd8RJZlGju7xY5dP6hVEguK0vnjB1VnP1kQVtgd+MwPn958lMdvnM7Sz+WzakslpzttXsX9AAx+xl29VkVNq4WVmysx2c6EOFh7HDR0WMU8chgRO3ZhhlsfxPP3k20W1u+t8xIhV0vw5p46H2HyFdcV8tN/7Ke6xekIPnb9dDrMNq6dkQmAhOR3ZSVCc2ZbPCVaT1VTF40dzhwTu8M5kRqrApPnG8GKhlp77CRE6rhhdhaS67J1O2ux2gYen+YO6+1b8ngw4Rgxeg3Lry302TmM0YtubTQzEPvMiNNTVpqPO2o8waD1268dbuzk+W1VfO+KSRi0Kr7+UrmXvaXE6JRFtGe3VirXXpqXBIDNbvfpY8vmF9Bj934vwflBi8lGhEaFXisc+/6YV5DCsld2U9tmJishMtTNEQwAh0Omuaubr8/NA5xjuns+Wl7dRnSERjleNr+A7l67ImYerdMo9SA8x2KjxUZOkgHP7AiRTzf8iBlQmJERZ/BJLF2/t47vlk7it5uPcPecPAxaFTPHxxEVoeFvHzmLBKhVUJKTyINvOZ06cE5sfvqP/SyZl8eqLZXotSpeuKvEb+JqbrIzz+TXN8/keEsXS1/erejieT6sQm9kdDNQLcL+SIr2tYtlpQWDWsUeqrDeP/yn0ivB+w//qeS3t84c1D0E4cNA7LO318G+Wu9woUcXF5GTZFD6PnD2a7J8Jt9jybw8nxLbry65xG9/mBbrnHgkRUWwtrzGy8bWltewoCh9BP8qgnDhVLuFVCFOflb0WjWfyU/m7x/V8IMFU0LdHMFZ8NfvulN02sw2ZSdvWWkBj286zNryGn5+/XRSY/U0dlj5xaZDJETqlH5SJUG72cbTm4/y8KIiXv2kGhD5dCOFcOzCjMKMWB5dXORVXeg78wv4QlEGM8bHc7rTikGr5tbVO7x2TSalxrCvtt1rYgPOCYx7Vdva46DZ1O13BVqWHSyZl0d8pIa7/1Ku6OJ55rG4J0OZSy5heqYQ4R2NBNIiDJRX6Q9rj93HLp7efJQXv1wyqLYEW1GwzdRDdYvFa6fFfVwwOjmbffb2OvjwWDM/XLfP65wH3jzgswP84MJprP24Rjmnb00oa4+DFpOt353j3KQo7l8wNaidZcHYoa7NQrLIrxsQn5ucyhP/Psz3rpyERi3C48OZ482+/e7KLUdZMi8PvUbNmh3VJETqKMqM4/EbpzMuzkBtq4nVH1Tx7c/m+416WDrfefyhtw6wdsklWHrsIp9uhBCOXZih0ahYPCOTgtRoGozOUMgYvZadJ9tIi9VzUW6SktDv+SBlxOl5dHGR39Vnz23wCI3aawU6ypUrYrU5Jz4VdUbl+kAJsZsPnaau3Sp27kYhQ1G0pMPa6/cendbeIWvnQIiK0Pi196gI0a2NVvqzz9ykKP5X1cIBjz7K85zmTitP3TKTQw0d2B2w+oNj3FqSTVOXjTazUz7GE7em0tz8BNYuuYR6o5WMOAOFGbFKv6ZSSVw1Nc3jdT2FGXGi3ztPqWu3kCjy6wbE+MRIEqN1/OdIE6VT00LdHEEf3CHvLaZuWrpsfvvUzDgDv918FIC7Ls3hGx6h7MuvLeS+qyZTebqr33mntceB2Wbn0olC/mKkEDOgMESjUTFjfALTM93b4zu8VovjDL4T2jazjbo2s091N3dFo4w4PV+8OBuNWuLbl+ez/O0Kv6GWy68t9App8vfA2h1w76t7SPrqRaTERIgVmFHEQLUI+yMl2r8OzUhXikuN1vnE9S8rLSBlELILgvCiP/s80WLiUL2R/NRov+eMT4zkZ+srvKIW3KvO2YmRaNWSV7XgZaUFpMZE8M7BxoChnw6H3O/rgvOL2jazcOwGwdz8ZF4tPykcuzDDHXr5+KaD3FqSreTL9e1T64wW6o1WykrzfaJ0Vqyv4Lm7Spg/OZXUWL3XvNMdxum+jyg2NbKI/fEwxjMsKSNOz91z8jjU0IHJZue+qyZ76YDce+Ukfv+fKqW6231XTeJPX7mQ1NgIdBqJb87Lw2Z30NJpo81kY1lpAT+5Zqrfh/XhRc6dv3U7a3lw4TSv9ymbX8Abu2qx9jjYVtl8Vu07QXgxGC3CQPQ6HCwrLfC6x7LSAuyOkS0oYeqxE6PXsGTemWqGMXoN5h4hMjZa6c8+GzusjE+M4hf/Oui3X/rZ+goWFmd63c/a42BicjTNnd0YXAn+blspSItGkvAb+nm82amnGCg0dDB6i4Kxw8k2CykiFHPAXJKXxIdHmzGaRXh8OOHu1xYWZ7Jyy1FeLXcWRPHsU793xSSSo3Q8c/ss8pKj/e7ofXKilU8bOtGpJZbMy+PeKyfx21tnsra8RtG9+94Vk0SxqRFG7NiFMe6wpIw4PXdekqPkxeUkGfhu6SSWzMvDITsTVdNcDlx1i4UXPqzi0cVF9Ngd/P2jan5xw3T2nvQuNlA2v4DjzSa/D2tLl40/fOkCIjQqJEnmj3dewM7qNuwOFL07z8IE9766h8nfmSt0nUYBQ1G0pNXcw0vbq70KSry0vZoJySObd3S604rd7r2gYLfL/cp1CMKb/uwzLVbPKaMVW69MtE7tZX/ufqlvKo9eq+LI6S5e+LCKZaUFTEyJZl+dUXm9qcu/FuLBhg4mJEcNSeiyYOxQ12bhc5NTQ92MUUNUhIbirDg2Hqjn9ouyQ90cgQt3v+ZOt6k3Wlmz48yYPnt8PLXtZtQqFT94fS9fn5sXMHprxfoKnrltFifbLOg0EiZbL4tmZipzU4NWJfJSRxjh2IUx7rCkG2ZnKU4dwMLiTH78j/0+D9mvbprBkcZO9BoVrV3dJEXruLkkm9auHp+duZVbjvLETTP8PqxatYpv/nUnm5bNZW+tkafePcytJdleBVceXDiNVVsqlfu5J0IiPCn8CbZoSXKUjjazzStRWq9Vjbi2U0yEll9s2u1jv2u+dtGItkMwtASyz9ykKE53WLnr0hyqmk288GGVz3c/IyveK9zSHRLkLvDzxE0zlH5Lr1WxNkBVzCONnUzLiB2S0GXB2OFUu4UUURVzUFyal8y6nbXCsQsTHA6ZXrvstTvnWbNBr1WxZF4edgdKH+uWOOhbdM/dt+4/ZWTl5kru+Vw+v33vgE9/+Zn8lFB93POSYQvFlCRpvCRJWyVJ+lSSpApJkpa5jv9MkqQ6SZL2uH6u8bjmx5IkVUqSdFiSpM97HF/gOlYpSdKPhqvN4YY7LEmt8i5iEqNXK2K6S+fnkxGnx9rj4EhjJ+t21qKSJJ567yjlJ9pZ/nYFpm7/xS7q2s0+IXUPLpyGTuPUJmns6Ob+dfuobrEoqzllpfk8d2cJaz92brW7rzvS2CnCk84TTLYevnfFJJ+wDZNtZIuntJt7/Np1uwj7GZOoVBJqlcTTm/2HDj26eDoOWeZPX7mQVXfM4u45ecpOHriS+LvP2Kg7qf/n10/3Cet8rbxWKdgSbOiyYGzQYe2hx+4gRhRnGhQzxsdzuLGTBqOIpAgHTrSYeHrzYZYvLFT0kfvOASN1arITDMr46rmj96sbp3v1re6dOwhccK+pS3z3I8lw9lC9wPdlWd4lSVIMsFOSpHddr/1GluUnPU+WJGkacBtQCIwD3pMkaZLr5WeBK4Fa4BNJkt6WZfnTYWx7WOAOS8qMNyhhlO4qmb99z3vlZG15DbKM1+6e+yFrNnX7XXWelhELwA8/P5lYvZaaNjOrtlTSZnbm4Nnsdq8H271D85tbZnDkdJdyn7L5BWw6UM9nJiafs+i1YPQQoVHz8sfeoZgvf1zNL66fPqLtSA20mxIrVtTHKl2uRSrPiUaERsX0zFilcIpeq+KZ22b53dFr6ur2+j0tVk9GnF4Ja3eHdbaZbaTG6IdMb1Ew+qlttZAWq0eSxHc/GHQaFSU5CWzYd0oRvxaEjsYOKxfnpfCHDypZWJyJSgW/umkGDUYL+anRrHD1o8tK873G13qjlRc+rOK3t87khQ8rlPnn4zcW89S7h5X7iwiH0DNsO3ayLNfLsrzL9f9O4CCQ2c8li4BXZFnulmX5OFAJXOT6qZRluUqWZRvwiuvc8wKVSmJ6ZpyyanzD7Cyl+hCcCat8aGEhG/bV+ayY6LUq/rqjxmeHZcV1hTz41gHuX7ef1Bg9D7x1gJWbK6k3WpWwpdgIrXKN5/3q2i08edMMls7P5+45eWw6UM/V0zP48p8+5vbnPhIFVcY4OrWK2y7M5oUPncV6XviwitsuzCZCM7KVr9yaj967NkUUZsSNaDsEI4PDIZMYFaF83+7Fpl6Hg2/9bZdSDdPa4+DRjZ/ys2sLvWzj59dP57WdJ5Xf3Ttv2YlRTEmP5fltVTy71bmw5bkr5w4NvSQvmbyUaOHUnaecbDOLMMxz5KIJSby151SomyHAmeKjVqFowP7yX4cp+/tubL0Ovu3Rj75aXusT0bX82kJ+t7WSJfPyeOb2Wbzw5RKunpbOvVdOVgru9b1GRDiMPCMSUyBJUi4wC/gI+AywVJKku4BynLt6bTidvh0el9VyxhE82ef4xcPd5nDCc9X4SGOn363uE80mFhZnMnv8mRwTz7joP//vBMtKC8iIMxChUfHLTQeVB/hQgHuae+w8fmMx97vEgD13Bx9ZNJ3ntzlXxP2VwnWLCucmRXGixSR28sYQLSb/xVPyR7iYhEolER+p9SoiFB+pFfY1BvEsz90312NCcpRP/1XdYiFSp+LuOXmoVTA1PZa4SDUvfvkimrp8d97ErpzgbNQKcfJzpigzlj/85xgnW82MT4wMdXPOa3KTorggO8FnZy0lJsLr93qjlZe2V/OHL13AgTojF+QksPo/x9hX18G+ug7uu2oSabGJvHf4NE+9e1jpa2eOj2fD0jk0m7pFXxoiht2xkyQpGlgHfFeW5Q5Jkn4PPALIrn9/DXxtCN5nCbAEIDt77CbpJkbp/G51p8XqeeSfB3l40TRFpNchw5ZDDTx1y0zMtl5qWs3Yenrpdai8tJ7c9/B3zwtzEkmI1FFe3YrdAWvLa7h/wVQuy0tio2siZLbZ/TqGjR1WDjV0Cg0oF+Fio25h0nN1tvVald/iKRHakVVPOdFiYunLvsVTNpbNFRULz5FQ2mh/dukpO7DpQD2//+Jsdta0I8tg0Kr99l8JURFEaCx09zp4eMOntJltbCybyyV5vkK5wRYUEowMobTP6haTcOzOEY1KxYW5CWzcX8//fXZiqJszrITLOB8IlUri4pxEHls8nZ++uV+Zm6X7SW1oM9uw2Ow8+c4RykrzuXBCEi0mG5dPSSU3KQq7w8Hjrk0C93xg9QdVAftZwcgwrDMxSZK0OJ26v8my/AaALMuNsizbZVl2AM/hDLUEqAPGe1ye5ToW6LgXsiyvlmW5RJblkpSUsVWBx71afc3KbeyqafNJdi2bX4BKBTlJBtQqFfe+uoeVmyt5flsVt16Yw5u7a4jVa8lPjaGh00aERu0VYulv+/zxG4tpMXVT02bmsrwkFs/MZG5BEn/6ykUsKExHo1GRlxLNRblJJEXpKCs9U8jFfY9InVpoQHkQDjbqaUvnGjYbFaHhB5/31lH8wecnE6Ub2aIC/ZWiF5wbobLRs9ml53d99fQMTN12VJIzWf90p5V7r/QONb/3ykmcbDXx1LtHeHbrmRBzYRujm1D2ocebTSJ/NwgumpDE23vHfjhmOIzz/eFwyHx4vBm7w84LXy7hmdtn8eRNMzjVbvbpRx9aOA2VSiInyaAs7N95aS6rP6hi6d9389U/l3NrSbYy7wMxBocDwzYTk5wZxi8AB2VZfsrjeIYsy/WuX68HDrj+/zbwsiRJT+EsnlIAfAxIQIEkSRNwOnS3AXcMV7vDEc/VartD5tXyk15hcGvLa/jRgqk8sqiIJWt2ejlSD751gN99cTZ1bRYe23hQ0cFbvrCQFRucCbBtZhuRWjVLP5cPOKtYHTxl5OjpLtQSTM+KY/7kNJ/VbPdkzHNHrmx+AVsONVBWOpnGDitfn5vHup21XpXphAZU6AgkuDxlULtcdrISDDx50wxM3b1E6TVo1RJIIytCKkrRjx36s8vcpCi0ahVlpflE6tTEG3Tc9/pepc+576rJ5KVEedmjRgXPb6vyeg9hG4JgqGk1c23xuFA3Y9QyLSOW322tFOGYIcAzGiIqQsOpNgs//9chJZVm5eZKijNj+fbnJvKbW2ZisztQqyRW/+cYR053sXxhIX//uJqFxZk8+NYBr3565Zaj3D0nT9mxE/1s6BnOJfbPAHcC+yVJ2uM69hPgdkmSZuIMxTwB/B+ALMsVkiS9CnyKs6LmPbIs2wEkSVoK/BtQAy/KslwxjO0OOzxXq1WSxG0XZis5bXqtimWlBTy84VNuLsnyu4Ox52S78n9w5p/84YNK/vb1i6k3WjnS2MkfPqiizWzjT1+5kD0n233un58STW5ytFcH4W9Hbm15jVM8fU25j96JuzSueOhDx1AILqtQU9Vk9LGR1OjE4WhyQNyl6PuG+opE7dFHILtsNXV7hXPfv2AyP1tf4dXnrNlxgiXzJipFpdz2+K3L87nHFaorbEMQDHaHTH27M0RYcG6oVRIX5jqrY37r8vxQN+e8wd8C/LLSAialRjN3UiqZcQaWleaTFKXjeLPZa1wvm19A045qVmyoUHLo/PXTalcAmOhnw4Nhc+xkWf4Q525bXzb2c81jwGN+jm/s77qxjMMhE6lTU1aaj0OGHrvM3z+u4e45eWQnGKgzWnhpu9Npcsj+c+XsDmfIkifVLRZsvQ6uKcpgWkYsl01MIjVGT1Nnt08hlKc3H2V2dgLZiVFeHURZab7PQ95XPN1zReeFD6vO6aEPNidMcIah2OXqstn92kjRXSVD3t7+EKXoxw6B7BIk7n11DwmROu66NId0l2anJwuLM30qBT+9+Si/vnkGz99VgkYtCdsQBEVjh5UYgwadZmTziMcaF01I4s09dcKxG0LONj/yFw3xyic1Pothq+6YzdKXdwXcjctJNJARZyAnyeBVo0GvVVE6JVWZQ4p+NvQIpc0wxuGQ2XK4kX21RhwyqCUoHBejFK5YOj+fVVvOFLBYt7OWBxdO83pY3VUsf3DVFJbOz1fO02kkInVqPjreQqROg9r1IAYSM++x29lf186hhg4lvNKfIxloRac4M5aNrrCqwTz0/labzucCLMGSnRDJo4uLeODNA8rf89HFRWQnDDw0xtTdS0KkjhtmZykLBut21nqJP48UoujF2MCfXT68qIgdVS0kROq485IcLD12TjSb/PY5/uzR1N3L5LQY8tNiQvSpBGOFEy0m0sVuXdBMzYjl2a2V1LSYyU4S4ZjBMpD5kb9oCH+LYftq2/32o5LknOdVt1p46O0Kli8s5A8fVCqaoU/dMpPpmfFiPhZGCMcujKlpNXG0sUsRJ3friDx18wzufW0v4O1Y1Rut/GPXSX53x2z21LYrya7f+mw+f/5fFRfnpaBWwaPXF9Jm6uHW1Tt8HMCfXz/dZ+KUk2SgxdTD11/a6XX+pgP1PqXHp6bH+l15L0iLOafJ99DkhAnc1LSZeca1CufO0Xxmi3NHdqB/z8RoLXddmuMTipkQpR3m1gvGKn3tclJaDL9+5xDXzsjk5pIsVm45qiwo9e1zSnISMGjVPvaYkxQp+gjBkHC8WTh2Q4FaJXHRhEQ27DvFtz8ndu2CZSDzI3/REP4W4CN1ar/julpCSaex9jhYsaGCJ2+agV2WmZAcSdE44dSFGyKuIIxp7PANi1yxvoLqVjOr7yzhs5OSefzGYq8qRndcnEtUhAqDVo0kwQ+umsLrO2uYPyWdFz6sYuXmSvaeNCor4+77rtxylIXFmfzkH/t97vnIoumKlp3n+XMnpbLlUAN/vPMCHr9hOk/cNINXP6nxqdoZTMy1qHw4tDR2WJXSxKu2VPLsVufK22D+nrJD8huKKcuicxecG33t8khjJ9UtFtbtrGV8QqRiazqNhEOWWXFtIc/cPot7ryhAq/Zvj3Z54JVeBYL+qGoykSrEyYeEiyck8tZ5UB1zJAg0PzrS2ElVUxcOh6zkorvnZDlJBi7MTfSpZC7L+O1HxydGKTUS3MdN3b089e5hrDaHcOrCELFjF8aYbP7DIk02O0vWlPOXr17EjKw4Niydw6HGTo40dvLEvw/TZrZRNr+AdTtr+fKluVycl6KscAM4ZP/hktkJBq6dkUlGfAT//M5cmrqspETrqWk1+T3foFVxc0k2/7fGeydvy6EG1i65BEuPPeiYa1H5cGgZir+n0WLzaw9GS8+QtVNwfhHILuuNVk53OosufXD4NN+cl69U89VrVay4rpB6Y7dfe9xR1Up6rEHs2gmC5lhTF7PHJ4S6GWOCKemxNHd2c6ypi4ni2QyKQP3m/roOvrt2jxKW6c5FbzV1U9Nq4RsveRe3W1te4zd/2drj4GBDh+LUue9f02ahusVCs6nb63xRDyE8EDt2YUxOYpSX3hw4HyrZ5Zhtq2xmwdPbqKjv4Il/H2Ll5jN6TSu3HOVbn82jIC3a77a7v/vWGS2s2lLJXS98wuHGTkqyEznc2Mmek+1+zy/OimP5294V6lZuOcqyK5yaZkOxYN53tUlUXQqOofh7xkfq/NpDfKQIxRScG33tcsexJh5eVIReq+KvO2p4aOE0Fs/KVJw6cPY3y9+uIDnavz3aHYidfcGQcKLZRHqcWEwcClQqiYvzEnl7j9i1CxZ/43nZ/ALe2FWrhGXWtJoUZ0urUvETP8XtfnlDMXF6rd9+1J1e0/f+eq2KzDiDcu5QaOQKhgaxYxfGTEj2LefujnX2dPDuX7fPS0cEnMdzkqN46K0DPLSw0GtVxy1I7hlL/YPPT8bW61AKrLz44TFSYyKUinR9i7Isv7aQrgCFVk53WL1WhIIpdiIqHw4tQ/H3tPb0+uQ5lc0vwNoz8sVTBGODvnZp0Kope2U3f7zzAg43dDI7J47DDf4jB9rNNpZfW8iK9RU+q9A3zs4M0ScSjBV67A5OCamDIeXSvCSe33ac715RgNS3ZLdgwHj2m0caO9lf1+EVNpkQqWNXTbvizPmrZG7tcbC9qoW85Ch+cf10paq5e57XabVx31WTSI7WU9XcxZod1bSZbTyyqIjCcXHKfUQ9hPBBOHZhjPuhnfyduRxs6OBIY6fyULkdPPDWEQHIiNPz1ctyQIZrZ2SiUuE18fEUJHfIkJcchU6jouKUkXU7a5meGc09nyvgWFMX1h4H9UYraz+u4albZlLbZiYvJZqq0500GC1+wwCqW83n/HAH2soXlQ+HjmD/nnqthrXlNV4FWNaW11CSO2OIWyo4n/C0y+3HmqlusdDYYSEjTk+bqZeqpi6//U18pI4ovYPn7iqh1WTjSGMXa8truH/BVLGzLwia6hYzydE6IXUwhExMiabH7mB/nZHirPhQN2dU4+43Ab679oxjlRGn56fXTOW+1/d6peEEksT60Rv7+f0XZ/O7O2ZT22YmPiqChnYzUzJiefb9A9y/YAqFGbFkXVFAepyBhEgNGo9nYig0cgVDg3DswpC+zs2E5CgmJEcxLSOWWePj2X2y3WtVxnO7PCFSx7c+m4fJZuf//nom9+0X109nWWkBiVE6alot/OGDKgDuvCRHefD1WhW/uqGIGIOO3SfbKUiNUTRL9tV18If3K7nv85NZsmZnwAp1Dy8q4jfvHvH6PNYeBzUtJpo6uzHZeslJdH6evrtE/ZXuBUTs9hARbBy80dLD1y6bQIvZhkMGjQq+dtkEOqwix05w7njaZaROg16rIjsxkpoWMz12HWqVit/cMpNfbjqolNp+cOE07l+3nzazjZ9dW8jktGjSYiO4cXam6CMEQ0Ll6S4yEwxnP1EwYCRJ4tKJSbyxq1Y4dkNEdkIkq+8soby6lQiNipgIDUdOd3pJGERHqLnvqsk8+c5hnygwa4+DDksvT713mLLSSfzQY1748+un09PTy6fNFmQZnn2/kj995SKv9xf1EMIH4diFGf05N3kp0eQmRWFx7brBmRypyAgVS+blUZAaQ22b2ae60Y//sZ8nb5pBjF6j5MXd87l8r6IqCZE6uu3ww7/tOrMV79IssfXKXD09g/LqNuX8NrONNTuqlZ0blQTZCQalbW70WhUatYov/+njgOGZDofso5NXb7Ry76t7mLZsLp/WdwbUahEJuwNnKHQBk6J0HG82eclw3HvlJBIjdcPcesFYpa9d3nJBBi9+5UJUKrDLEkvWnAntfnDhNDqtPZhtdjosPcoC18/WV7B+6RxmCd06wRByrKmLjDjh2A01n8lP5tF/HuSnX5iGVi12Q4PB4ZB552Cj17i+rLSA5Gidl4RBTpKB714xiSdvmsGR053YHSibBHqtivgoLQuLM/lpnzy8n/xjP8/eMZsPDldz5HSX37x8d75f37mFiJoYecTTFGYEilM+0WICzoRnbiybyytLLmZj2VwWFKYzNz+VxTMziYpQkRwd4XdLXAbe2l3LclfOnSR5F1W5YXYWD77lLYOwYkMF379qCo8tLuLpzUeVrXz3bp1bLP35bVUYtGpOd3X7yB2UzS+g1dQd8DO5J3W3rt7Bys3Oe915SQ4ZripNjR3dfv8mx5tNImF3kJzNvgaCpcfOU+8e8bqH83f7sLRZMPbxtMvizFguyE3mx2/so6dXVkLIwWlrj2z4FLPNjl6j5qXt1co9rD0OWvpUaRMIguVQfYdSEl4wdGTEGUiNieCDI02hbsqoxr0o3ndcf3rzUZKjIrwW+RcWZ/LjN/bz2MaD6DVqXviwSnHqll9bSHWzyW+xPWuPg7217TzwhWnKnLPvQnCgualYZB95hGMXZgxEt80dU31JXjJ5KdGoVJJyLCkqgto2s9/qRkdPd5KREMUfPqjk7jl5zB4f73VeX0fP/d6Vpzux9jpIiNQRpVPz4MJpym7dknl5PHlTMfddNQm1BHF6rZJ/tXR+PnfPyWNteQ2SpPK5b3WLie3Hmv12Siu3HOWG2VnotaqAsg8HGzqoaQ3eUTmfGApdwA6L/+/DaBHFUwTnhqddfn3eRH73fiVfu2wCraYev7Y2NT2WteU1PmW4RdiPYKg53NjJ+MTIUDdjTDInP5m1n5wMdTNGLe6F7c2HTvvtJ002u9dx9xyv3mhVoq2Wzs/nd3fMRo3MC/89zqw+80I4k4fXZrYpc05/+JubCkYe4diFGe44ZU8GM2Ex2+y8Wl7rs2u2/NpCDFo12YkGRQj4yOlOlpWeOU8t+ZdBKM6KJylaq2zpr9pSyZJ5edy/YAoGrZqXtp+gw9pLSqyeCK2K2y7M5oUPq1i1pZIXPqzitguzqW83+9z3UEMntz/3UcBOSa2Cp26ZGVD24UhjJ40d/jWsRJlz/wRrXwApMf7Ly6dEi1BMwbnhaZfWHju3XZiNuceOVi35tTWA2y7M9urjfnVjsQj7EQwpPXYH1S1mskSO3bBw6cQk/neshZYusdN+LrgjHdyRVJ7otSrS4/yP9wD1RqsSbaXXqWm39PDgwkLW76nzG3W1YV8dSdERIhpqFDBsjp0kSeMlSdoqSdKnkiRVSJK0zHU8UZKkdyVJOur6N8F1XJIkaaUkSZWSJO2TJGm2x72+7Dr/qCRJXx6uNocDweqMpcXqvXLfls7PZ8m8PNrNNp7efJTUmAjl3n/5XzWRWjXLSgt48qZionRqvnfFJK/3fnDhNFa+d4SKug5lS7/eaGXl5kp+9MY+ClKjue2ibFZ/UMX31u7l/nX7yEowsGTemfeO0WuI0Ki97rustEBpc6BOqXRKKgsK05mQHMXPr5/u09G8Vl6L2dYbtKNyPjEUOnbRejWPuDTG3Pd4ZFER0Qb1sLRZMPbxtMtxcXrGJ0Tyyic1dFp7WH5tofci1cJCXvjwGFkJBp65fRa/unE6z3+5hGuKMsQKsWBIOdFsIjk6ggiN6NuGg0idhpKcBF7fWRvqpoxK3JEO7tQYz37yseun8/R7h73mdOv31impOO7zVlxXiK3XTkFaDA++eYA39tR7zR+fuGkGa8tr+M78An75r09FqssoQJKHQkXa340lKQPIkGV5lyRJMcBOYDHwFaBVluVfSpL0IyBBluX7JUm6BvgOcA1wMfC0LMsXS5KUCJQDJYDsus8Fsiy3BXrvkpISuby8fFg+10jgLgZyLjpj/opjuIsNdFrtfFTVxJ2XTOD+N/YpybS/uL6Yr/3lE6w9DjLi9Dy0cBodlh4iIzTUtZv56FgL183K5Htr9/q835+/eiHfdFXfdFOSE8ePrp5GS5eNinojr5XXkhKt4+vzJmKx9ZIep+fX/z7MvMmprNpSSUacnjsvyfGqrtm3GmabycZ/jjbhkJ3l9d/YVUub2cY/vzOXw42BC6sME0HfOJQ2Gox9AWw/1sw/dtWweHY2zV3dJEdH8OauGq6fnc2lE5OHseWCQTDqbNThkDncaKSru4emjh4q6jvZsK+Or1yaS05SFGabnfhILT0OB5FaDelxEdQbhbblKGVU2Ofbe0/x949qKPNYiBQMLYcbOvnTf4/z/g8uDzdNu7C30aqmLq5ZuU2Zu90wOwu1Ci7ISaDqdBcrNhzk/gWTGZ8Qyal2M+nxkZxqs5CZYKC+3cyM8QkcbugkMVpHrF7DkjXeczm9VsWTN81Ar1Pzt+0n2HqkGb1WxUahTRcOBLTPYauKKctyPVDv+n+nJEkHgUxgEXC567S/AO8D97uOvyQ7Pc0dkiTFu5zDy4F3ZVluBZAk6V1gAfD34Wp7qAlGZ8yfYOWqLZWKY5WdYGBcgp5/lc2l0TWx75t31Wq2KWLkJTlxfO/KybR0dbPq9llUNZuw2Z0rRDqNRLvZOwcmI07P/CnpfOmFj/j63DzFcftC8Tiv8rn3XjkJrWsiVm+0sra8hrVLLsHSY1cmaoDipCZEeld3cjtwbikIIWA+cILVsTPZepk6LoGv/fkT5bu4f8EUzDaRYycIjiONJhIitZhtvSRHafnKZRN4fNMhLzvr7rXz2/eOjsQCjuA8Z3+tkWyRXzesTEqLRpJg+7EWLssXC4ODITshkkcXF/HAmweoN1p54cMqyuYX8NBbB3jgmmmuGgV2atvNRGjUXnOw+xdMYe/JNn7+r8PotSruu2oyP7l6Cj//15n+9tHFRZxsM/PS9jPyWkKbLvwZEbkDSZJygVnAR0Cay+kDaADSXP/PBDyzaGtdxwId7/seS4AlANnZ2UPY+tFHX8HKSanR3HFxjtdD/ejiIhbPyFQEJkty4rjrsjyidWq+/fIuZQXo+tnj+ck/9nNrSbbXjtqy0gIKx8Wys7rNS7vkhtlZXhIKeq2KL16czW/e862i+Ls7ZjvFh8027l8wlemZ8V6TtKqmLmUnrt5o5aXtzmIts8bHk5MU5eXAjQYB87FiowmROpa+vNvr+3x80yH+dvfFIW6ZIFhCaaMnWkzcv24fT9xUjKnbzvSsOL70wsc+dva7O2YrRZKmiJXj84qRts/9de3MK0gZ9vc5n5EkiflT0njxv8fHhGM3UjbqcMhU1Bt5ZstRfnXTDCo95AsA6o0WlpUWYO2xMzkthm+5ZKzAuy91//7kO4f5y1cvYsPSOTSbukmN0aOSYMHT24Q23Shj2IunSJIUDawDvivLcofna67duSGJBZVlebUsyyWyLJekpIiOGM7krXz78nx+1qdk+ANvHuDTeiMA42L03FLidPx2nWz3ctIe2fApC4szvZw1dyldwKdQi2epXHfcd0qMf/mF5q5ufnvrzIBlcfvuJLpz+ww69aisuDRWbLSp03/BmuYuW4ArBKOFUNqo+3lPjo7gF5sO0dxl82tn3b1n+iFRJOn8YiTtU5ZlDtZ3kpssCvIMN3MLkvn4RCsnW81nPznMGQkb9ayGWd1i4UhjJys3V/Ls1krqjVZumJ3Fz/91iJe2V3NxXiLdvY5++1L379UtJuqNVkqyE8lLiSY7MficfMHIM6yOnSRJWpxO3d9kWX7DdbjRFWLpzsM77TpeB4z3uDzLdSzQccFZcIdlygFkDOqNzkpUBxo6eOjtM/p17ofYXRo3kAxCp7XXp1DLpLQYr6pLa3ZUkxJ9pmCLG71WhUGnQUYO6KQNRQVHwdATqVP7/V70OlFkV3DuuJ/3eqPTwTNo/duZQadW/i/6AsFwcbLVgkYlkRApqv0ON3qtmssnpfLCh8dD3ZRRgb9qmP6kq+qNVspPtGMIMGa7+1L379WtFr6xppx/HqjH4ZCFNt0oZTirYkrAC8BBWZaf8njpbcBd2fLLwFsex+9yVce8BDC6Qjb/DVwlSVKCq4LmVa5jggGgUknEGTR+H+povfOhbvDYGfNXXcnzX8/rYw1alpV6i5S3dnV7VWFqM9uQkb1kFdyhnBEaFQatJmCFpaGo4CgYeqIjNH6/z5iIEYnsFoxBHA4ZlQSPXT8dnUaFXqsiQiP5tTOdRhJ9gWDY2X2yjYI0EeY7Ulw1LY11u2oxmntC3ZSwx7Ma5veumMT6vd4SBZ7SVWoVRGhUAeZgkvJ72fwC3thVi7XHwf3r9ilawEKbbvQxnDOxzwB3AvslSdrjOvYT4JfAq5Ik3Q1UA7e4XtuIsyJmJWAGvgogy3KrJEmPAJ+4znvYXUhFMDAyYg0sKy3wKjyyrLQAg1ZNVVMXGa6VcvcKz6YD9Tx50wwiXGXsV209Stn8Aq8cu7L5BZi6e0iNjWDJvDwcMkxJi+GxjQcBuHtOHhEaFfmp0fz+/UquLc5UzlNJEKVTs/ztCtrMNp66ZSZXTU2jps1MY4eVtNgzBVDchWDchVGyEyI50WLyOU8wcqjVMpnxBq/vMzPegFotSiALBo87rOjxTQf52XWFJEZqeXhRES/+t4ov9Ok3MuP11LaZef6uEi6bmCyefcGwsbumjQkiDHPESIqO4IKcBP7yvxOUXSGqkPaHZzSTXqNi0cxMVCp48qYZSCqYlh7LpLRY/vTfY6TH6TndYWFcvN6nLz3ZaubxG6dT02phzQ7/BVLcVbTFnGv0MJxVMT8kcDnOUj/ny8A9Ae71IvDi0LXu/GJ8QqSiLed+qGP0Gu55eTdtZht//8bFrLiukOVvV5AQqePq6Rnc5yq0kpNk4KGFhdS0mPjVTTM40Wyiu9fB2vIaFs3M5LXyWm4uyWJKegzjEyJpMzvzYp7dWglATpKBlbfOosfhQKtS0dTVzb46I7//T5XSidz76h5W31nCkjXlfiUL3IVR/Ek5iMp4I4/dLvHh0UYWz86mpaubJJfcQVZCbqibJhiFnGgx8fimg9xaks23/rqLFddN43fvH2NhcSbdvXYuyUuiqbOb9Fg97SYrv373GM/feaF45gXDyscn2rhpdlaom3FesbB4HI/981O+NncC0SICJCDuapg1rWZ+4aoa7EavVfGvsrmkxur49ucK+PbfdpEQqeN7V+RzSV4SLS6JoqYOC795r5JbSrJ44cMqvwVSxJxrdCKenPOAmjYzT75zmIXFmWQnGKgzWnh26zHFsdp6uIn9J9t57q4S7A7ZS5euusXCPS/v4je3zOR7Hg/3o4uLyIzXMz0zjglJUUpluqdumenVCSz9XAGmnh4umZCCSiWx/VgzKzdXerXP2uOgvLrVqziLv4p37rjys50nGF6aurp5dWc9r+6s9zp+xbRxIWqRYDTT2GFVCjQlROqI0mmpbrEoi0NuykrzAVh+bSG9sj0UTRWcJ3R193K8ycREMa6MKJnxBgrHxfHn/x5n6XyxaxeImjYzz2w5yrc/m6/Mh4ozY/n6vInIDge7T7bT2GHF0mNXIrF+uO6Acv3S+fk8v62KJfPyKEiN4fEbi7l/3T4v5y03KUrMuUYpwrE7D2jssCoTpaXz81m1xXvC5JBh+/FWpmXGe1W1dGPtcXD0dBd3z8kjRq+hIDWahzdUUN1iUZw89/Z8VoKeX988Axk42Wpm1dajfPOz+WTGm8hJilZCCPquDtm939KvVkrfKpmBzhMMLwatmpwkAwuLM3Hrya7fW+eThykQDIS0WL3S79wwOwudVkVZaT7u1Nt1O2tpM9uwO5xFATqtPUR6JP0LBEPNruo28lKi0GlEnzbSXD8rk0c2fMqdl+YSZ9CGujlhiXtOd7LdOQeblBrN7Rc5K5vfPSePDfvq+P5Vk5GQlL503c5a6o1W9FoVsuzsbzPjDDzxziH+8tWL2OhHC1jMuUYnwrE7D+jrTPV1rNbvrePxG4s51tSlVFnq63j1OpzhlStvn8U9L3vroTzw5gGmpMdQ02rx2q0rm1+ArVdmxfoKXvrqReQkRSsFUTzP+9WNxfz63cNebfZX8S6QUygq440scQYt3/xsPitcEhp6rYrl1xYSpxeDsGDw5CZFcWFOInqtihi9mjaTjdUfVHnlA0dq1bz4v+MsmpmJWlLRaxf5nILh48PKZqamx4S6Gecl4+INXJCTwO+2VvLja6aGujlhiXsu5C52l50YqaTPSBLc/ZkJdPc4ePCtA17zsbXlNSyZN5FVWyrRa1XUtFmobrHQ0GFViqP4ex8x5xpdiOWo8wDP6pLrdtb6VEe6f8FUvlCUQemUNJ/qSnqtiocWTiMpUodeq8LS3et3BafN3OOzZb9yy1FumJ3l1DgzdSvn6zQSS+Y55RGWzMsjMkLNgwunnbX6paiSGR5099oVpw6c3/WK9RV020V4nGDwqFQS2UkGHlw4jdzEKJa/7W1bT28+il2W+eLFOSRF6qhtN2PrdZzlrgLBufOfw00UZcaHuhnnLTfMzuLvH9eMCV274cA9F3LLTfU6ZKXPjI5QMy4hUnHq4Mx87NFF01n7cQ1tZhsPLpzGG7tq+3XUxJxrdCJ27M4D+laXTI/Vc9W0dJq6vLfdp2fGcf+CqTy+6SB3z8lDrYIp6bH84f1Kmrps3D0nj4x4/ys4Vlcstyfu1SO9VkVmnAFw5sktfXm3z/X//M5cv6EA/X2OQOcJhpc2c4/f77rd3BuiFglGO6farazaUslPr5nq17Yy4gycaDHx4kfOXbscMbEQDBOnO6zUtVuYmCpsLFQkRun4fGE6D2/4lOfuKgl1c8KOvnMhrUqlzMt67TL7atv99qMd1h7mTU7l8impdFh6lKrkgRw1MecanQjH7jzBs7qkm4mp0T7nLChMZ0p6DKc7rRi0aspe2U11iwWAZ7dW8lFVHI8sKvLa4n90cRF5SVF+HT6VBI8uLqJwXBwQOE+uqct/KMBAPodgZInRa/x+19ERIu9JcG6kxepdmpeBQsFlnt58lGWlBeSnRosy9IJh492DjczKjkejEgFNoWRh8Th+9MY+th4+zecmp4a6OWGH51yot9fBo4uLeODNA1h7/afc6LUqjjebeH5bFQ8unEZOooGNZXPP6qiJOdfoQzh2Ai/6ygs8uHAa+2qNOGSn6OX0rDjmTUxhUlo0DUYr6XF6CjPiUKkkn9y5RxcXMSU9hilpsWhcSegiZnv0E0gXMcO1KysQDBZ3yE9zp9WvbaXE6Hj+rhLGxenJTRYiuYLhY+P+ei7ITgh1M857dBoVX740l5/+Yz/vfu+zRAn5g4BoNCqumz6O3KQozLZeHnzrgI/28KOLi2ju6mbJvDzSYiO4bGKK6EfHKOJJEfSLrVf2KmTw1C0z0WhUzBifwIzx3ucOZMveX/EUEbM9uvCni5iVYGB8QmSomyYYpahUEldNTeO9Q42c7rB62VZBWjQX5SaJSYhg2Gnu6mbvSSNfn5MX6qYIgBnj45l0PIbH/nmQn98wPdTNCVscDpn3Dp/m3lf3kBCp465Lc3jlkxolpaYkJ5GcJAP1RhFOeT4gYg0EAQmkYXKixeRzrsMhc6LFRGNH/x2HO9xzY9lcXllyMRvL5gqxy1GGWxfRLVFhd8CT7xympk0kugvOnepWM99du4ff/6fKS/4kP0Xs0AlGhrf31DE7Ox69VoSVhwtfujiH9w42suVQY6ibErZ4ztXqjVZe2l7NopmZlOTEs3hmJnPyk8lJci6QAXx0vIWqpi4cDlFdeCwiduwEARmohonDIbOposFnFy6QwyZitkc3nrqIfY+L71RwLjgcMgfrO5SJiadtXTYxidxkYVeC4UWWZdZsr+HOS3NC3RSBB1ERGr51+UTue20f678zh8x4EfLfl75ztXqjlZWbK3llycXKmDzYeZpg9CJ27AQBcefDeeIvH24wO3uC0U+kTuPXLoRotOBcOdFi4ujpzgH1NwLBcPD+kSZkZKYI/bqwY0p6LNdMT+frf/kEs01UX+7LQOZqYp52/iAcO0FABqph0t/OnmDsYbPbfbQOy+YX0GMX2mKCc6Oxw8qr5bU+dvXz66eL/FvBsCPLMr999wgLi8chSWL3Ihy5piiD9Fg99/xtF71irPFiIHM1MU87fxi2UExJkl4EFgKnZVkuch37GfANoMl12k9kWd7oeu3HwN2AHSiTZfnfruMLgKcBNfC8LMu/HK42C7wZqIaJqHR5fpEUFcHacmditiSBLMPa8hoWFKWHummCUYpb7mDNjmrFrlQSzM6OF2FCgmFnw756Oq29XJqXFOqmCAIgSRJfmzOB3757hLJXdvP0bbPQqsXeBAxsribmaecPw/lU/BlY4Of4b2RZnun6cTt104DbgELXNb+TJEktSZIaeBa4GpgG3O46VzBCuPPh3Bpz/iZZA93ZE4wNcpOiuH/BVF74sIpVWyp54cMq7l8wVXzfgnPG3Ye0mW08u7WS57dVMSU9luxEYVOC4aWps5ufvV3Bly/LFYsIYY5GpaKsdBKNRitf/0s5Xd0iLNPN2eZqYp52/jBsO3ayLH8gSVLuAE9fBLwiy3I3cFySpErgItdrlbIsVwFIkvSK69xPh7q9gnNnoDt7grGB+L4FQ42wKUEosNjs/N+aci6fnMKkNJFbNxrQaVR898pJ/OV/J7hu1Yf87ouzmZIeG+pmhT2ijz1/CEVVzKWSJN0FlAPfl2W5DcgEdnicU+s6BnCyz/GL/d1UkqQlwBKA7OzsoW6z4CyISpdnZyzZqPi+xyahtFFhU4KzMZT22Wqy8X9ryomK0HDD7KyhaJ5ghNCoVHztMxP44GgTt/5xB7ddOJ5vfy6fOIM21E0L63Fe9LHnByMdoPx7YCIwE6gHfj1UN5ZlebUsyyWyLJekpKQM1W0FgiFD2Kgg3BE2KghnhsI+zbZeXvrfCa586j9kxkfyzXkTUYmCKaMOSZL47KRUfn79dI6e7mTu41t46K0D7Kppwx5CfTbRhwpCzYju2MmyrChMSpL0HLDB9WsdMN7j1CzXMfo5LhAIBAKBQODFiWYTNa1mLD12Oiw9NHV1U91iZu/Jdg41dJKfGs1XPpNLXnI07ZaeUDdXECQ3zh7P5ZNS+c+RJu564WO6unspSI1mcnoM2YmRpMREEB+pJUqnIUKrRqdWoVFL5CRGkhoriocIxhaSLA/fyoYrx26DR1XMDFmW613//x5wsSzLt0mSVAi8jDOvbhywGSgAJOAIUIrTofsEuEOW5YqzvG8TUA0kA83D8NFCyVj8TDC6PlezLMv+CgMNGA8bPVfC5e8l2uFNuLQjVDYaLp//XBHtHxmG1T7Hf+/1WSqd3m9EkmzvlR02sz2Y9+4XWVYhSWOzHv8o+WwqfbRGks4ekGY7fdxU/6fvHML/czMUNtoJHA7mHmHMaOlrBsto+VwB7XPYHDtJkv4OXI7zj9QILHf9PhOQgRPA/3k4ej8Fvgb0At+VZflfruPXAL/FKXfwoizLjw2iDeWyLJcMxecJF8biZ4Kx+7mGi3D5e4l2hGc7QsVo//yi/YJgGcvfwVj9bMP1ucbq3wvG7mcbC59rOKti3u7n8Av9nP8Y4OO0uSQRNg5h0wQCgUAgEAgEAoFgTCHUHQUCgUAgEAgEAoFglDPWHbvVoW7AMDAWPxOM3c81XITL30u0w5twaUeoGO2fX7RfECxj+TsYq59tuD7XWP17wdj9bKP+cw1r8RSBQCAQCAQCgUAgEAw/Y33HTiAQCAQCgUAgEAjGPMKxEwgEAoFAIBAIBIJRzph07BYsWCDjlFQQP+JnOH6CRtio+Bnmn6ARNip+hvEnaIR9ip9h/gkaYaPiZxh/AjImHbvm5tGgLSg4nxE2Kgh3hI0Kwhlhn4JwR9ioIBSMScdOIBAIBAKBQCAQCM4nhGMnEAgEAoFAIBAIBKMc4dgJBAKBQCAQCAQCwShHE+oGnO84HDInWkw0dlhJi9WTmxSFSiWFulkCgWAQiOdYEEqE/QlCibA/gSB8EI5dCHE4ZDZVNHDvq3uw9jjQa1U8dctMFhSmi05RIBgliOdYEEqE/QlCibA/gSC8EKGYIeREi0npDAGsPQ7ufXUPJ1pMIW6ZQCAYKOI5FoQSYX+CUCLsTyAIL4RjF0IaO6xKZ+jG2uPgdKc1RC0SCASDRTzHglAi7E8QSoT9jT1q28zctno7Vzz1H/5XKSQbRhvCsRsGHA6ZqqYuth9rpqqpC4fDqSXY2+tg78k2Nh2oZ+/JdlKjI9Brvb8CvVZFaow+FM0WCATnQFqsXjzHgpBxrvZns9kpP9HKhn2n2HmiFZvNPpzNFAwTgeYbI0Ug+zNo1YNuU6g/iwC6e+3c9eLH5CRGcf2sTL71t13UtplD3SzBIBA5dkNMoHjzKyan8vb+Uzzw5gHl+BM3FfPrm2fy/de8z81Nigr1xxAIBANkXIyeh68r4qG3zzzbD19XxDjh2AlGgNykKJ66ZabPmNPfOGKz2Xlz3ykeesvDZhcVsbh4HDqdegRbLwiGcMhv82d/jy4uouyV3VS3WAbcpnD4LAJ4YdtxkqJ0LJ6VCcCV09J44t+Hefq2WSFumWCgSLI89lZESkpK5PLy8pC8d1VTF9es3OYVmqDXqvjr3RfzpRc+8jn++jcvJVKn4XSnldQYUU1qlBD0FxRKGxUMLeUnWvn+a3tYWJyJJIEsw4Z9dfz65pmU5CaGqlnCRs8j3FUJBzqOlJ9o9Tse/fXui0fKZoV9DgGB5hsby+aSlxI9Yu3wtD+DVq04dYNpU7h8Fg/OOxu19ti57Jdb+PHVU8hKiASgy9rL917dw5b7PiuiUMKLgPYpduyGmEDx5g0Bjte1Wfh8UUaoOi6BQBAkDR1WqlssPLu10ut4Y4fIMRGMDCqVRF5K9IDHkUDjkbDZ0UV/+W0jOafwtL/tx5q9nLqBtilcPsv5zMb99eQmRSpOHUC0XsMFOQls3FfPVz4zIYStEwwUkWM3xASKN08PdDxOrIAIBKOZjADPdlqseLYF4Ymw2bFBuOX3OhwykTrNObUp3D7L+cir5bXMyU/xOX5hbiLr99WHoEWCc0E4dkOMO97c3UG548SL0mN5eFGR1/GHFxUxNS02lM0VCARBUpgey8PX9Xm2ryuiKF0824Lww+GQ6bb3suK6Qp/xqHhcXIhbJxgMgeYbocjTd+fIlb2yi7L5BYNuUzh9lvOR5q5uDtS1c0FOgs9r0zPj+PRUB0ZLTwhaJhgsIhRziFGpJBYUpjOlbK5XvsOJFhOvflLNr26agcXWi0Gn4aX/VVGSkyDCDASCUcypTivvHTzFH++8gHZzD/GRWv624zgluQnk6cWzLQgvTrSY+Nqfd3LphETFZhMiteQmR4rCKaOMQPONUOTpe+rZrdlRzd1z8lCroHRKKtMz48/apnD6LOcjmw82MiMrHp3Gd79Hp1ExJT2Gj6pauKowPQStEwwG4dgNA/7yHRo7rJRXGymv3u11rogfFwhGN40dVt75tJl3PvXW+/naHPFsC8IPdy7T1iPNbD1yxmZfWXIx2YnCXkcbg82vHC48c+TqjVYl5/iyiUkDds7C5bOcj2yqaGBmtu9unZupGbFsO9osHLtRgHDsgsRdDaqxw0parO8Kk/t1S4+dHy2YjAyYXHpB6/fWifhxgWCUkxar56ppyXzxkgm0mXpIjNLy1x3HxbMtCJqzjS+DobfXQUW9kTazjVV3zGL1f46xr64DELlMguBw5tapKSvNxyHDup211ButXnblacsZcXrsDufCdrB2LQieHruDj4+3ctuF2QHPmZwew98/rhnBVgnOFeHYBcHZdFf8vb6stIB1O2tpM9t4dHER2R7VhwQCwehjXIyeK6aO4//W7BQ6doIhYyh1vXp7Hby5t85LR3X5tYXwUTVHTneJXCbBOePPTsvmF7C2vIb7F0wlNynK65yESB13XZrD05uPCr26MGF3TTsZcQZi9dqA50xIdqYUmW29ROqE6xDOiOIpQeAZUw7O0rz3vrqHEy2mgK8/vfkoN8zOwtrj4IE3D1DTZg5Z+wUCQfAcaOhQxMnB+Zw/9PYBDjR0hLhlgtHM2caXwVBRb1ScOve9Vqyv4IEvTGNj2VwxqRacM/7sdOWWo6y8bZZiV57n3DA7S3Hq3Oefq10Lhobtx5qZltF/sS+tWkVuUhR7TxpHqFWCc0U4dkHQn+5Kf69Lku+5AoFgdCI0wQTDwdnGl8FQb/R/rzazjbyUaOHUCc6ZQHZq6bErduV5jiQxZHYtGBr+d6yFyekxZz1vQnIUB+qEYxfuiP3UIHDrrrg7qYw4PTeXZMLNkq8AAJVPSURBVGG22alq6iI1xvt1cOYyyPKZ/4u8BoFgdJMR6/85F5pggkAMJHeu7/gC5z5mZMQZ/N5L6KgKgsXTTjPi9NwwOwu1CgxaDQ6HjEol+djyUNm1IHhsvQ721Rn5xty8s56bkxTF3tr24W+UICjEjl0QeOquZMTp+dZnnQ/Grpp23tpTR227yUeXZVlpAW/sqhUaLQLBGKEwPZZH+mhUPrJI6NgJ/OPON7pm5TZuf+4jrlm5jU0VDTgcstd5Q6Hr5XDIVDV1YbPbeez66V73enRxEYUZQrdOEBxuO81JMnDnJTm88GEVKzdXcuvq7Ypd5yZFseqOWZSV5hMdoeahhdOEXl2YcLC+g7TYCKIizr7PI3bsRgdixy4IPHVX2kw2Pj7RyuoPqrwKpVwzPZ2NLl2WlGg9ahXMyo4XGi0CwRihocuKxdbLknl5OGRQSWCx9dLQZSVX6NgJ+hAod25K2VyvMu/B6nr1LWqRk2TgD1+6AFuvg7TYCAoz4tD40awSCAaD204z4/XcunqHX7vOTYrC1isr86OcJAOr7yxBq5ZEVcwQs7umjYIByktkxhuoN1pFAZUwR3wzQeLWXfmos8UnIfjpzUeZnZ3AxXlJXgN2brKY7AkEY4XGjm5+/q9DPqFFk9NjxbMu8KG/3Lm++l3B6Hr1dSCrWyx886872djHgRQIgkWlkjDb7P3mzvW1xSVryoUthgHl1W0D/g7UKomsBANHG7uYMT5+eBsmOGfEct0QYbL1+u3UzLbeELVIIBCMBOLZFwwGd76RJ8ORYzSUxVcEgrPRn10LWwxf9p5sJz914M51VkIkhxs6h7FFgmARjt0QkZMY5bdTy04UceMCwVhGPPuCwTAUuXMDYaQcSIEA+rdrYYvhidHSQ3OXjXFxhgFfMy7ewCEh5RPWCMduiJiQ7L9Tm5AsJncCwVhGPPuCweDOSdpYNpdXllw8bDpyI+VACgTQv10LWwxPKuqM5KUMLr9xfIKBg/Vixy6cGfEcO0mSxgMvAWmADKyWZflpSZISgbVALnACuEWW5TZJkiTgaeAawAx8RZblXSPd7rMRbKK7QCAYnYhnXzBYgsmdG8x7CLsUjCSB7FrYYniyv85ITlLkoK7JjDdwrKlrmFokGApCUTylF/i+LMu7JEmKAXZKkvQu8BVgsyzLv5Qk6UfAj4D7gauBAtfPxcDvXf+GBf70iEQysEBwfiLLZz9HcH4yEO26oWYkHEiBwE1/Ni5sMfzYX2ckO3Fwjl1yTAQd1h66unuJHoBEgmDkGfFvRZbleqDe9f9OSZIOApnAIuBy12l/Ad7H6dgtAl6SZVkGdkiSFC9JUobrPiGlbzlpd3jBVVPTqGkzBxzAQzHACwSC4cHhkNlyuJF9tUYcMqglmJ4Vx/zJaeK5FgCBx4rhCMH0pLfXQUW9kXqjlYw4A4UZsULiQDAs9PY6+OeBeu5ft++cbVzMjUaWg/UdXDYxeVDXqCTJuWt3WlTGDFdC6m5LkpQLzAI+AtI8nLUGnKGa4HT6TnpcVus6FnLHzp8e0eObDtJjdwTs3EI1wAsEguGhusXE0cYuHw3LicnRTBCr0wIGrl03lPT2Onhzbx0PvHlAsctHFxexeEamcO4EQ4rDIfO/qhZl3gODt3ExNxpZrD12TrZZyEoYeOEUN+PiDVQKxy5sCVnvLklSNLAO+K4sy14ldly7c4MKapIkaYkkSeWSJJU3NTUNYUsD46+E78LiTL+d24kWExB4gHe/Lhi7hMJGBcPPKaPFr4blKaMlxC0bPMJGh4dQlHuvqDcqTp37/R548wAV9cZhe8/hRthneHKixUR5dWtQNj5W5kajxUYrT3cxLk6PVj14NyAtVk9Vs8izC1dC4thJkqTF6dT9TZblN1yHGyVJynC9ngGcdh2vA8Z7XJ7lOuaFLMurZVkukWW5JCUlZfga74G/Er5qFf12bkLP5fwlFDYqGH46rf517Lqs9hC16NwRNjo8hKLce73R/1jTYBy9Y42wz/CkscOKQyYoGx8rc6PRYqNHGjvJShhcfp2b9Fg9x06PLof7fGLEHTtXlcsXgIOyLD/l8dLbwJdd//8y8JbH8bskJ5cAxlDn1zkcMlVNXTR2WHnuzhJykpxb2XqtigtzEvvt3ISei0AwthgXb/D7TGfERYSoRYJwIzcpilV3zKKsNJ+l8/NZVprPqjtmDWu594w4/3aZHifGGsHQkharZ/3eOsrmF3hJGjx+Y7FfG3fPobYfa6aqqQuHQxZzoxHmUEMnmfGDD8MEyIgTO3bhTChy7D4D3AnslyRpj+vYT4BfAq9KknQ3UA3c4nptI06pg0qccgdfHdHW9sFfHPjjNxaTGa8nMSqC7IRInrplpk+cuLtzc+u5BHpdIBCMLqakxvDwoiIeeutMLtPDi4qYkhYb6qYJwghbr+yVh/nULTOH9f0KM2J5dHGRT45dYUbcsL6v4PwjNymK+xdM5fFNB7l7Th5qFZTkJHJZXpJPflx/RefE3GjkONTQyYU5Ced0bXqcnppWMw6HLPIfw5BQVMX8EAhkCaV+zpeBe4a1UYPAXxz4/ev2sdEjQbg/vRah5yIQjC1qjRae3XqUu+fkIUlOyYNntx6lJCdBlPYWAKEpnqLRqFg8I5OC1GgajFbS4/QUZsSJwimCIUeZ16THnHVeE+hZcAuai7nRyHC0sZPrZ2ae07WROg2ROg2Nnc5qu4LwQohQDJL+4sDdA7SnXou/8r1u1CqJTmsPHx1vEaV9BYJRSmOHlTi9lsnpMVi6e4mM0LDtiNarTxCc3wxk3BgsnmPLuHg97aYe6ju8ZQ00GhUzxicwY/zZ7ycQuAlGdkCWnXnHO2taSYqK8Ln2bM+C0Lobfsy2XlpNNlJjzj1dICNOz4lms3DswhDh2A0Sdxy4Z8cUKA48UMiBTiPxyIZPubUkm5VbjorSvgLBKCYjTs/tF+fww9f3Ks/y8msLSY8VuSECJ4MZNwaC59gyKTWa2y/OYcX6CiFrIAiac5Ed8HdN2fwC1pbXcP+CqV7XDvWzIBg8VU0mxsUbgpprpsZEUN1i4tKJSUPYMsFQIHr9QeLOkfNMEA4UBx4o5GBfrZGFxZmKU+f52mgr7SsQnO+0dNmUSTU4n+UV6yto6bKFuGWCcGEw48ZA8Bxbvj5voo/9jXZZA0HoOBfZAX/XrNxylIXFmT7XDvWzIBg8lae7GBcfnCOdEqPneLOYr4YjYsdukAwmRy5QyIFDBkkKLIsgwhAEgtFDfYDnvKFjdJXpFgwfQ51b7Tm2WLr9y200GK0iBFMwaM4lbDjQNe55Tt9UFZFLF1oqT3cFHVGSHhvBoYbOIWqRYCgRjt054JlD1x+BQg5UEormiwhHEAhGNxkBnvM0EYop8GCg48ZA8BxbIiM0fu1PyBoIzoVzCZUMdI0s+792KJ8FweCpPN1Ffmpwf/vUWD2bKhqGqEWCoUSEYg4jgUIOirPi/Gq+iHAEgWD0MX1cHA8vKvJ6lh9eVETxOFFWXjA8eI4tz31wjOXXFnrZn5A1EJwr5xIq6e+asvkFbNhXJ+Y1YUhVcxcZQS78pMXqqW2z4CxcLwgnxI7dMBIo5AAgLzmaVlM3a5dcgtlmF1UxBYJRik6nZnHxOPKSo5QqcsXj4tDp1KFummCM0ndsyYjTs/Ybl9DQIWQNBMFxLqGSntc0dliJ1KnpsTtYUJQu5jVhhsMhU9NqDnpHPzpCg1ol0WqykRR97tU1BUOPcOyGmUAhByIMQSAYO+h0akpyE0PdDMF5RN+xJScJZoS4TYKxwbmESorwytFBY6dV0aELlvRYp1C5cOzCC+HYDSFu7ZcGo5UIjQqj1UZSlF7RFAp0zfFmE9WtJqJ0GtJiI8hOFCtcAsFowmLpYX9DB40d3aTFRjA9PRaDQRvqZglGKTabnX2njDR0WMmI1TPdYwc4kDbqueqOCc5vgtGs63ttdkIkNW3mgL+f7d7BtEUwMI43mRg3RPm3qbER1LSamZWdMCT3EwwNwrEbIgLruHzKd+YX+NUU8nfNstICCtKimT85TXRoAsEowGLpYf2BBh56+4DyHD98XRHXFqUL504waGw2O2/uO8VDb3nY06IiFhePQ6NR+YwZq+6Yha1XHpTumEAA56ZZ19+1jy4u4pktR6lusfj9vb97B9MWwcA53mIassJeydERnBCSB2GHCMIfIvrTcQmkKeTvmqc3H2VfrVHo2QkEo4T9DR2KUwfO5/ihtw+wv6EjxC0TjEb2nTIqTh247OmtA+w7ZfQ7ZuyrNQ5ad0wggHPTrOvv2gfePMDC4syAv/d372DaIhg4x5tNpMQMTehkSkwE1a3mIbmXYOgQjt0QcTYdlwajr6ZVfzp3pzuFBpZAMBpo7Oj2+xw3dnSHqEWC0UxDgHGhscPqd8xwyIE1UQWC/uhPs+5cr5Wk/n8PdO9g2iIYOMebTEFr2LlJi3Hm2AnCC+HYDRFuHRdPPHVcDDo1O0+0cqi+nU0H6tl7sp3U6Ai/16gkhJ6dQDBKSIv1/xynxYqEcsHgyQgwlqTGRJAR5/uaWiLA+WIMEfRPoHmLQatm+7Fmqpq6cDi8y9k7HDJVTV2oJCngnKe/3wPZZaC2pMfqqWrqCtgeweA40WIibYhy7FJiIqhttQzJvQRDh3Dshoj+dFyWlRZw/7r9fPGFj9h9soPfba3k1tXb+bShg1/f7H3NstICirPihO6LQDBKmJIexcPX9dGxu66IKeniGRYMnsL0WB97WnFdIc9tq+TT+k5W3THL67WL8xL82t844dgJzoK/ecuji4soe2U3tz/3Edes3MamigbFmXLnwV2zchvfXbuHZaXeWrwPLypiw7465fcV1xV6/d6fpp2/tqy6Yxaf1ndyzcptftsjGByyLFPbZiFtiPqGpGgdLaZubL2Os58sGDFE8ZQhoq+Oi1atosvaw6KZmby0vZp6VyjmivUV/OqmGZT9fTc/eH0fr3/zUv75nbnUtJqIFFUxBYJRx6EGE+UnmnjxKxfS0tVNUnQEb+6qITc5kosmiMm1YHCc6rTy3sFTvPiVC2nq7CY+UsufPzzO1iPNfHC0lX9+Zy4bPTTG2kw2nn3/AHfPyUOSQJbh2fePkpcSJSQ4BP3SV7POoFVT9spuqlucuzDuPLcpZXPJS4n2yoOrN1p5aXs1S+blMWt8PIlROh7ZUMHC4kzFDl8rr+H7V03hSGMnKgmmZcQEnNv408+TZfjCM9t88u7c7REMjtOd3UTq1BiGSGNVo1KRFB1BXbuFCcliITNcEI7dENJXx2XDvlOs3FzpdY61x4HF1qv8v67NwueLMpiYKjopgWA00tjRzas763l1Z73X8bmT0kPUIsFoprHDyjufNjMpPZ5VW3zHj6YuK5fkJZ8ZZ+pPUd1i4dmtlT73EQjOhue8ZfuxZsWpc+POc8tLifbJg6s3Wlm5uZJXllyM2WanvNpIebV3obhLJnYqdnzZxCRykwPPdfrOobYfaw6Ydyccu8FT02oesoqYblJjIjjZahaOXRhxzo6dJElq4HFZlu8bwvaMKTJi9eQkGZQVLID1e+swuIQhc5IMJEVHsOVgI1ERYrdOIBiNpMVGcNW0ZL54yQTaTD0kRmn5647jIsdOcE6kucaNyWkx3HfVJHKSoqhrN9PVbWf93jpSop05R26tr0DjzFBP4ARjh0B6ce48N09nyjMvzv16QqSOG2ZnIUnOHM/0WD0OVz2Bvte6c+z0WhUZcXr2nmyj3mglJToClQriDLqAenVna49gcFS3mEkdooqYblKiIzjZJgqohBPn7NjJsmyXJGnOUDZmrDEtLYZ7Li/w0rdacV0h/9h5kpwkA0s/V8CXXvhIaNgJBKOYKelRXDF1HP+3ZqeXjp3IsROcC9kJkXxnfgE/eH2vlybq+r11fGd+AbXtJv5vzS7ltZe/caHPOPPwdUUUpsWE+qMIwpD+9OLceW59X3PnxeUmRbHqjlkcbezi6c1HlXMmp8dy1dQ0n2uXlRbw0vZq9FoVf7xzNp+caOOBN8/Y6fKFhazbVcPX5kz0q1d3tvYIBkdNi4nkIXbskqIjqGkRjl04EWwo5m5Jkt4GXgMUsRFZlt8I8r6jGvdqWL3R4qNvtfztCv545wUAykTQ/drTm4+yZF4eecnRIsxAIBglHGow+dWxy02+SOTYCQZNTZtZmfzCGU3Uu+fk8cCbB1gyL8/rtVNtNr/2Nzk9mhnjE0L2OQThSSC9OHfeWt88N8/dNJVKYkJSNEtf3u1z/cayuV7XpkTrUatgVnY8qTF6Oi09yoKE+7oVG5w1B+59dQ/Tls3FIeOzi9hfewSD40SLmXHxQx+KWXm6a0jvKQiOYB07PdACzPc4JgPnrWPnuRr29bl5XiEEcEbT7mSbpV8NO+HYCQSjA6FjJxhKzqaJ2rcgoLXXLuxPMGD604vLS4n2yXPry+nO/q/ve607p27TgXq/11lsvSRE6thV085P/rHfZxfxbO0RDJyaFjMzx8cP6T1TYyLYcvj0kN5TEBxByR3IsvxVPz9fG6rGjUb6rob502XJiNMzOS3G72uxEep+NWQEAsEZ3JpKoXxehI7d2Gakbexsmqh9NytSY/zbX2KUbljbKRhduO3Y0mNnWWk+GR5aZmfTrvMkkH3aHTLHTge+NiPO4F8zT6fh5pIsxamDM7uAJ1pM/m4lOEdq24chxy4mgro2oWUXTgTl2EmSNEmSpM2SJB1w/V4sSdIDQ9O00Ynnati6nbWUzffWeVlxXSF/+vA4T75ziJ9dW+j12k+unkJidAS3rt4hNFsEgrPgqakUyuclQi2x4rpCn+c8Qi3ChUY7obCxcTF6H106tybqU7fMpDgrzuu17l6HzzhTNr8AGTFuCJx42vHX/lzOHz+o4q5LcxTB+/606/riT29uWWkB9722jy88E/jawoxYHl3sbdfLFxby0v+qmJQaE3AXUDA0WHvsdFicu6NDSZxBS3evna7u3iG9r+DcCTYU8zngB8AfAWRZ3idJ0svAo8E2bLTiWcWp3mhlzQ6nzktmnIGaNgu/e7+ShcWZbD3SzO//U8lzd5XQ2GElI05PTISGW1bvEJotAsEAOFuuyEhhs8tsPljPH++8gHZzD/GRWv624zh5yfkj1gbB8BAKGzvQ0MGz7ztz6iI0KnKTo2hoN/PkTTO4IMepS7exj9bXo//81EvHbm15DQuKhNyGwIk/O35681H+8tWLnAsB/WjX9cWd95a55BION3RS227x0uoNdK1Go2LxjEwKUqOpN1pJjo5Ao4Jf3TRT2Y0W1S+Hj9o2C8kxuiHPT5QkibQYPSdbzUzNiB3SewvOjWAdu0hZlj+WJC9DOa/d9r5VnNrMNvQaNb/dfFTp+Nx/ruoWCx8db2XVFqcOjMnmP1dC5NwJBL6cLVdkpGiz9DBzfJJXVcyy+QW0W3pGrA2C4SEUNtbQYfWrS/fsHbOUSZlnzpHDIXP/gqmicqAgIIHsWEbGbLP3q13nD5VKwmyzU9Nm8au1GOhajUbFjPEJzBjvfdzhkEX1y2HmZKuZtGFylFNcWnbCsQsPgnXsmiVJmoizYAqSJN0E1Pd/ydhGpZK4amoaa5dcQl27BYcDVn9wTHHq+uq6uFeq3CtTYtVKIBgY4aJxlBSpY/WhBn510wwstl4idRr+8r8qLpowbUTbIRh6RtLG3NWUk6N1g9KlE5UDBWcjkB0btGpaTDaWlebzanmt1zzlbDaeFqtHLfmfs6THemstns0ehQ0PP7VtZlKGOL/OTXJMBCdFnl3YEKxjdw+wGpgiSVIdcBz4YtCtGsU4HDLvHGxUVp5ykgz8aMFUjp7uwu5wkBSl4/f/qfLScPFcmRKrVgLBwAgXjaNpaTHcdekEKk934pCdgr13XTpB6IiNAUbKxjyrKV86IZF7r5zEsSaTYk/fv3IyRemBV8NF5UBBf/izY3deXXWLxUtzrs1sG5CN5yZFMT0rjmWlBYqmXU6Sgceun86Bug6Onu7k1fJa5X7+dOo8ETY8vJxstQxbQaXkqAhqRKGbsCEox06W5SrgCkmSogCVLMudQ9Os0YtnLHtGnJ5bS7L5nkdnuvzaQr58WQ6dVjt/+KCSlbfNYnpmvNLhiVUrgWBghMsq77FWE3XtFlZ/UOUlzHus1URRZvyItkUwtIyUjXmOGxflJXGq3epjTw1dVnL1YtIrGDx97digVfvk1blz7lJiIgZk4yqVxPzJaeSnRDM7O4Eeu50WUw9f/0u5V0j6mh3VolZAGFDTaqYgbXj+/qkxEew62TYs9xYMnmCrYh6TJOlvwJ1A9tA0aXTjGct+w+wsVm456i3Iub6CTqudZ7dWUt1iwdJj9+pA3atWl+QlK5oyAoHAP+HwvLSZe5QVazgzSWozixy7scBI2JjnuJGVEOnXnoQunSAYPO04UF6djDwoG1epJHKTo7k4L4lx8ZHcv26fl92u3HKUG2ZniQqXYcDJNjMp0cMTipkSG0FtqwjFDBeCDcWcBlwMzAWekCRpMrBPluXrg27ZKMUzlt0tKOuJ+zh4x7G78ysGGpMuEAjCA2uPnYRIHTfMzlKe7XU7a7H22EPbMMGowXPcMHf3+rUns+28rksmGEKGI3e0scPq124l6Uw+n8Mhi3lNiDjVbhm2HLvUmAjq2i3IskyfYoqCEBCsY2cHelz/OoDTrp/zFs9YdvCfWFySk8CqO2YRo1eTmxTllV/hmcdxtph0gUAQevKSo7jr0hxll8UdOpeXLHJjBQPDc9xwyA6/9pSTGBnqZgrGCMHkjjocMsebTVS3mojSaUiLjSA7MYqMOL1fu1VLUDa/gLJXdnP/gqliXhMCLDY7JpudWIN2WO4fqdOgUUu0mmwkDdOuoGDgBOvYdQD7gaeA52RZbgm+SaMbz1j2U+1mMuKm8ciGT5WO7idXT8Fis3OksZNZ4+Pp7XVQa7SEhR6XQCAYPF3WXr+hc5flJYW4ZYLRgue40Wrq5ksvfCzsSTBsnGvuaN9FaHdxuIpTHWTFG/z2g7+5ZSYPb/iUeqNVzGtCRF27mdSYCFTDuJuWFqunptUsHLswIFjH7nZgDvBt4OuSJP0P+ECW5c39XSRJ0ovAQuC0LMtFrmM/A74BNLlO+4ksyxtdr/0YuBvnzmCZLMv/DrLdw4o7lr2xw8qqLZWKcGyUTo2lx+FVTOUX108nPU4fFnpcAoFg8NQZLX6f31NGCzNICFGrBKMN97hxqKFD2JNg2DmXKpT9FYcrK833a7cV9R2KjIKY14SGk22WYcuvc5PqkjyYlS36qFATbFXMt4C3JEmaAlwNfBf4IWA4y6V/BlYBL/U5/htZlp/0PCBJ0jTgNqAQGAe8J0nSJFmWwy6BpW+eXEacnrn5CXwmP4nmzm7S4/T8atNBrxWt324+whM3zfAJ2cxJMqCSJLYcaiQnMYoJySLnTiAIR5KiIvzqjiVGiZVLwRkslh72N3TQ2NHNlPRI2sx2Gju6SYuNYFJ6FPEGZ35TUlSEMh5kxOm5YXYWahUkRUcEzFGy2ezsO2WkocNKRqye6ePi0OnUI/0RBWFKb6+DilNG6owWkqMjSIuNYHyCc07R2+ugot5Ii6mbWL2OVlM30XoNGTF61BqJhvZumk3dZMZHIkmyslBdmBGrOHUAERqV39STC3MT+MOXZvO7rZUcOd11Vo07UW9g6Klrs5AUPTxSB26So3WcbDUP63sIBkZQjp0kSeuAGcAxYBtwF/DR2a6TZfkDSZJyB/g2i4BXZFnuBo5LklQJXARsP6dGDxP+8uRe/PIFlOSm8LU/f3JG7mBhIbbeavbVdSgrXj94fS9l8wuUCpo5SQa++dl87nrxY5FzJxCEOVERcM/l+Tz0doXyvD58XSHCrxO4sVh6WH+ggYfePsA1hWlYbMl97KWIq4pSiDfocch2li8s5A8fVHJrSbYyLqz+oMrvOGCz2Xlz3ykeeuvAmfstKmJx8Tjh3Ano7XXw5t46HnjzjH0sv7aQcfEmLs1N5u39p3hmy1HuuCiH37y3WznngS9MJUKj5kFPu7quiI+qmqhr7yb3qkmKE5cRpydap/HStNNrVdx75SR+tG4/bWYbK64rZEKKgZpWC+XVrThk5wKYZ96dqDcwPNS2mYd9oTE5Ws+JZqFlFw4EJXcA/AKYLMvy52VZflSW5f/IshxMTdulkiTtkyTpRUmS3Pu5mcBJj3NqXcfCCs8QBXDuxvU64KG3D3jLHWyo4OvzJgJn5BCqWyys2VHN3XPyKCvN5/EbZ7BifYVPzt0JIQApEIQdZhvKJB2cz+tDb1dgtoW4YYKwYX9DhzIW3HRhth97OcCRBmf/rlVr+MMHlXz/qik+cjn+xoF9p4yKU6fc760D7DtlHMFPKAhXKuqNilMHHrJLFucu7wNvHmBhcSa/ee+I1zmnO7sVp8597KG3D3DXZXncMDuLk61m9FrnFPKG2Vn8YtMhXtrunMcsnZ/Pknl52B0y9UanlMfv3q+ktrWbJWvKWbm5kue3VXFrSTaPbzqo2LS/eZSY+wTPyVYLycO8Y5cWG0G12LELC4J17PYC90iS9Lrr5zuSJJ1r2Z3fAxOBmUA98OvBXCxJ0hJJksolSSpvamo6+wVDjKcOkZtWU4/fmHOrq2y1WnVGDqHeaOXZrZWs3FzJ6U7fewkdmNFPqG1UMDw0dnT7fV5Ho+6YsNHhwdNGmjv7t5dWk43qFgtHGjsHNA40+Bl7nPcbe+OFsM/B43asPLH2ODDZehXb8SfN5JD9yzVZbL1IErxaXkvZ/AL0WpVyvXses2qLcy5jsp3JmFlYnMlP/rHfR+duYXGmYtP+5lGjbe4TjjZaO4wadm5SY/TUCscuLAi2eMrvAS3wO9fvd7qOfX2wN5JludH9f0mSngM2uH6tA8Z7nJrlOtb3+tXAaoCSkhJ5sO8fLP50YRKjtH5jztPi9Cydn89FuYkBtWT8HRc6MKObUNuoYHhIi43w/5wPk2bQcCJsdHhIi42gJCeOuy7LQyXBH740m/p2Cy0uEfv1e+tIi3XaS7RereyEDERrLCOAJlla7LlrkoUrwj4HT0acwW8OcJROo9gO+NpatE7t164y4gxkJxqI0qnpscs8cdMMtGrJ77myxzfkuZDtxtrjQK1Csenh0NcbacLRRk+1W0ke5vEoOVpHU1c3PXYHWnWwe0aCYAj2r3+hLMtflmV5i+vnq8CF53IjSZIyPH69Hjjg+v/bwG2SJEVIkjQBKAA+DqrVw4BbF8azk9RrJR6+rsjr2IrrCvnzh8dZt7OWEy0mlpUWeL3+yKIinvz3QWUlzH3crQOzqaIBhyMs+gqBQABkJmh4+LpCr+f14esKyUwMdt1MMFYoTI/mlpIcfvj6Xpa+vJvvrt2DtdfBup21PL+tinsuL2BSulNDLCNGz/JrC1m/t85nHPCnNTZ9XBwPL/IeZx5eVETxuLiR/ZCCsGRqWgz3fK6AFz6sYtUWZwjkty/PJzFaw/RxcTy6uIj1e+v43hWTFBvKSTKQFqf3mZ/ce+Uknvz3IfacNPL05qM89e4RfvD6Xk53WPnZtd594PJrC9mwr075fXZ2gvK6G6eub6Ji0/7mUQPV1xP4x9broN1iIyFyeEMxNWoViVE6TrVbhvV9BGcnaIFySZImyrJ8DECSpDyckgT9IknS34HLgWRJkmqB5cDlkiTNBGTgBPB/ALIsV0iS9CrwKdAL3BOOFTH96cJ0WXt49v2jShUpWYbfvV/JwuJMpo+P57ltVdx8wXhWXFtIZISG+nYzbaZuyquN1LV386ubZlB5uhO7A9bsqBY6MAJBGFLX1sur5TX86qYZWGy9ROo0/OV/VeQmTyUzPtStE4QDlc1mn3zrpzc7x4Znt1by0NsHKMmdS7wBWsw9rNtZw/evmoLscPDHOy/gcINT9/SCnESfiA2dTs3i4nHkJUcplQSLRVVMgYtao8UnB3P52xX88ztznbYzI5OC1GhaTN389e6LaTXZiDVo+MqfPiEhUucl15STFMUXL87hlNFCQqROCfP8+b8Osebui1j7jUtoNdvYfbKdv39UrewSqiTITYr0EUV//MZiLstLUmz6XPX1BIGpN1pIjNKhHoG/YVqsnuoWMznCEQ8pwTp2PwC2SpJUBUhADvDVs10ky/Ltfg6/0M/5jwGPnWsjR4q+ujCbDtRT3WLh2a2VXudlJxrQa1ReFc/cu3Iq14JWvdHKkcZOVm3xvlbowAgE4UWbuYf5U9L54et7vZ7lNleYnUAQKM/JHRrn2a+3mGwB7SnQBFenU1OSmzjcH0MwCgmUt9bUZWViajQajYoZ4721x7Yfa/bKmcuI03PnJTkse2W3l026F5ytPQ7sDpkZuQlsP9bMys3Oecu+ug7lnpdNTBqQ03Yu+nqCwNSNgIadm9SYCGpEnl3ICSoU0yVEXgCUAd/BWSFz61A0bCyQEWfwG3pQ125BpVL5VDxbueUouYlR3HfVJB6/YTqzx8fzk6snkxGn97peQqKqqUuEZAoEYUBCpNbvs5wQea51pARjjawEA2Wl+Syd7/wpzoylrDSfyWkxPHP7LEpy4pQ8okD2FC/sSXAWHA6ZqqYuth9rVuYIaR55dG70WhUGjdrrPM9rI3UacpLOyBG7K3j3tckvXpyt3E+jUvHJiRYidRq/75cSrVf06cRO3MhR224haYQcu6ToCGpahGMXaoLVsdMD3wbm4Ayh3CZJ0h+ClDwYM0xNi+HhRUVe+kL3XjmJCLWK6haT31U0BzKv7TxJdYsFvVbFstICvvXZPH7/nyrazDaWlRbw3bV7aDPbhL6LQBAGdPfa/T7L3b1hFzEuCAFmi42D9Z2s/qDKS6fULWnjzonLinNOpHt6HX7tqbfX4e/2AgHgX0v3qVtmctXUNJ8QyOXXFlK2drcyz3jqlpnoNBJLXz6zI/fo4iKe2XIUW69MdqLBr02mx+rJSTJwa0k2339tD7eWZLPlUAOPLi7y0s176paZHG/p8rq/mL+MDHVtZhKjhje/zk1ajJ5P64XMSqgJNhTzJaATeMb1+x3AGuDmIO87Jqg1Wnj1k2p+ddMMJODo6U7+9N8TAPzkmql+qz8daujk1pJsJcTh6c1HWTIvj8cWF7Gntp2XtjuPAyLfTiAIAwxa/9Xj9BqR4ySAAw2dXnpgC4szfXRKH3rrAJPTopkxPoF0V6SHbzVlg9/7CwQQWANuY9lcpmXEsGReHg4ZJqXF8Ot3DlHdYvE6b8m8PK9rH3jzAK9/81KONHZR3WLya5M1bWa+f9UUfrHxIPVGKyu3OPNGn9lylLVLLsHSYyc1Ro9KggVPb/Npm5i/DD8n2ywkDbOGnZv0OD3/OlA/Iu8lCEywjl2RLMvTPH7fKknSp0Hec8zQ2GGlvNpIefVu7r1ykhJ3DvDzjc7Kl31z7NbsqFZ25rq67UgSFKTG0Nnd43U9iHw7gSAcsNkd3HvlJJ5694jXznyPQ+ywCHx1DiUJEiJ13DA7S8mxW7ezlgajlRnjnWXhl5UW8PTmM2PDstICRAVxQX/0pwEnyyjzh6Xz8xWnzvM8d2ZHRpxesU2zzc7Tm49g65UDzlduvCBLWWx2541Wt1iw9Ni5JC8ZOJOz569tYv4yvNS2WZicFjMi75UWG0FtmwVZlpEksRMbKoJ17HZJknSJLMs7ACRJuhgoD75ZYwNPTZYJyVFeK171Ritry2v43R2z2XWyHVk+U/kyI05PrEHrNbA/sqiInCSDV4c82vRdBIKxSHevnQi1SlkRV0kQoVZhE6FzAnx1DqMj1Nx1aY6P45aZ4NyRqzdaeWl7tVc15Ze2VzMrO57cZDEJFvjnbBpwnq/5O08loRRJcTtwz2+rUhy4NTvO2OTktBh+vvEgbWabl1adW7uu79xkLOjTjVZOtVtIHqEcu0idhgiNiqaubvHdhpBg1wAvAP4nSdIJSZJOANuBCyVJ2i9J0r6gWzfK8dRkqWs3+2gS3XFRDhEaFc9vq+LZrZXKqtfNJVk8suFTr7CFB986wP0Lpgp9F4HAA3/FAkaamAgtv9h0iJWbK1m1pZKVmyv5xaZDREcIHbtwINQ2EqlTe+mZyjKKUwdnpA/cobtpsXrazDae3eq0p2e3VtJmtomJkqBf+tOAy06IZPWdJZSV5mPQqvjJ1VN8zivOiuPmEv9FUm6YnaVUyHx+WxWHGjppM9tYvtBbq65sfgEb9tX5zE2EPl1ocDhkTnd0j5hjB85wzGpRQCWkBDvzWDAkrRijeGqyNHV188PX93qtwr77aT25SZE+YTf5KdF+wxY0Kom1Sy7BbLOTFhuaqlIOh6xUtgpVGwQCcNrilsON7Ks14pBBLcH0rDjmT04bUZvstPb6fV47rb0j1gaBf9wFJR7fdJCFxZmoVXBhTiKX5iWh0YxMbGOkTkP5iSb+9JULaTHZ0Kgkv/bSbOomnxhlEty3CIaYBAv6G38DacABvHOw0cuefnVjMf8qm0tjn/NUkn/bdIcB67UqHlw4DavNzpM3zSAlRsvK22ZhttmJ1KnpsTtYUJTuMy8Q+nShoamrm6gINboR6uvAuTB1vNnEhUJ+JWQE5djJslwtSdIcoECW5T9JkpQMxMiyfHxomjf6cThkOq09GM02Hr6uiIfePoCtV+bmkizKSiexZM1ORQQ0QqMiLzmKpGid37CF/NTQarsEqrolKlsJQkFNq4mjjV1KtUF3SFt+SvSIhqxlJ0b5fV6zE8VEPNScaDHx+KaDPpqhj99YzLXF40ak38pNiuILMzLptPYSqVWjUUv9hqWJSbDAHwMZf/1pwFU1dfkUVfnhun2sXXIJF+UmedlVbpL/vmz+5FQmpcUo2rptZhs/v346abEGpZ9zO5yBEPp0I09du4WUmJHbrQOnlt3xJtOIvqfAm6DceEmSlgP3Az92HdIBfw22UWOF3l4Hb+6t49bVO1iyZhf/99ed/PDzU/jB5yez+oMqPj7RpoiAvrGrFo1K4ol3DrHnZDsPLpwWdmELgapunWgRD7Fg5Gns6PYb0tbY0T2i7ciI0fHIoiKv5/WRRUVkxIxMJTJBYBo7rCwszvQJL7t/3b4R67ccDlkRcN5T286n9R3ce+Wkfvt39yT4krxk8lKihVMnOOv4GyjkOFBRlc2HTrOposFLw67F1M3jNxR72eay0gJOtpm5akoai2Zk8tMvTGXJvDye+PdhFjy9jS2HG9lU0cA1K7dx+3Mfcc3Kbcp9BaGlrm3k8uvcpMfpqWruGtH3FHgTbCjm9cAsYBeALMunJEkamfI7o4BP642Klgs4O9PDjWf0jOBMEvMNs7NYW17DrSXZPL35KAmROpbMy2NCchQNRivTMmJCPrj3V3VLrMIJRhqTzX8IpNk2siGQh053YbH1ehVPsdh6OXS6i9k5IhwllKTF6lGrCGm/daihg+Yum5I3rdeq+PGCKSwrLWBiSjT5qdFiR05wVvobf3OTogLu5gUqXGJ3OCWTpi2by6f1ncq1OUkGfnPLTI6e7qK718FL252VurOXRBKj13Lfa3u97rWv1ug1pxFSBuFDXbtlxDTs3KTH6vl3RcOIvqfAm2ADb22yLMs4xcmRJEnEHnlwyujbETvkM5OMdTtrlYIqkoTXynK90crKzZX8+I39dHXbaegnxGGkcA8QnojKVoJQkeMKgfQkFCGQnd29/Pxf3sVTfv6vQ3R2ixy7UJObFMWFOYkh7bdazTafYli/2HSIrm47PXaH2JETDIj+xt/+dvP8FS4pm1/AG7tqsfY4aOzo9rq2usXC917dQ3evQynqZu1x0GC0+nUuPec0btwOpyC0nGw1kxQ18jt2J1udkgeC0BCsY/eqJEl/BOIlSfoG8B7wXPDNGhvEGjQ+HbFaQjlWb7SyZkc1S+blcdnERL8rywmROqamx2C22fut6DYSld9EZStBODEhOYpf3+xtj7++eSYTkkfWHi09dialRrPy9lk8fsN0nrl9FpNSo7HahNxBqFGpJC7OTeQX108f1n6rv/7X0mMPWJAiLda/cxnqSp6C8KO/8bexw0pCpI57PpfP0vnOn4RIHac7rUrO5toll1BWms/dc/JYs6MagLLSfFpM3Xx9bh4ZcWds0drjIEavVu63rDSfzASDX+fSc07jRiz4hgcn2ywkj5A4uZtInXPeGw6bEecrwRZPeVKSpCuBDmAy8JAsy+8OScvGABmxBp+Kl0lROh6/sZj71+3D2uOgzWxjSnosJeMT6Xad454EZMTpuevSHO57fW+/xUpGqqiJSOoXhBsRWslbP0478rY4IcnA7Rfn8EOP53T5tYXkJImJTahxOGTeO3ya324+wt1z8lCroCQnkcvykoas3zpb/zsuzuA3FG5WdgLF4+IGfT/B+Ul/4697rtBXGzE99kxBnumZ8dS1W7n31T0kROp8znfr1dUbreQkGYjRa/nte2den5QWy+enpflUbJ2eFSequIYpp9osJBelj/j7ZiUYqGoykRFnGPH3FoAUzHapK/TSKsuyXZKkyTidu3/JstwzVA08F0pKSuTy8tDrpPctx66SoDgrjssLUqlpM3t1zidaTPzw9T1cP3u8ErZTVprvFbsOzgnBxj6x61VNXVyzcttZzxMMGUHPrsLFRkcz4WL3e2rauO25HT7teOUblzAzO2HE2tEHYaOMjI2c7T16ex28te8UP/3HfmXi+9j107lmahoGgzYkbQ4DhH0OIcdOd/GFZ3xt5p/fmcvE1DM245ZLaOrs5st/+tjn/Lvn5PHCh1WsvrOEJWvK/dqge77SV1Kh77ExsAgxqm1UlmUKl/+blbfNImqENVVf/G8V8wpSuPPS3BF93/OMgPYZ7Lf9ATBXkqQEYBNQDtwKfDHI+44JVCqJ+ZPTyEuO9unw+pb9beywUl5tpK69W9G6y4wz+A3hqXbFzbs7TlHURHA+Ei523xCgHf2V/hYMP+5J7HDbyNnsUKNRsah4HPkpzkJY6XF6CjPiAurohYtdC8KDgWjHnu70bzNNXVYvx8499whkY8WZsWwsm3tWG/QnWyCkDMILo6UHCUbcqQNIjzVQeVpUxgwVwX7jkizLZkmS7gZ+L8vyryRJ2jME7Roz9Kfd4u6wW0zd6NQq9FoV9UYrz26tBGBZab7fEJ7dJ9ux9DiU0Bx/Va9ykgwYtGq2H2sWQuKCMUlqjJ6cJAMLizORXKa9fm8dKdEjGwKZESDULj1OhGKGAodD5niziYP1HSA5+8LqFovyul6rGjIbcThkJackkC4dgEajYnpmPDF65wS9ps0csE8OVMVQ5Cydf/gLy111xywmJDkXi91j+9lspq9zmBrj//yCtBhyk6LotPb6fd2gVeNwyGIuMQqobbOQGiCHd7jJiNOz7WhzSN5bEHzxFEmSpEtx7tD903VMHeQ9zwvcHfZX//wxnxxv497X9igVMsHZiSZG6nz0jsrmF/Baea2Xfk3fpOqcJAPfmV/Arat3CF0ZwZhFp4V7Ls/nhQ+rWLWlkue3VXHP5fnofKPbhpWpaTE83EfH7uFFRUxNix3ZhgiUfvULz2xj6d93c99re/nmZ/PJSXLmerhzj463BF+QxP1eZa/s8um7++YYuc8diNaXKFIlcNO32mVCpI6jjc6wS087yk6IDGgz/mzveEuX3/OzEyID2nTZ/ALKXtkt5hKjhNo2CykjXDjFTVaCgWNNYscuVAS7Y7cMpzj5P2RZrpAkKQ/YGnyzxj7uDvvuOXmKxMGaHdX86qYZVJ7uxO6AP3xQBcCSeXlkxhmoabMoyc2AEhbRN6naoFVz6+ozOT9CV0YwFqlv6+ahtyu87Pyhtyt46asXMT5h5Oy81mjh1U+cz67F1otBp+Gl/1VRkpMgnrcRxl/Z9xXrK3jyphkcauxEllF0uYLNWfN8rzU7qpXiLKVTUpmeGe+1qxGoHL2/PlkUqRK46RsSecPsLKXgCZyxo41lcwPaTFVTl4/tLX15N5uWzWVjn/MD2XR+agy/2HiQeqNVzCVGCbVtZhJHWJzcTVJ0BJ3WHjqtPcToR3ilVXDujp0kSWrgOlmWr3Mfk2W5CigbioaNddwdtiSdkTioN1o50tjJqi2VXueu3FxJWWm+EqIJvqE5niGf2481ixwNwZjndGe3fzvv6h7RdrjzY8urd3sdF8/byBMoN+iQn3412O/H8708Q+gvm+hbcXOweXP9hfALzh/6hlh6zhfcnC33LZDtNXRYuSQv2SfX359NL52frywoi7nE6KC2zUzSCIuTu1FJEpkJkRxrMjFzfHxI2nA+c86OnasS5pyhbMz5hKcejL9Y9r6/l7hEdj3j7B0OmS2HGonSaUiLjSA7MSpgzp1eq8LukDl2uoucxEhq2sxeydjAWRO0BQI3vb0OKuqN1ButZMQZKMyIDVgMYrjIiPNv5+kjnFcgcqJCgz8bDPRdROnUPPCFKaTFGojSqemVZS/drv4IVLxiMN+7sBHBQPC0tRi9BrPNzm9vnYkMStG0s9lRX3sN1E8Oxk49i6cLux0d1LRamJEVH7L3z4w3cKSxUzh2ISDYUMzdkiS9DbwGmNwHZVl+I8j7jnnceRSPbzpI2fwCJRxz/d46Hl1cxANvHvDShLksL0kJm0iP1VNxqpOFqz700qwpSItm/uQ05d6eCdfLSgu477V9tJltPLq4iGe2HKW6xaLcX6eRWPrybqGbJDgrvb0O3txb52Wjjy4uYvGMzBF17qakRfHwdUU89PaZdjx8XRFT00Y2F8nf8yZyooaXQDZ43fRxPt/FL66fjkYt8YPX93n1h909djLjIvu12f405QbzvQsbEZwNT1vzpzP34wVTaO7q9tHG9bSjQPa66o5ZPuP7QO3UPV8Ake85mjjZauaKqWkhe/9xcXoO1XeE7P3PZ4LVsfuTn8OyLMtfO/cmBc9o0bdxr6y1mrrRqlWYbXbSYvVkJ0T66Nx5OliBdI6WzMtj8cxM8lKicThk9te1c7ihk9p2C6+V1yqhFG69GneYhfvalZu9Qz3HmG7SUDKq9W2CZe/JNq8cTnDay9ollzBj/Mjptn1yvIX7Xt+rVMWUZdiwr44nb5rBhROSRqwdcOZZDqOcqDFto/3Z4PTMeK/vQiXBgqf995elU1L7tdmzacoN5nsPQxsJJWPaPvsyEMkCT1u753POolCedufWtU2I1HHD7CwkyamNe8OsTHKTo33u4catZydJnJOdnm0+MoYZtTYqyzJFP/s3v71lFtH6kZc7ANhzso3/HGnilSWXhuT9zwOGR8dOluWvBnP9+U6gPAp3xSnZJWp+vNnkVdrYMw4+I06vdPIFqTG0mrqVgipmm52aNotPbok7t8/z975FrkQcvSAQ9Ub/ORv1Riszxo9cOxo6urH1njFcSQJbr0xjx8jm2IHIiRpp+rdB7+8iUM6xQ4aGs9hsY4fVayINsG5nrVfhqoF+78JGzk/62/X1dJA8x/W+uXQZcXoKUmP4+tw8wGmD7oXaS/OSFMcuUD5dU5dvPl0g/NmpsNvRRYelF1mGqIjQFakfnxDJkUZRGTMUBOXYSZKUBTwDfMZ1aBuwTJbl2mAbNpbxXL1LjdGjVjknKuPi9XRYemk12+i09hKrV1PdaqbRaMXW66DT2svR010kRmopK80nUqdGQuI37x05E3Z0QzHJ0V1UNZuIjtCQGq2jrDRfcdzW7aylzWzziZnvuwAn4ujHLgNZPe6P1JgIv3kYKSNcgSsrXs/X507giX8fVuz/B5+fTGb8yNutzWZn3ykjDR1WMmL1TB8Xh04nlF/OhYHY52BssG/eUEacnptLsshOjCQ5OqJfXa6MOD1lpQWsWF+h2Ni9V04iNTqCvSfbaDV1ExWhpbmrm8QoHWkxEeQkRZ8vOxqCATDQiqh97dSt0RmjVxOj1/KD1/cqNvjgwml0Wnuw2OyoVRL/q2wmPc6/Pl1OkgG9Rs22o01Ye+zkJkWhVUvUG62kx0TQaulx5anqSYrSUW+0ekUOiVz80cfJNjNpsXokKXTfTWKUjh67g+aubpJDVJ3zfCXYPdo/AS8DN7t+/5Lr2JVB3nfM4m/1bllpAR9XtXDdrEwajFae3nzUb4z9T66egqXHwTKXI+cOzfAcMH78xj5+c8tMHt7wqTNv7nMFrP7XIa/3So/T89v3jgBnYuZ1GsmrOIuIox+bDHT1uD8MWhUPX1eoSA3oXb9H6ka2eIohQq04deC0/yf+fZg377lsRNths9l5c98pHnrLI9dvURGLi8cJ526QDNQ+B2ODuUlR/PrmmXz/Nf+5S4Hsv7fXQXWrWXHqwGljT717hKkZsTzw5n5uLclW8qP1WhXLry2kptXM3IJUMeEVAAOviJqdEKnk139w+DTf/Gw+K9ZXcPecPH77nrfEwSMbPuXuOXm88GEVUREa/vTfE7SZbfzxztleOfo5SQa+f+Vktle1eNn8Dz4/mbd213H19Ayv48uvLeTvH1Vz5HSXTy7+qjtmYeuVgxo7BCPDyVYzKTGhdaYkSWJCchQVpzr47KSUkLblfCPYmViKLMt/kmW51/XzZ0B8g/3gb/Xu6c1H+cqcCRxvNimdrD+9mmaTTdmdA3DI/ksfH2zo4IbZWSwszuRB12TT871aurpZNDOTP32lRNG/mT85jY1lc3llycXKMdFZjz0CrR67xe4HQrull2ffr+TuOXksnZ/vzNd8v5J2S+9wNdsv1S1mv/Zf02IZ0XbsO2VUnDp3Gx566wD7ThlHtB1jgYHa50Bs0OGQqWrq4qPjLeQkGVgyL4+fXDPVrw6YP/uvqDfSECjks93CwuJMxalzH1+xvoJOq31Qz5NgbONZAduNv4iYmjYzz2w5yt1z8vjuFZOUBYVAEgfu40+9e4QbZmdh7XGws7pducfS+fk8vKiIyqYuH5t/4t+H+fq8iT7HV6yv4OvzJmLtcfDAmwdYWJypvLav1hj02CEYGU62mUkOkdSBJ9mJkVTUiXFwpAl2x65FkqQvAX93/X470BLkPcc0gVbv2kw9Xo6av87cnyPnX9YAJR/E33t1WHuZkh7LZyd5ryqLOPqxz2D1tPzRarJR3WLx0lV0Hx9JDFq1X/uP0I7szmFDgL9pY4d1RNsxFhiofZ7NBvvu/JWV5rNycyVL5+cP2P7rjVYidRq/NmbQaQJOuE22XpGfLFDoryKqZ9ixpceu2PTjN0z3sbm+v7vTKaw9DiJclV0dMl7PxeM3TA+4AGyx9QY87v6/ZyRfoPsIWw8/qltCv2MHkJMUxb5a4diNNME6dl/DmWP3G0AG/geIgir9EFjPSMfxZu8OvO95asn72LqdtTy0cBoPb/hUGTDK5hewtrxGqRTo773mFaTQY3dwosXkN45e7NSNXYZCTysrIZKSnDjuuiwPS3cvkREa/vK/KjLjDcPR5IBER2h8Sn8vKy0gJmJkq4BlxOqVfBj3RGj93jrSRlhPbywwUPvMSoj0e57bBo83m3jxw2P86qYZWLp7yYjvXzfUn/1nxBn4qKrZr43Vt5sD3itKpwk6PznYPFhB+KBSSSwoTGeKS67IXVkS8Fp8WFaar9hTZMSZBYV1O2u9JJHc4/yaHdWA0+Zyk5336ztHiDVoUBv922m6h76duwibWgXpcU7tuzazjUlpMSydnw9AtM7/QprIxQ8/alrNXDzClaH9MSE5in/srgt1M847gq2KWQ1cN0RtOS8IpDH3y38d4qYLspRJxLqdtdx75SSeevdMYZSUmAgeWVSkhFe2mW3EG7Q8fessKuqN2B2wtryG2y7M5qXt1eg0EsuvLfRK/H90cRHff22PEjfvT9NOhGGOXYZCT2tySjS3lOTwQ49k/oevK2JKaswwttyXOIOKzHg9S+bl4XBVkM2M1xNnGNkdu8L0WO65vMBHT68oPXZE2zEWGKh9FmbEevWFeq2KRxYVUTQuDoCmLgs3zs5WbDQnycCK6wr53fuVPpPkQPY/KTmK6lYT7Sabl41lJRhIiNTw0zcrfO61/NpCYvTqoPKThyIPVhBe+Ks0WdXU5RXa+Gr5mTH/uQ+OseK6Qpa/XUG90cra8hqeumUmtW1mJqZE8/AG53G3k3eq3YxeqyIxUqfcIyFSR4/dTl5KlM/ixA8+P5lf//swy0oLeOWTGp9c0WWlBWQmGPj1O4eUucETNxUruaoiFz+8Odlq5tricaFuBhlxeowWGy1d3SSJAiojxjnp2EmS9AzOHTq/yLJcFkyjgiXc9W3cq7HHmrrYX2dUNOYy4vR89bIcJmfE0mntJS02gm1Hm3HITumDtBgd1h47GfGRmG29NHV289rOkzxx8wzaumxU1HegU6tQqyRMNjsqCa4uSkOn1tDUZcWgVVP2ym6qPXKQ/GnaCf26szJq9W0geD2todKxC3ZX4uPjLbxzoI4rCjNp6rSSEqPnvYo6rirM5KK8kVutPJvWWYgYtTY6UPvs7XVQUW+k1dRNjF6HrddBepzz/PITrdz1p4+9vpOcJANP3DgDlQov3dBA9y8/0YqMgzZTLxpXn9rYYWHNjmoeXTydNnMPEjJJ0RE0GK1kxhtIjdEFXRUzTO1pqBm19jlUbD/WzO3PfeR1LCNOz8rbZtLV3Uu8QUtdu5UjpzuxO+CNXc55Qk6Sgfs/P4VPGzoV7c4fXDWFgw2dvLHLWZD85pIsLp6QyEfHW3lrTx23XZhNVkIk5m5n1W2AxzcdJiNOz0+vmcp9rgUQN27n7vFNh72ObVo2F4c8MD28McCotFGHQ2bKQ5v445cuQK8NffGuxzcd4jvz8ykNoVj6GGXIdew8LXUFsPwc73Ne4l69O9LY6SUKXm+08vN/HWbp/HxWbank3isnKa9nxOlZOj+fpzwqXJbNL8DWK3O8ycRJP3p1AJdNTOKSvHgmpkaz/Vizl1MH/jXtRMz82CZYPa1AGmJn0wTzZCh2JRo7unn+vyd5/r8nvY7PyE4eWCOGiKHIWxScYaD2qdGomJ4Zz6aKBr71t4+87EjCNx+ousVCs6mba6YPbCW7ocNKr13mu2v3+LzWarKx7BXv48/eMYuLh2BBQdjT+YG/sOM2s42k6AgunJDE9mPNHGrs9BnXq1ssmHvsinTRz6+fzmMbDwIoeosOGbp77UrOnaeDBijhlfVGK4caOwPkitp9jjV0DFwPTxAaGjutREdowsKpA8hLjmJndZtw7EaQc3LsZFn+i/v/kiR91/P3gSBJ0ovAQuC0LMtFrmOJwFogFzgB3CLLcpvkFOJ4GrgGMANfkWV517m0O1xwr0jHGvwn5rvntTa7Q3n9htlZPOLKpQNnJ7tyy1GWzMvDoNMo13qK6aolSPfI8wmUv9JX0+5sMfMi/2N0E+z3lxFn8JtTlj6InLKBajv1R1qsfy2ztNiRDfkYirxFweDs0n3uiWYThxs6SIjUKQsO9766h7/dfbH/HLy4geeBZsTqsdntfu+TEKn1Otdpd0PzfQt7Oj/ITohk9Z0llFe34pCdfeiDC6fhcMhsOdRIdISG2Aj/eW01rWaeuKmYWIOGOIMWnUbyCad87PrpAfPi9Joz4ep98/Lc5wht29FJTYs5rPK7J6fH8O+KhlA347xiKJJRBh/LCX8GFvQ59iNgsyzLBcBm1+8AVwMFrp8lwO/PrZnhgXun4pqV2/jlxkMsv7bQK6n/0cVF5KdEo9eq+ODwaeX1QBXYJqZEs2HvSdbtrOUnV0/hrktzeOHDKlZtqeSPH1TxaX0nDpc6uTt/pe/7bdhXp/x+tph5z/bf/txHXLNyG5sqGpT3EIQ3Q/H9JURp+Pbl+YqdPb+tim9fnk9CtPbsF7vob1dioExKj+Lh64q87Pnh64qYlD6yOR/+niuRezI4BmOXnud+7S/l/PGDKu68JIeMOOdkxtrjwNLTy6OLi3z6ukJXDt5AmJIWRVOXjWWlBV73eWRREXbZ4WN3U9Iig/0zAMKezgccDpl3DjayZE05Kzc7+9AfXz2V7h6Zhas+5Gt/LueuFz8mLlLHY9d723HZ/AJeK6/l4xOtVJzq5ESLiceun+4jvfHTf+ynIC2aH3x+stf1y0oLiNVryHAVT0mK0vG9KyZ5nfO9KyaRHKUTNjgKqW41kxoGFTHdTEqL4WB9J9Ye+9lPFgwJI1s+zoUsyx9IkpTb5/Ai4HLX//8CvA/c7zr+kuxMBtwhSVK8JEkZsizXj1BzhxTPnYq5k1L5w3+cWkyS5Myje2bLUb4xZwJP3zaLmAgNB+raeeKmGagCrKqdarewcMZ4JqV3khKj5+f97IL4q86VnRDJ7OyEAcfMD8VOiyB0DMX3V9/ezfK3vUWbl79dwV++ehHZiQPdbQt+V+JIg4ln3z/q9fw8+/5RcpMjuWjCyK1YBqp6J3axB85g7NLfuStd2l3Pbq1Er1WhVatZPCOTgtRoGoxW0uP0FGbEodEMfC3z04Yufvj6PhIidYqNqSSYmBxFTWsXL37lQpq7ukmJjuAfu2qGzO6EPY19/Nnwp/UdrP6gyqdfff6uEqV4jyzDmh3VtJltFKTGUHm6k6QoHRqVw+9CWcWpTqakx/x/e2ceHlV1Pv7PmS2TyZ4ASQgkEBK2sBMBLaCAC1oE12ptsSqW9usCVVuXWqVQa12qbVH7c61braJSN1SqglWpgICsYQ1L2AKE7NtkJjPn98e9M8wkM5BAyCycz/Pkycy9d+49d+4771neze/zry3XPv/89JHUNDbz/Nc7KatzMGNsLkYDjMxJ4d6FGwGYOT6X4T2TyUmLUzIYIewtb6BLfOhr2Hmwmo3kpNlYU1LJD/LaHiZRVtvE6j0V9Ey1MSir7QtyipOc2AkhajlmqbMJIWo8uwAppTyZdHDpPpO1Q4DHITcL8A2i2a9v85vYCSFmoln0yM7OPonLdw6+lgohCFiLyQ0crWti9ltrvW4V903uH7C0wWvLS/jVpHwAahqdQWOfPIMjT/xKr7Q49pTXs6qkgvREK6N6pbVJaav4j5MnHGS0I55ffVPg+kcNjrYXKO+I7JxHapsC/n7KapvafI6O4lTjFsOFUMloe+Qy2LGe8i53XtCXuBijV7cNzkrGYBDeguUtXT2DuYAeqmnC7nRTWm33k7G+6QnUOyU3vbLKTxdXNjg77PuIFnnqaMJBh54KnoQ/B6oaW8lwsDpx3++tIs5i4i9fHMuQfecFfXn4ky1UNjh46LLB9EqLDbhQ1tTsZsOB6oDx99/tqeTFb3Z5Syd4a99dOZjSas1zYv6SYt6aOVrJYTsItYzuOlpH7y7h9bwGdU/kv9vK2jyxe3f1Pv7w8Rb6psdTUt7A2LwuPHbVEEzGzs14HamcbIzdac1rLqWUQoh2+fZJKZ8HngctE9FpaVgH0NJS0VIZF+Yk0adrPDNeXe23cvenxVv527XDmTk+F5NBq1tzsKqBHxX2oLrRwdNLi/3q4Hiwmg3Ym12s2nOUqoZmctPiyEmL47Mth9uVuMIz+Gl0upg9KY+39Uyenmso3/sTEw4y2i0hsKWsa3zbn1+XhJiAMXZpcW1fJewIq0RGkBi7cHJDiTRCJaNtkUuPDoq1GAIeO6pXCqN7jyTGZOTb4nJqmpr5aP0B7pk8gAsHpAfUeRcOSOd/u8pockpMBkHRwRoO1zRyVk5aUPnqGh/Dr99Z76ef5y/dwWs3jcLtlsqqcRoJBx16Mrjdkv1V9azcVcnTX+7g3skDWsmWb6ybb125Ub1TqGhRciNGH+DanW5+9/5GXvpZIU9cPZRth2txS+1c2Wk2Xv3fHib07xY0tj6QtTtDT9QGml5XfXv7CLWM7ilv4OxOzArdFgb3SOb15SXc/8MBJzz23TX7eOw/23jghwPJSonF7nTx1y+2M2/RZuZNG9QJrY18wmn6e1gIkQmg/z+ibz8A+Oba66Fvi0h84ycWrtnvF7+RkxbLj0f3YuXuioArd2U1jeR1jcNsFNz97noe+XQbz329C4PBQGaSlbdX7+eBKQNb+ePP/aiIb3aU8/PX1vDDp5exYnd5QLen3UfrA7bZL6blFS2m5fqzc7w++sr3PnIwGmgVMzR7Uj7tWgiTkl+e6x9j98tz89rdFo9VwpNlrb0DYiFoFaM659ICDOGk1RRt4kRy6dFBz/53O03NMuCxe8vr2bi/huv/8R0Pf7qVF7/ZxTWF2Ty6eAtFpdUBdd7m0moq6p3sLKvjln99z+1vruXGV1bzyaZSBmbEB4jhLKC2KbBnxLLioyreWNEKt1uydNth9lU08sAHm5gyJItHFm9h1kR/Gc5Os3HnBX3JSYtl+hgtVn7+kmJueHkVJeUNvLN6P08vLWb+kmL+tHgrV4zoAegulweqqWtq5vmvj8XXl9c5uGpkD7KSrfy+hZ6cNTHfWxrB19o9b+ognlqy3avXb5+YT3ZKx8SOKk4/UsqwS54CkNc1nooGB7vK6o573Mb91Tz08Rbuvqg/WSlaoiur2cisSfl8uukQ/ys+2hnNjXhCEmMXhA+BnwGP6P8/8Nl+mxDiLWA0UB2p8XXQ2lKRnmDlB33SKK22kxYfw09fWsnN43IDrrDlpSeydm+lt9AoaEr5z59phUbrmlzEmo08N30kVfUODAYDL3y9k5LyRjxjDbvTHdANxO50s7einj7dWpvwA8UD/G3JDl69cRRdE2LITrGdcpZMlWmzcyittvPa8hK/uLTXlpcwPDuZXm1036hubPYWvQdNHuZ+VMQL1xeezqa3osHhbhWj+uxXxTx02eBObYfi1Gkpl56sfVsPaTW8HK5mDMCE/pnU25v5dGNpKxl+cMpAHvqkdezd41cNpby+KaDOK622s/tofavYprsXbuCfM0azek8ZL3ti6RKslNU2kGqzBNTPLjcq3vgMIlif1XK7QcCG/dXkd0sgxWahf0YCQmQh0RYo6h0upNRcyF/9tqRVXTlPfztjbC7//n6/N+t1v/QEhmQlcl7/bmQm2yg+UuuXHfbJz7czc3wuFqOBd9bs4/WbRlFnb2bt/ipeX1Hi53Ezuncq5/XtyiOfbmZ1SbX3ur97fxMjslOUPEcIVbo7eHxMOA3ttXHvqN6pfLT+ILPP7xvwmPqmZm751xquH9PLO6nzYLOYmD4mhwc/2MR/fjVeuWSegJA8fSHEm2iJUroIIfaj1cF7BHhbCDEDKAF+pB/+CVqpg2K0cgc3dnqDO5hA8RNDemoFS+1ONwvX7GfWxHy/1MV/mDaI73ZX4HC1DpJOsVlIjDV7J3xWs4EHpgyk3m7n/87L46VlO+kWb2H+j4fT2NRMdqqNwpwkrwIHTblbTIaArkTBYlokkl5pccetR9aWCVtH1DRTtI30RCuVDQ6/mKH2utI2NbsCykNTJ2e9qmtqDhhjV9/U9lg/RXjgK5eZSVamj8nx6rOctFhuOS/Pm7DHE2PkckvqHS6EgKzkmIC60e500+hoJsFq5cKBXfhs87EVX6vZQKzFiMlgCPi5QzV23l5Tyttr/NcRX75hZKv4UE+ckoo3PjMI1mcFcvl9+PLBmAwGUmwmrj87h9/okzZPPy0ENDpc2MxGfjI6m2a3DCiPCVYTD0wZyNZDNbglvPrtLn48Ose7yOYrh57JnVuCvdlNSXkjLik5t183GpvdVOpFyj3t/kGfLqzcXe43JvBcV8lz5LC7vJ7MJCtChN+4aWxeF575spjbJuZjDDCum/fRZvp0jefsPoHdSAtzUvh00yE+2nCQy4f3ON3NjWhClRXzx0F2TQpwrARuPb0tCg888Xel1XZeX6GtXidZjQzLTuFonYMR2ckYDWAQebglLFyjxbldXdi6xt0fFm1mxthcnnx7HU9cPZS6pmbu1juUnLRYfn/pICobHMSaDdTandgsZhzNblbuLmdkzxT2Vzd6J2PB4l9izUZW7akIms3uRJM+DyrTZufRKy2Op68bzob91d5YjME9ktrlSptsMweMsUuObXu5g46ga7yFCwd24SdjelNZ7yQ1zsw/V+ymSzti/ToKZXE+NXzlMr9bgnfwCzBlSFarLKwea8TTS7W4oBemj6TOcazmnG+MUqzFxJwPN3H7xL5U1DtZXVLt1UVJsWZyu8YF1G/peizpLef1ISnWQqzZiC3GSHKskT5dk8iaOYaVu8rJSLax52g9V47soWKSzhCC9VkLZo7xbh+SlcjN4/vQ6GhmdO8U3JJW3jaefnrRhgPccl4eT3+6NajHTt9u8dzyr+9JsVm4urAHN5yTy44WVrr5S3fw2FVDOVjVQI9kG/ZmFwlWMw9OGUCtvZlVeyoYkJHA4tnjOFTjH9us6idGPrvL6r1lX8KNPl3jSbCa+E/RIS4ZnOm379ONpXy1vYw/Xh48hk4IwWXDuvPU0mKmDc1S/etxCC977RlOr7Q4nrh6GHe9s47SajuLNhzgtgn5XP+P77wTo9mTtBo2lQ0OZk3MZ8HqvfTpGh80S5zd6Wbb4Vqvq1FmkpVrCrP5vzfWeM8559ICnv96J9uP1PHbi/tzoKqR372/ybv/6euGt1qhfuiyQcx6ay2XDs0Kms0OaNOETWXa7FwczdIrD54Bbnv55bl5fivFcy4t0HLidiJpcUbOH9CdX7x+TJbnTR1EWryxU9uhLM4dg0cubx6X66cPgtXw9HUvr25s5vHPtnp1YstizbMm5vPU0u08cfUwmt1u74DW4XBRWmVv5SExa2I+cTFGZk3qy/3vbfTTv1nJsfRMiqcgM4kdR+q8C2YevahikqKfYH2WZ4I1JCuRH4/K8VtMveuCfkH7ad/Fi0AeOw9MGcjcRUWk2CxMH5PTSlZ9rXR7y+sxCMGv311Pis3CjT/oxZOfb/eT4fz0eCb2S/fTTx2RqVgRWnaV1dEtzOLrfLl8eBaPLd7KxP7dsJq1fnr74Vrue28jd13QD5vl+FOSwVlJLFi1j692lDGhX7fOaHJEoiZ2YYTBICjonsDsSfmk2iz0TLN5U2qD5nLZ6HTxq0n57KtqZMHqvTw0bTDFZbVBs16BfxrlK0b0aFXIdO5HRTw3fSSr9lRid7p4+NOtfvtv+9daFs8exyd6XGCs2cist9ZSUt5IfIyRWZPyvIOshWv2YzEJYk1Gth+u5eZxuV7Loud8LSdsaqWw8+gI62ijwx0WMXZldS6/Onag1bF7/Kqh9O7aee1QFudTp+V3GDC7r/5+Qt8u3Di2N41OFwtmjuFQTSOJsSYczZLXV5TwyJWDvZN98M/8V17XxEWDjq0WH6y1U1rTyNKth3jsqqE0NjVjizHx6re7+EFemndS5znP35bsYOb4XO+quGcBzLNfxSSdGQTrszwJxf7vvDzueHsdKTYLV4zoQXZKLAaDICctlpLyRj+Lcv+MBBocx9zbfT12slNj2VvRSK3dSUl5I7dOyGvVf7fMapmdFuedUF4xood3Uuc53iPDuV38w0FU/cTIp7isjr7ppzVp/SkxtEcy3+w4yh0L1vH41UPZsL+K2W+u46djcsgLkN+hJUIILizI4KVvdqmJ3XFQE7sw42CVnUcXbwPgz1cP8SpkT9xJy5W66kYHBgSzJ+X7xdh5VvHAP41ysNXvIzVNvPjNLh6YMtDr2uG7/1CN3Zu9cPnOo97OSSD8rD+/vbg/MWYj17ywIuCKYqAJm1op7Dw6wjra6Axcx67R0bkxdpUNzoCWmY6sJ9YWlMX51PH9DltaLD5af4A5UwqYu6iIs3unMnlwJg98sEl/9sd0xuxJWl3P9fuqAz4PowEyWrgpHa6x8973B/ysK1azgXnTBgWN2XNLOFRjZ8eROvXcz1CC9VkFmUk8fd1wau3NAa1rc6YUsPD7vUzsn+G3/S/XDPObKJZW23lp2S7vhO22iVopo2D9tyer5dypBVQ1HEsUdDxrdyA5VfUTI5tdZfWc2zd8JzxCCH4+LpdXv93DsLmf0S0xhhvO6cWInJQ2n+Ps3DQWrNrL7qP19O6ixoiBUBO7MCPOcswClpUc613hC2Rpm790B6/dOIpfv7uBFJuFGWNzyesaR5LNzNyPirwTqS7xMcydWsCcD4sAAsZHdUuM8fr8zxyfy/wlWkKKzCQrVxf2oMHhYldZHb3S4ryrlVeM6OEtmupp09F6R6sMc/OX7mD2pHwanS76dktASvyStKiVws6jI6yjqXGWgDKUauvcGLsUmzmgpaWw14lr5XQkyuJ86vh+hx6LxczxuQzqnsSmg9W8+V0Jt03I46xeqdy9cD13XdjfOxEDTc+8tWov918ygPqm5oC1Nof3TKEgM6nVdc/r3425i/wt0A9+sIkFM8cElHODgC7xMWw7XIfVbPBaZYTQFtEywtgVStExHK/P6p0Wz4frD3B1YQDvmEWad0xLi/Ijn27hocsG+YVAeBYqMpOsWE2am6/VbPSOCTxYzQbO6pVCnCWfv/+3mHsm9/fTR4HiTvumJyg5jTLcbsm+yoawf65Ws5FfnNuHn4/PxXASSV4sJgPj+3blnytKeGDKwNPQwshHTezCCLdbsqOszjsxevGbXcy5tIBnvyoOuvK2r7LBOxjyZJS7Y1Ie904ewJZDNbjc8OKyXcyelMcL0wtpli6yU208+MGxDmTu1AKqG5u4dUIeQmjZh357cT/cQKLVzLxFm70B2327JTAgI8Gb6KBlm9wSv4EOwNfbjtA1Icav02oZg6RWCjuHjrCO1juaueP8vuw6Wu9NwHLH+X2pd3ZuNkqX28WVI7L9LC1zphTgcneu5VBZnE+dlt9hZYOD/hmJmE0Cq8lItd2JQQgq6h1cU5hN8ZFaP90zoW8XfnJ2Lzbsr8IttQnY9Wfn8NryEiobHDx02WB6d7FgMhlaXXdgZmJA3Wp3urhtQj4P+OjKOZcWkGoz886qvSzfXcl9k/vT4HT5eUv0y0gkO1UtTEU7wfqsI7V23l69nzsv6OsnV56JVWW9k9sn5mEQgnrdy6FofxXpiTH8+aqh1DuaqW/SLH4Wk2jllTB3agF//28xJeWNXi+FB3ULtqNZ0uR0c8f5ffnLF9tZuEZrxxsrS1qd58kfDVNyGkUcqGokIcZMrKVzY8xPlpOZ1HmY0K8bv/+wiN9c1M8bq6c4hprYhRF7yutbxWzM/aiI56ePpMbeHNAqYDEZW7lwPPPVTn57yUDyuyXQ0NTMtWdlc7jGwZFaBwXdk3jwg7V+15jzYRFPXzeCl5b5rxYC3kldS5eSJ64exqR+3fyscwCJMUauPzunVemFp1qsXKoYpNDQEdbRJKuZzQdr/VxwZ0/Kp1dq5yaNMBqMrSwtcxcV8dpNozq1HcrifOoE+w7XlFSwbl85j145hJLyBtLiLNzx9jq/zIFDshL54dDu3Pav7/1cct9atZc/XjaIBocLt3RR1xT4uqlxgevSCSG8kzo4po/f/PloPik6jN3pprapmae/LFa6TeElPdGKxSSIizH6Wcta9qGzJ+WzcI2WCG3u1AJ+9/4mv8naGyv3MG/aoFbWvTkfala/NSWVuNx4wxzmL9Vi53aX1zOoexKPXTWUPUfrcbklv714ILMXrFVyGsUUH6mjR4v6b9FKeqKVXl3i+E/RIaYNywp1c8IOVeUvjAgWq3Oo2s4fP97CrIn5WM3aI/NMmF74emer7dcUZvP7D4u4/c213PPvjTy6eJu3COr6fVUBr7Fhf5Wf0v/bkh30SLGRYrNw3yUDsDe7uHmcljTA7nRz1zvr+HZXeatr9+4SHzCl85QhWa2u6cmcqehcPCvNnpjJ9k5AaptcvLVqLzPG5nLbxDxuHpfLW6v2UtfJMXaHawIXnT5SE2AEf5o51e9UEfg7LMhI4IKB3bnh5VXcs3AjRQc1L4Gvtx3hyR8NY9akPO66qF+rhaP5S3cwZUgW3++r4rY313L3wk3UNwWWz8oGZys9NmtiPmW1geWr0eFm3rRB2qC9OXAcntJtZy7ZKTZum5DPo4u3euUqUCjF35bs4IoRPbyTNU8f6ZHfSQMycLkkN4/T9KwnYY/d6eZwtZ35S4p55stiv8Rk2Sk23lm9n0ani7vfXc+Tn2/nb0t2UNvkVHIa5RQfqWsVQxzNnNevK69+uyfUzQhLlMUujAgWq5OepBXv9WTKEgIMAmoanWw4UEO13clffjSMmkYnGclWHvxgk1/yE48PfqPDxaaDNQGv4fLX+XqAtZvrz/ZPKuCbCKXe4WLhmv3MGJtLrNnAmNw0KuoDD4aMLZYQVAxS5OJodgVMWtLU3LkTu/TEmMCxbYkxndoOxeljx9F6nv7yWObTLglWctJimTwoM2CBcN9BrtEAFl3x2J1uGhyBXYVTbWYeXr3Xew0pYcHqvTx+1dCA8pWRZKUwO4XcLnE0OAJ7UijddubQsoalQeC19PpmtwyW9KTla9DCGRJjzdzSwgr9+grNtbhnqi2g3B2qsWMxCXJSbfz9uhFYLQZijEbMJoOS0yhn2+HasK1hdzoYmZPCa8tL2HG4lvwwzgQaCpTFLozwxJn4rhw/dNkgnlqynTvO70tlg4NnvizmxW92EWs28tryEqxmAzPH92Heos3c8++NPPGfbfxyfJ7fOeZcWsAry3bT7JZ8tP6A3+p0Tlosz1w3glizwW9V0Go2YDYYWlnf5i/VVhk95RQ8sX1//mw7IIk1m7zn9mA1GyjMSfVrk4pBilwSreaAiXwSrZ2bPKUgI555Uwf5ydW8qYMoyFCuRdFCeX0T1xRm89KyXTy9tJg/f7aVB6cUBJS/n4zO9n7OajYwrGcyCTEmbwr67NTA+mZQRiK3npfvvcZLy3Zx63n5DMpIaKWPPXrLYjFS2CuVsXldgx6jiH48NSwvmf8NP35hJZfM/4bv91aRYrMAx/rHfZWNAftFT0kiz+vMJCu3Tsjj/ksG8IdFm1vJ+NWFPbjj/L7sq6hn9iR/K/Md5/flv9sOc/vEfK59YQU3vbqam15ZzeHaJgZmJCo5jXK2H6qlxxlUQ9NkMHBu367e7O+KYyiLXRjhiTPpd/s49lbUY7OY6JYQQ2FOCkfrmnh75hjK6x3ExZgwGwQ5aTbSE63EmAxYTIJbJ+TRPyOBP3+21W/1+dmvirln8gAeXbyFmeP78PzXO5kxNpd+6XHUNrm4tcWq4ILVe7n2rGyKy+qDWt88GbvgWObMygYnu8vqvIHbnnM+euUQzslN89bBUzFIkU2NPbBbT429k8sM1Dkprazl1RtHeeVqRfFhDtelkBurrHbRQEKMmQU+1jSAnUHKDGQkWcnUvRseumwwi9Yd4JOiw8wcn0v/jMSgqbFL65r4YstBnps+kqoGJ8k2M2+s2E1hr5SgsZO+VpqBmQl8fPs4yuqUbjvTCFTD8rfvbfTLLD0kK5EhWUn8Ydogv0Q8nj7UkxDlndV7vXF4N4/LDSjjg7OSSLGZiTUbOVxj5+/XjaDB6cJiMLCnvI57Lx7IT19a2SqW7pNZ4/xkuWu8FaMBVu4u1+KVlMxGNFJKisvOnBg7DxP7d+O3723knsn9iYtR0xkP6psIQ7Ydrm2VYc83g6SH4fr/5mY3t0/M53fvb+LmcbmUlDfyzJfF3uMyk6y43ZJLh2bhbHYxb9og1u+rJslm4e6FrQv5vnB9IVLKoAlbJvXrRll9E5UNDjKTrK2Spdw3uT+3TcjD3uxGSshKtmIyGVTWyyjBZjEFlAubpX3qpKULU3sHF+X1TZjNFn728nd+CxMV9U1KzqKEBkdzK7ffv/xoWED521vRwJ+uGIwQ8Mqy3Xy5/SgAw3smc27fbn6y5St7BiHYeKCOn/1jld+1bxpr9+osX3nyWGnaoqMV0U2wuPg+XeOxmg307RbPj0fnMOuttaTYLMwcn0ufrvFIt5v0JCvdk/tjNRmobnQwa1JfZvokSgkk4310WVy+8yg3vbqmVXue/emIoLF0HjnOTrHx7a5yVpdUeDPI3jN5gJLfCOZgtZ1Ys5GETvaaCTVd4mMo6J7IwjX7uf6cXqFuTtigJnZhRqAVwONlr3K7JUWl1X7ZNH07BM/E69c+cXIPXTaIhd/vIz0hJmAnUNXg5Dfvrqdvt3genDKQebpLiNVs4JErhtDslhgQvPOLs3E2u/nvjjJuHpfLwjVa3ah/fLubuy7sz/bDtZgM2o+vrZzqYF9x+rE3N/sVkPbG2DnbHmPXEYNji9HQypqzYPVefpCXdjK3pQgzHA4XsWaTV86GZCVy24R8DAZa1fzyxB8BvLN6P1eM6EFBj2SMAnp3iWs1qWspex7riW/du2DxR+3V0YroJVhc/MGqRt6YMRqHy80Tn23lsauGYne6yEiM4UhNIz1T4zlQ1UhJeT1Ws5FPN5byy/PyvOdZuGZ/Kx376JVDvK6Tga6bkxZLl/gYbx1cT3/sK8tut+TjTaXcs3CD32/n0cVb6J+RoOQ3Qtl+qJaenZyVOly4YGAGLy3bzU/H5Kixoo6a2IUZwVYAPStuvngGKFsP1QTtEK4u7NEqTu5372/imetGsONwbcBOyWQQpNgs/HBId57T3TaNBhjWMxmTEe58Z503LfPsSfm8s1pL2TxrYj6LN5XywyHd/RKu9E1vW10ntRIeGSRZ/d3jPMkmnvzR0DafoyMGxw6XO2ASF0fLTECKiMPhcPH+hoPExxi9k7qfnp3DLD1l+28v7sfM8bm4pSZ/nqQSQ3skEWs2HreuXCDZ+9uSHV73uRPFH7VHRyuim15pcTx8+WB++95Gb63Xnik2ahqd7KtsoM7u5MqR/rU2504t4O6F67196O8vLeDGH/Rm26Fjic1Kq+28vqKEmeNzyU610S3Byjm5aV4Zbln3MSctltsn5nvdMH3DKu6ZPMAry3vK672TOjjmpTNjbK6S3whmy6GaM84N08OAjAQsJgNfbDnMhQUZoW5OWKCSp4QZnpU4X4KtHnsGKG6J9zO+HcKjVwymZ4ot4CBkS2kNo3qnMufSglYB2CUV9Vxd2IO/fLHd69Y5f0kxt7zxPav3VHFNYba37IFvyub5S3fwf+fleePrPNe665117D5af8J7DzbY31N+4s8qOg+DMHDtWdl+ySauPSsbo2i7Ojne4LitWIyGgEk0LC1TsCoijg0Hq3nwg010idcyn942IZ8HPzhWs/Dlb0uINRt58ZtdPPNlMZUNDuZcWoDJIFotZLXUIcFkb3jPZN6aOdobjxRsMak9OloR3RgMghHZydx5fj63Tczj+a938Zt3N/D4Z9sorbbTu2s8cz/yr7XZsrTB7z8qYnd5PW+v3s8d5/f1ylZlg4NYsxGb2cg5uWmYTAa/604uyOCTWeN4a+Zo5l87vFUN3PlLdzD/2uF+shxM9o0GlPxGMJsOVNPzDEqc4osQgksGZ/L00mKkJxvRGY4aAYWA5mY36/dVsnhTKev3VdHcfEzRBsqM2XL12O2W7CqrY/vhWm4el8vX2474ZbqsbHBgNRn565IdlFQ0BByENDrdHK5p4s2VJdw2IY8/XzWEmeNzeeXbPbz53V5yu8QH7ADcEm9mTM8235TNzW4Z8HN7K048OeuIwb7i9HOoxs5ry0u8dexmjM3lteUlHKpp+3PqiMFxg8MVUF4aOrmenqLjOaTrgqpGrcZcs9u/XlxptSaDf79uhFcGn/2qmPqmwDLhq0OCyV5OWlyb6hD2Sovjiav9dfQTV6sMg2cq2alx9M9MapXF8m9LdlDdGDjRlG9pA0+/Wlptxy0lM8f769U731nP3sqGVtf1rfsYTBc2Ol3eZD+7yuowCBE0a7WS38hl88EactLOzIkdwKheqVQ0OFhWfDTUTQkLlCtmJ9Pc7Ob99Qf84kMeumwQlw3NwmQyeFfiAmVig8Duih4XyBljc+mfkcCOI7Xemk5fbzvCHy8fzP3vbfQ7funWQwzISOD6c3pxuMbOa8v3MK5vN64u7ME5fbrQGKQ+k5T+HVNOWix90xO4bWIeRgHdEixtSqwRKJYuWLyCWkkML2wWIxbTsZGJEGAxCWwWY5vP0dKV6GTSb3eLD1zHrms7YjoV4YfbLemdZmPhL8fQ7IZ1+8oZnp2M1WwgxWbhihE9EAKMApxuydNLjyWKirUYT6hDTlX23G6JW7q9rqAGAW7pxu2WymX8DMLTh5XXN9HU3HpilWKzkGKzBJRbq/mYrrSaDXjEpt7h8pNnDydyk+yWELjv7BIX4zdmSLFZmD0p389V2ZO1WsluZNLocHGw2k5W8pnpignaIsdlw7J4bPFWxuZ1QYgzW5bVxK6TaZnoxBPzlt8tnqE9U4BjK3GBFHkgd0WPj/xLy3Yxb+pAeqbYvBkrLx6cyZsr9/Dkj4ax9VANLjcs3XqIK0dk+yVU8fjj/3J8HvcsXI+jWXLnBX158vPtfse8vqLEO8HLSYvll+fm+cUPZCXH8qcrBnPfv49NJOdcWkBirJHlO4+SnmglO8XGZ1sOtxpYXTgg/ZQH+4rTT5d4C7ecl8ecD4v84kbS4ixtPseJFjDaQmOzq9UgZfakfOydXChd0TG43ZLdR+s5VNNAnd1FRYOTtSVHOX9AJvf+ewP3Te5Pg9Pl97znXFpAZpLVmyTCIGglEy11yKnKXlFpNb95d0OrQXR2qs2rwxXRQ6BFSIDFRYd4dPEWrhuV06pQvSdpWTC5vfOCvt7SHL++sB/piTF+FuD2Lm4aDbTqr2dPyqe4rA6TUXj7VI+le+b4XIb3TCYnLU4lKItwNpfWkJ1qw3SGhyCc3SeNjzeWsnjTIS4enBnq5oQUNbHrZEqrA7sbHqq2M7TniT8fzF0xOzWWGWNz+csXxfy/nwxnwcwx1Nib+flrq7E73Ryo2sxvLxnAtsO1XH9Orncy5vn8/KU7eG76SJ5asp2rR/aka3wMyXEWXp9xFvVNbg7X2Dla14TFJHjoskFU1DVxz0X9ufMd//M8+GERsyflt66jd1F/Nh+q5aP1B7jzgn48+fm2VnEwLWvtqJpQ4Uldk8s7qYNjcSOv3TSqXec53gJGW9hf2eh1CfXI2mvLS8jtEsegrOSTOqciNPhaFZ6bPhKnS/LsV8U8euUQbnh5FXanm9qmZp7+sthP7uZ+VORd1JpzaQEPfliEo1l6ZcIgYGBmQisdciqyd6o6XBE5BEvo1S89gTvfXqf3udtJsVm4/5IB1DU1k2qzkJls9ZYuCCS3T36+ncev0pJNPfzJFm4e25sZY3OJjzHywJSBXrfOti5ullbbcbmlX0Kh15ZrCYVevXFUKzfm+UuKeWvmaJUsJQrYdKCaXmewG6YHgxBcNyqbhz7ewoT+3fys4mcaamLXyWQmxQZckctIapu7YTB3xb0VWpITq9lAYqzFW+vGc1xptZ1th2t58ZtdQYufltU2ccHATP71XQlThmRR3eig1m7ld+8fy/h15wX9SLCaSLCaqQ1SqLre4fKrowdwtL6J/ukJ5F/QjxiTgRk/6M2DH272+5xvrZ1gHY4qhxB6ymqbOLt3KjeM7U1lvZPUODMvL9tNWW1Tu85zqs8yMymWygaHn6y157ekCB98PRGqGpzYHS5uPa8PzmYXz00fSWW9k/TEGM7uneqtTwea3hiQmcBrN41i+6EaSsobyfR5/m4JR+ua6NWl4wawp6rDFZFDsIRef//JCFJsFvpnJHDzuFy6JVjokWLFaDBQUe/EbDR4ZdXe7A7YT+44UovLrfXNNXYnLy3bhd3pJjPJ6s1EPal/NwZnJQetwegbxtDodHmLomcmWb2uny6pZc0sKW/0nkOFOEQP6/ZVkqO8mgAYlJVEz9RY/v5lMXde2C/UzQkZamLXyRRkJraqwfTQZYMoyExq0+cDxYd4ajC1XN1rOQlcuGa/5qrmdAWOTUqI4amlO7jpnN6UNzjITLbxm3fXk2KzMH1Mjl9a+dmT8hneMzngeVqOzQtzkogxGf1cP+dOLWBIViIbDtQAmltnrPmYu2agQX6w1dMLB6Szt7JBTfY6iZw0G5MHZ/ILfUXa8zzbE7zdEaUtTvW3pAgfDtfYSbFZ+NXEPqQnxhBrFhgNRjYfrOHBFi6/gHdyZzUb2FJay6/fWc9Dlw2mMCeJif0z/HRVfrd4RnRg/JuSuzOHYB4yyTYTt03M4zd6n/bGzWexv9Leyj3dQ6B+clTvVL4vqWL2pDyykq1emSqttvPSsl08+aNhASd1wfrAs3JSvfF8vv31i99o8vnU0h3eEgsqxCF6WL+vmpvH5Ya6GWHDT0fncP/7m5g6rDt53RJC3ZyQIKIxPWhhYaFcvXp1qJsRlOZmN0Wl1RyqtpORZKUgM8kvlfGJ8KzYHam10zXeitGgZZFrS6KV+yb3xy0lFrPRz91j3rRB1Nud2PUMnX9bsoObx+Xy9NJibp2Q511N9GA1G/jrj4ZRUtHgLW/giR3ISLJy97vHCqA+P72Qma+vbvX556eP5Ls9lazYWca1o3L8BkqBBvm7yuq4ZP43Ac5z7PydVPvulE8c7jJ6PFbuKudnL3/X6jm8euMoRue2rTh4sGf5STuLPJ/qbymKiSgZ3V1Wx+KiQ/RMseFwNuHCRM9UGzcEkLPnp4/k+n+s8ov79cTYvfSzs5jx6qpTlqsToeTulIkI+Qykp3LSYpkzpYBb/vW9NynKuPwuQWX1noUbuf7sHL8Yu3nTBvHMl8cmWo9dOYTJAzPYX9143DCE4+nN7BQbH28qZWdZHc9/3bq/XjBzDI1OlwpxaDthL6M1diej//gFL1x/Fkb1PL18vuUQq3ZX8t4t50Rz7GHQB64sdiHAZDIwtGfKScdjBIoPCeRq5EkSkHbjKL4pPqrFu329i9JqO5lJVl69cRQSSbcEKz2SYtl4sJrSarvXsgZahyAEAVctq+1OBP5+/S//bw8Wk+DJq4fikrDjSK03dXnLz5dW23nxm1386fLB/HWJf+27QMWqg62eri6pOOFnFR3HkdqmoK68baWjijyf6m9JER7U2p38bckO5l5aQG7XRKb/4zsev2poYL3T2Mzz00eyt6Kel5btobTa7t0XzD28o4svK7k7MwjkIXPv5AGs21/lZxnrn5EQVFbvvbg/PZJjeerHw2l2SbrEW/j1u+u9rpF2p5u7F25gUFbSCeM+T6Q3Lx3Snf9uPxLwmEanizG5XTrom1GEAxv2VZPbNV5N6lowqX86a0qqmL9kxxnpkqkmdlGOwSDomhDDi9/4r+BVNjjomhDj14kMz07hcNEhP9fNWRPzaWoO7LpZUe8gI8nKwwvWt7pug9OlZQozGUm0mgJ+PiHGhN3p5r73NjJjbK5frFSgwViw+EKXfx92WgZyimN4Mri1ztzW9jIDqrSFwpeDekISW4yJsjoHdqebtDhzQBlJjDXxi9fXMOfSArrGW7wTO6vZEDT+TcmV4mRomUFVIFi5uwK3xM8K1zVImZ+kWJOfdXnB6r38+sL+fvFu0PY+60R602AQ9EqLU7+BM4TVeyroo8Y5rTAIwS/G53L/exs5J68LY9roSRQtRK2N8kzHU5B0+U7NUvf0dcP90ik/euUQyuub2FVWh9utueMaDIL8rvHe40qr7by+ooQ4i5E/TBvk9/nZk/LJSomlqsERsODp3ooGusZbWbB6L7F6WnLfz8+5tIDaRgegdWotreWBOqJAxdsfvXIIizYcOOFnFR2HzWJk7lT/5zl3agG2mPbXsfM9h4r7OHPxTMhe+HonyTYTOWmxHK21M2/qoFZy9sqy3d6MmDPH9/Hue/JHwyjITFRypehQfAuBd02IwWoSZCbGkJUcy83jcslMsrK3oj6gTnx52W7gWObpKUOyKD5SG7DPbEuf1Ra9qXTrmcPyXeX0Sz8z48hORIrNwszxucx6c227E7tFOspiF4UEC7BePHscpdV2nC7JAx9s9Auk9sSkmU3Crw5UZYMDl4RuiVph01SbhbgYE0k2EyN7JLP+YA3zphb4JTjwxL3cd3F/bpuQz6GaJt5cWcJjVw2l0dFMrMXEi1/v5CejcwCt4ynUA7+Pl+I5UP2p7BQbZqNB1b7rRPZVNrJ4YynPTR9JVYOTZJuZV5btJinW3OYyAx1Rx04RPXgSkjy1dAfldQ7unTyAO95ex48Ls3jlxrMoq20iMVaTM0/iFLvTjcEAb80c7Sc/Sq4Up4vsFBtpCVbuf2+jX3/3z+V7uXlsL16+4SyO1jXRJT6G57/a2SqDqxDw9ur9PHz5YH7rc4629lltkW/1GzgzcLrcbDygEqccj2E9UxibX8etb6zhjZ+PwRy98XZ+qIldFBIsRfMns8aRnmj1C75uGZPmKWDasjbYT0Znk50Wx/bDtUgJizYc4OUbRjG6dxoJVpNfnN3rK7T6OcVldaTEmunTLZ7tR+qY9eZabxutZgO2GJO3UzsnN41P2tARBYovVJ1Y55JsM7N8d4XfoMVqNjDz3D7tOs+p1rFTRA8mk4HLhmbRKy2On760klvOy8PudPPy8n2s2VvNfZcM4MZXWidFyUqObVUUXMmV4nSxt7LBO6mDY5a4GWNzeeKLHdx9UX8e/mQrv71kAMt3V/h91mo2IKUWBjEiO7lN/V0g2iLf6jcQ/WzYX0VmkpX4GDWMPx5XDu/BE59v4w+LNjNv2qBQN6dTUBIRhRwvwFrKwIlQPP796YnWgLXBcrvG84dFm73xLID3MwMzk9h+uM5vBdJjtbtyZA+aSmv8rIAeV06LycDM8blYTOKUOiLViXUuZoNgzqUFzP3omJV2zqUFmI1qMq04eUwmAw695pfD5fZa8DccqOFPn2xpJXOqxICiswnWt/ZKszFtWBYGg6CywcHDn2xh1sR8v7Ibnhi7hy8fTHZqnLffUihOhmU7jjIgMzHUzQh7DAbBLefl8fuPiuiXUeL1FItm1MQuCjlRgPXx9gXKAvanywfzj2U7/SZ1LQO2R2QnB7TaSQlvfreXey7q791vEGAzG/n9h0XeNOUdnY5ccfowCIFRSP581VDqHc3EWUw0OJwYhJrYKU6NGJMBq9ngTdzkGRhvP1JHUqyJF68vpLzeQfckK8N7pqgSA4pOxWYJnAgs1mwk1mzk/31Z7JXb11eUMHN8Lr3T4ogxGdhb2cC0YVmMyE5WHiWKU+ar7WVcMDA91M2ICOJiTNx5QV/+sGgzPVJsnNu3a6ibdFpRE7sowVPb7nCNVsqg5eTM14f/ePuCxbHFmI1sOhg8ji07NY7+GYl+5/WsUF5TmE3P1FjirWYOVTdSUtHoLbsAKotlpFFjd9LocLO/qtY7UU+zWai1O0PdNEWEU213tBoYZ6fY6JoQw+GaRo7WNpESZ1GTOkVIcLhcAS1xMWYD8TEmth+po0yX25xUG10SYnjwg03eePaHLx8MaP21mtwpTpbqRidbSmuZNSk/1E2JGDKTYpk9qS+z31zLqzeNYmjP5FA36bShJnZRQKBkKU9fN5yPbx9HWV1rH/62BF8fL44tM8lKVb2TzzYfIjMploLMREwmA5MLMsiaOYZvdhwlOy2Og1UNTBmSxYLVe5k8KIOC7slsPFDtTbTiQWWxjCxSbDHM+baIKUOyEAJcbvjHt7uZf83wUDdNEeGkxVlZsHqzN8bX5YanvtzBI1cMIadLHCVH64m1GNWgWBES0uJiWLB6r18M+oLVe7l6ZE/eWbOPBT8fQ0WDA5vFRHpiDD2SbfzjZ6PYcqiG7Ydrefw/26hscPglLFMo2ss3O8oY2D2RGFPbM1EroF9GAjePy+XGV1bxzxmjGdg9Ol1Z1cQuCgiULOW2f63lk1njAhYkDTRx87X4pScem+y13D6iRwr/2XKIHUfqcEvYUlrD3op6Li7IxGQyMDgrmQNV9oAWQYNBMDgr6bgWw2AEa5+i80mNN3HXhf0o1mXAZIC7LuxHaoI51E1TRDj9usYza2Jf7n//WLzun64YTNHBamrszQztkcyCVXvI7aJiahWdh6f/Ka9v4q4L+nH3wg2tPFN+98OBxMWYKG/QyvgIASUVDZRU1LPjcC3vrN7v9VLxTVimULSXxZsOMbSHii8+GUbmpNDscvPTl1by0s8KGZ6dcuIPRRhhN7ETQuwBagEX0CylLBRCpAILgF7AHuBHUsrKULUx3DhespS2dBzByiNcOCCdz7Yc9tv++oxR7K9s5Pmvd/klQtl6uIZBWcknTLV8MqmYg7VPrXiGhso6J40Ol58MzJ1aQFWdk57RpyMVnURzs5tFRaU8pWcZNBq0TnhXWT1//my7V9b+MG0QFfVNalCs6BRa9j/PTx/JzPG5mAwGenXRPFN+Miqb+iYXU55eht3pJictll+em+eX7MeTUKy02q7CDxQnTVOzi6+2l/HYlUNC3ZSIZXRuGmajgRteXsUjVwzm4sGZoW5ShxKuQQoTpJTDpJSF+vt7gSVSynxgif5eoeNJluJLe9wbg5VHKCqtbrW9trHZm93Ss+1vS3ZQ2XAsvsq3oGtu1/hWk68T7W9r+/aU17fp/hQdS73DxRwfd1q7082cD4uoc7hC3DJFpOJ2S9btr+J372vxSM98Wcz8JcWsKank0cVb/WTtgQ82nTH1iBShp2X/U1nvYP6SYp78fDuz3lzLI59uo9ru4t5/b/AeM2VIlndSB8fKIlwxogegwg8UJ8+XW8vISbORbLOEuikRzYicFO6+qB+//6iIBz/YRGMUjV8ipXecBryqv34VuCx0TQk/PJksPZO79hbpDmbx86ws+lLvcAU81u48PT8Kt1tSUl4f8JqHa+xBPqU4nZTXOQI+j/J6R4hapIhkPBaRnWV1fnI1JCuR/G4JAWWtIYo6YUV407J/9NRf9cVo8C8jFGMyBJRbISAnLZbnpxdyuMbOrrI63G55em9AEVUsXLOfcwKE2CjaT27XeB6aNpg9R+uZ+MR/eXfNfpwu94k/GOaEnSsmIIHPhBASeE5K+TyQLqUs1fcfAlrleBVCzARmAmRnZ3dWW8OCtrg3Nje7KSqtprTa7pfwBIKncO4SH9Nq+9E6e8Bje7dxEtke3G7J0m2HcbpkwGs6XTKisotFi4x2Tw5cTiMzSa1ARzqhkFGPReTxq4Z65WpIViI/HpVD8ZHagLKWnqhk7UwkFPLZsnzQC1/vbFVTcUR2iveYzCQr+d3iA8rtufldyO8Wz8zXV6uwgijldMrokVo7y3eVc+2onh163jOZeKuJ/zsvjy2lNby2fA9/+mQLlwzOZHzfrhR0TyQj0Rpxv00hZXitFgkhsqSUB4QQ3YDPgduBD6WUyT7HVEopg0bzFBYWytWrV5/+xkYIzc1u3l9/gN+9v8mvuO9lQ7MwmQys2lPOqt2VrVI4n9MnlYPVTa2ybTY5JXe9c2zbE1cP4+JBHd8x7Sqr4/11B/hg3QGuKcz2a98DUwby/Nc7efmGUaGIUzjlG41kGV1bUsGK3RWtCs6P6Z3K8JzUUDdPoRExMrp851F+/MJK72Ru7qIiHrtqKHe/u54Um4XpY3L8fvvzpg3isiHdsVhURrgIJmLkM1CM93PTR2AxGtlb0UCsxUSd3UG1HqYwY2wuiza07rMevXIIQ3skMflv37Sa8Kk6rmFJ2Mno/C92sOFAFTPG5nbYORX+lFY18t2eCrYfrmVPeQO1dicpNgvJNjNJsWbNcNLFxqDuSYzJTSMlLmQusUHlM+wsdlLKA/r/I0KI94BRwGEhRKaUslQIkQkcCWkjI4yi0mrvpA40l5Dfvb+J/G7xDO2ZEjSF8+RBGQzpkdLKEggwILPtyU9OlsM1dtwSSsobeX1FiV/7au1OSsobVQB6CNhfZee15f7P47XlJfRMsTE8J9StU0QaHovIhgM18F0Jj101FIH0uoP7/vYLc1KY8+Em+qVrukuhON0E8ogxCHhv7QGe0xNI3TYxj4Vr9jNjbC7ZKbEB+6ysZGvA8AaVSEXRFuxOF68s38O9k/uHuilRTWZyLNOGZXnfO5rdVDc6qWtqpq6pmaoGB4eq7azcVcGv31nPkB7J3PCDXlwwID1sLHthNbETQsQBBillrf76QmAe8CHwM+AR/f8HoWtl5BGsMzlUbWdoTy1G757JA4KWKGhZGgEIuK2jSU+0YhTaimZptZ1nviwGtPczxuaqAPQQ0S0xhsoGh/d5gPZMuibEhLBVikjFEyN859vr2HCghrvfXc+rN47yurJ5fvtWs4Gzeo2kpLzRq7sUis6gZT+4fOdR3l6931usHPDqxNsm5gXss64ckeV9req4KtrLGytK6NM1jp6ptlA35YzCYtLGNoHGN45mN6v2VPD4f7bx5GfbmXPpQM7JC338Y7glT0kHlgkh1gPfAR9LKRejTeguEELsAM7X3yvaSGZSbMCsmRl6TJRnRfKTWeN4a+ZoPpk1Lix8/nulxTG4RxKzJ+X7JYaZNTGfRRsOtCtBjKLjSI41Mndqgd8zmTu1gGSbco1TtJ9A+mdo9yTmTRvUSsZeWbbbT3cpFKEgPdFKZYOD11eU8PhVQ0mMMfLAlIFYzQYWrtnfqs/y9FWnmuhMcWZS3eDkmf/u5Eo9q6oiPLCYDPwgrwvzphZw8eAM7nh7HbPfWktVQ2gTyYVdjF1HEMnxS6eDE8XYhTNut2RvRT2Ha5pocDSTarPgdLtJjYsJZZHysPO970yam918s/MIRmGgssFJis2MS7oZ16db2MvTGUTEy6jD4WLDwWpKqxtJijXz8rLdLN9dETG6S3FcIlo+fePuUmwWrj87h7dW7WXKkCyMBjg7N42u8TEcrW9qFa7gKXZ+ukMZFKdM2Mjo3e+up7rRyQ3n9D7lcylOH3ani7dX72P1nkoeu2oIE/p3O52Xi5wYO0XHYzIZuGxoFvnd4jlUbScjyUpBZlJEDIwMBkGvLvH06qLiD8IFk8nAuD7dKCqtptHhIinWHDHypIgcLBYjhb1SvRl9rx2Vza8u6KtkTRFyWsbdZSRauXBgBmV1/pO1PBICfrYzQhkU0cEnG0v5evtR/nj5oFA3RXECrGYj15/di8KcFO5duIHxfbvy4KUDSbCaO7UdamJ3hmAyGRjaM0XFpSg6BCVPis5CyZoiHAk0QevTTU3WFB3Hqj0V3Pfvjdx9UT9sFjVcjxQGdk/i4SsG8+Z3ezn/ya+YO3UQFxWkI0TnWObVsqdCoVAoFAqFQhEGSCn5YN0Bfv7aam6dkKesuxGIzWJixthcfj4ulz9+vJlrn1/BmpKKTrm2WgJQKBQKhUKhUChCiNst+W5PBU8vLaakvJ57JvdXiXUinALdevfV9jJufWMtXRIsXFPYk/MHppOZFHtarqkmdgqFQqFQKBQKRSdQ39TMglX7OFrXRFWjk9KqRrYfruNAVSMAE/p15eZxubjdkl1ldSFuraIj6J0Wx60T8li/v4pnv9rFAx8UAdA9WYvJzUi0khJnIS7GRKzZiNkoiI8xMXVY93a74UZlVkwhRBlQAnQBjoa4OR1NNN4TRNZ9HZVSTj6VE/jI6MkSLt+Xaoc/4dKOUMlouNz/yaLa3zmEgw49XUTKMzgZovXeAt1XR8hoLbCt5XZr7sj49Kvn9mu53d3U4HLVVYQ2V34bkdJtEsLQHOp2dDSddl9CYErsahUmy3ED744snLe9sfi72gC7gspnVE7sPAghVkspC0Pdjo4kGu8Jove+Thfh8n2pdoRnO0JFpN+/ar/iVInmZxCt93a67itavy+I3nuLhvtSyVMUCoVCoVAoFAqFIsJREzuFQqFQKBQKhUKhiHCifWL3fKgbcBqIxnuC6L2v00W4fF+qHf6ESztCRaTfv2q/4lSJ5mcQrfd2uu4rWr8viN57i/j7iuoYO4VCoVAoFAqFQqE4E4h2i51CoVAoFAqFQqFQRD1RO7ETQkwWQmwTQhQLIe4NdXtOBiFETyHEl0KIzUKIIiHEbH17qhDicyHEDv1/Sqjb2l6EEEYhxFohxCL9fW8hxEr9eS0QQlhC3cZwJJhMhLA9fs8xRG1IFkK8K4TYKoTYIoQ4O0TtuEN/JpuEEG8KIayhaEcoiAR92159KjTm6/e0QQgxIrR3oNFW3SmEiNHfF+v7e4W04RFMR8qOEOJn+vE7hBA/C9U9+dIRMiWEuE/fvk0IcVGIbsWPQH1DZz2zSNCJx0MI8Q8hxBEhxCafbRGlKwMRLf3AcZFSRt0fYAR2ArmABVgPDAx1u07iPjKBEfrrBGA7MBB4DLhX334v8Gio23oS93Yn8C9gkf7+beBa/fWzwP+Fuo3h+BdMJsLlOYaoDa8CN+uvLUByCNqQBewGYvX3bwM3hFpeOuneI0LftlefApcAnwICGAOsDPU96O1qk+4EbgGe1V9fCywIddsj9a+jZAdIBXbp/1P01ylhcH+nJFP6d7EeiAF66/rAGAb31apv6IxnFik68QT3MB4YAWzy2RZRujLIfUVFP3C8v2i12I0CiqWUu6SUDuAtYFqI29RupJSlUsrv9de1wBa0AeQ0NIWF/v+ykDTwJBFC9AB+CLyovxfAROBd/ZCIu6fO4jgy0em0fI4hakMSWgf0EoCU0iGlrApRc0xArBDCBNiAgyFqR2cTEfr2JPTpNOA1qbECSBZCZHZuq/1pp+70va93gUn68Yp20oGycxHwuZSyQkpZCXwOnFIR7FOlg2RqGvCWlLJJSrkbKEbTCyHjOH1DZzyziNCJx0NK+TVQ0WJzxOjKYERDP3AionVilwXs83m/nxANfjsK3eVhOLASSJdSluq7DgHpoWrXSfJX4G7Arb9PA6qklM36+4h/Xp1BC5kIBX/F/zmGgt5AGfCy7kr0ohAirrMbIaU8APwZ2AuUAtVSys86ux0hIuL0bRv1aTje119pu+70tl/fX60frzgFTlF2olWmwvG+gvUNnfHMwvH76AgiSVeekAjuB45LtE7sogohRDywEPiVlLLGd5/UbMURk9pUCDEFOCKlXBPqtkQyx5OJTrp+uDxHE5q7yP+TUg4H6tHcKDoV3R9/GtpgojsQJ4T4aWe3Q3FiIlWfhtFv7owlUmUnGFEuUyfsGyLxmYULkf7dRdtv2ZdondgdAHr6vO+hb4s4hBBmNOF7Q0r5b33zYY8pWP9/JFTtOwl+AEwVQuxBc0+YCPwNzbxt0o+J2OfVGQSRic6m1XMUQvwzBO3YD+yXUnqslu+ideadzfnAbillmZTSCfwbOCcE7QgFEaNv26lPw+2+2qs7ve3X9ycB5Z3Z4Giig2QnWmUq3O4LgvcNnfHMwvH76AgiRVcelwjvB05ItE7sVgH5QsvsZEEL8v0wxG1qN7rv+kvAFinlkz67PgQ8mZl+BnzQ2W07WaSU90kpe0gpe6E9l6VSyp8AXwJX6YdF1D11JseRiU4lyHPsdAuVlPIQsE8I0U/fNAnY3NntQHPBHCOEsOnPaBKa7/6ZQETo25PQpx8C1+tZ0cagudeWEiJOQnf63tdV+vERuwodSjpQdv4DXCiESNGt/Bfq20JCB8rUh8C1Qsua2RvIB77rpNsIyHH6hs54ZhGhE0+CiNCVxyPS+4E2IcMgg8vp+EPLZLMdLTPR/aFuz0new1g0c/AGYJ3+dwmaT/sSYAfwBZAa6rae5P2dx7EsXLloHUEx8A4QE+r2heNfMJkIl+cYousPA1br38n7hCjLHDAX2ApsAl4/k2Q4EvRte/UpWha0Z/R72ggUhvoefO7lhLoTsOrvi/X9uaFud6T+daTsADfpz6QYuDHU99ZRMgXcr9/vNuDiUN+P3qZWfUNnPbNI0IknaP+baPHiTjTr54xI1JUB7itq+oFgf0JvuEKhUCgUCoVCoVAoIpRodcVUKBQKhUKhUCgUijMGNbFTKBQKhUKhUCgUighHTewUCoVCoVAoFAqFIsJREzuFQqFQKBQKhUKhiHDUxE6hUCgUCoVCoVAoIhw1sYtihBDSt2i0EMIkhCgTQizS39+gv18nhNgshPi5z7GThRDfCSG26vsXCCGyQ3EfishBCJEhhHhLCLFTCLFGCPGJEKJvkGPP85HFqUKIe9t5rVeEEFed+EhFNCOEcOk6qkgIsV4IcZcQwqDvKxRCzD/J8+4RQnTp2NZ2PEKIXkKI60LdDsXpQwjxFyHEr3ze/0cI8aLP+yeEEHcG+ew8IcT5Jzj/74UQvw6wPVkIccspNF0RoQgh6lq8v0EI8XSo2qNoO2piF93UA4OEELH6+wuAAy2OWSClHIZWw+ZhIUS6EGIQ8BTwMyllf33/G0Cvzmi0IjLRC3++B/xXStlHSjkSuA9IP9FnpZQfSikfOc3tM53O8ytCRqOUcpiUsgBNx10MzAGQUq6WUs4KaetOP70ANbGLbv4HnAOgL1p0AQp89p8DfBvog1LKB6WUX5zkdZMBNbFTtJtI6W8jpZ3tQU3sop9PgB/qr3+MVnSyFVLKI2gFGHOAe4CHpZRbfPZ/KKX8+jS3VRHZTACcUspnPRuklOuBnwshLvNsE0K8IYSY5vtB39VA3RI3XwjxrRBil8cqJzSeFkJsE0J8AXTz+fxIIcRXupXwP0KITH37f4UQfxVCrAZmCyGuFkJs0i07Sp6jDF2PzQRu0+XF1yp8rm7ZWyeEWCuESND3fy2E+FiXq2c91j5fhBDv67JVJISY6bN9shDie12elujb4oQQ/9A9HtZ6ZF2X8feFEJ/r1sDbhBB36sesEEKk6sf1EUIs1q/3jRCiv7494O8CeAQYp9/XHafz+1WEjG+Bs/XXBcAmoFYIkSKEiAEGADKIDvR6NgghLhGaF84aXZYW+VxjoK4vdwkhPIshjwB9dNl6vFPuVBH2CM1LYKkQYoMQYonQvbl0WXtWCLESeCyQztWP+40QYpX++bk+59yqjw+2CCHeFULY9H2T9M9v1HVrjBDiLCHEv/X904QQjUIIixDCKoTYpW8/ni71trPzv8HTi5rYRT9vAdcKIazAEGBloIOEELlALlCM1nF832ktVEQLg4A1Aba/BNwAIIRIQltd/vgE58oExgJT0AYXAJcD/YCBwPUcW8E2o1mYr9KthP8A/uhzLouUslBK+QTwIHCRlHIoMLWd96eIAKSUuwAjPhN/nV8Dt+oeCOOARn37KOB2NLnqA1wR4LQ36bJVCMwSQqQJIboCLwBX6vJ0tX7s/cBSKeUotMWOx4UQcfq+Qfr5z0KT0QYp5XBgOZpMAzwP3K5f79fA333aEeh3cS/wjW61/EsbviJFhCGlPAg06wPoc9DkZSXaZK8Q2AL8heA6EH0M8BxwsX5M1xaX6Q9chPZ7mKPr1XuBnbps/eZ03Z8iLIn1mZStA+b57HsKeFVKOQTNm8vX3b0HcI6U8k4C6FwhxIVAPpqcDQNGCiHG65/tB/xdSjkAqAFu0eX2FeAaKeVgwAT8H7BW/zz6uTeh6dXRHBvnHk+X+rYzqog6E6TCHynlBiFELzRr3ScBDrlGCDEWaAJ+IaWsEEJ4dwoh0oAlgA14Xkr559PfakU0IaX8Sgjxd30gfCWwUErZ7CtnAXhfSukGNgshPK6c44E3pZQu4KAQYqm+vR/agPlz/ZxGoNTnXAt8Xv8PeEUI8Tbw71O9N0VE8T/gSSHEG8C/pZT7dXn5Tp8MIoR4E23i9G6Lz84SQlyuv+6JNjDpCnwtpdwNIKWs0PdfCEwVx2KWrIAnPvlLKWUtmrWlGvhI374RGCKEiEcbuL/j8/uI8WlHoN+F4szgWzTZOAd4EsjSX1ejhVhcSHAdCNrEbZdHXtG8d2b67P9YStkENAkhjtAGF3pFVNOoT8gAzeMAbREBtAUFzwLY6/hbvd7R+2gIrHMvRJPVtfox8Wj6dC+wT0r5P337P4FZwOfAbinldn37q2iTxb8KLZZ/ANok8Um0MYIR+KYNutS3nVGFmtidGXwI/Bktji6txb4FUsrbWmwrAkYA66WU5cAwfZASf7obqohoioBgyUxeA34KXAvc2IZzNfm8Pu4MUN9fJKU8O8j+es8LKeUvhRCj0dyT1wghRuoyrogSdO8DF3AEzUUNACnlI0KIj4FLgP8JIS7y7GpxCr/3QojzgPOBs6WUDUKI/6JN1oI2Ac2Kt63FeUbjL9dun/dutP7YAFT5Dqha0J7fhSK68MTZDUazTuwD7kKzbPwXyDqODmwLvrLlQo0PFSeHb38bSOcK4E9Syud8P6QbII6riwPwNVpMtRP4As2yZwR+w4l1aX2Q7RGPcsU8M/gHMFdKubGNxz8G3K+vhHiwdXyzFFHGUiBG+McgDRFCjENTuL8CkFJuPsnzf41mYTbq8SMT9O3bgK5CiLP1a5qFEAWBTiCE6COlXCmlfBAoQ7O+KKIE3Sr8LPC0lLLlBK2PlHKjlPJRYBWaBQNglBCit9Bi664BlrU4bRJQqU/q+gNj9O0rgPFCiN76+VP17f8Bbhf6MrEQYnhb2y+lrAF2CyGu1j8rhBBDT/CxWiChrddQRCzforngVkgpXbqFOBnNevImJ9aB24BcfQANmqyfCCVbikB8i7ZIC/AT4JtABwXRuf8BbtItagghsoQQHrf5bI8MoyWEWoYmt72EEHn69unAV/rrb9DGFcullGVohot+wKaT1KVRgZrYnQFIKfdLKduc8lufAM4GXhNaQoH/oa18/+t0tVER+egD6cuB83UXiSLgT8AhKeVhtDiQl0/hEu8BO4DNaBbA5fp1HWiWwkeFEOuBdejxdwF4XA/A3oTWOa0/hfYowgNPLEgR2qrtZ8DcAMf9SmiJczagrfB+qm9fBTyNJp+70eTMl8WASQixBS2ubQWAPpCYCfxblzuPy+8fADOwQW/TH9p5Pz8BZujnLAKmneD4DYBLaAlcVPKU6GUjWjbMFS22VetJg46rA6WUjWgZLhcLIdagTdqqj3dB3Zvhf/rvRiVPUXi4HbhR16XT0caLgWilc6WUn6GNJZcLITaiub17Fg+2AbfqujYF+H9SSjual887+vFutMU70GLp0tEWfUHThRt9FvXaq0ujAtFiUVOhUCg6HKFlt9oIjJBSHncwoVB0Frqb5a+llFNC3BSF4rQjhIiXUtbp1uRngB0q4Y4iHNAtyYuklINC3ZZIR1nsFArFaUVoxXG3AE+pSZ1CoVCEjJ/rGQ6L0FyMnzv+4QqFItJQFjuFQqFQKBQKhUKhiHCUxU6hUCgUCoVCoVAoIhw1sVMoFAqFQqFQKBSKCEdN7BQKhUKhUCgUCoUiwlETO4VCoVAoFAqFQqGIcNTETqFQKBQKhUKhUCgiHDWxUygUCoVCoVAoFIoI5/8DBU++zi3cKS0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# pairplots to get an intuition of potential correlations\n", + "sns.pairplot(data[[\"MPG\", \"Cylinders\", \"Displacement\", \"Weight\", \"Horsepower\"]], diag_kind=\"kde\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Split the data into train and test using stratified sampling\n", + "from sklearn.model_selection import StratifiedShuffleSplit\n", + "split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state = 42)\n", + "for train_index, test_index in split.split(data, data['Cylinders']):\n", + " strat_train_set = data.loc[train_index]\n", + " strat_test_set = data.loc[test_index]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4 0.512579\n", + "8 0.257862\n", + "6 0.210692\n", + "5 0.009434\n", + "3 0.009434\n", + "Name: Cylinders, dtype: float64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Checking for the cylinder distribution in training set\n", + "strat_train_set['Cylinders'].value_counts() / len(strat_train_set)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4 0.5125\n", + "8 0.2625\n", + "6 0.2125\n", + "3 0.0125\n", + "Name: Cylinders, dtype: float64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# for test dataset\n", + "strat_test_set['Cylinders'].value_counts() / len(strat_test_set)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CylindersDisplacementHorsepowerWeightAccelerationModel YearOrigin
145483.061.02003.019.0743
151479.067.02000.016.0742
3884156.092.02585.014.5821
486250.088.03139.014.5711
114498.090.02265.015.5732
........................
147490.075.02108.015.5742
1568400.0170.04668.011.5751
3954135.084.02295.011.6821
144113.095.02372.015.0703
3626146.0120.02930.013.8813
\n", + "

318 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " Cylinders Displacement Horsepower Weight Acceleration Model Year \\\n", + "145 4 83.0 61.0 2003.0 19.0 74 \n", + "151 4 79.0 67.0 2000.0 16.0 74 \n", + "388 4 156.0 92.0 2585.0 14.5 82 \n", + "48 6 250.0 88.0 3139.0 14.5 71 \n", + "114 4 98.0 90.0 2265.0 15.5 73 \n", + ".. ... ... ... ... ... ... \n", + "147 4 90.0 75.0 2108.0 15.5 74 \n", + "156 8 400.0 170.0 4668.0 11.5 75 \n", + "395 4 135.0 84.0 2295.0 11.6 82 \n", + "14 4 113.0 95.0 2372.0 15.0 70 \n", + "362 6 146.0 120.0 2930.0 13.8 81 \n", + "\n", + " Origin \n", + "145 3 \n", + "151 2 \n", + "388 1 \n", + "48 1 \n", + "114 2 \n", + ".. ... \n", + "147 2 \n", + "156 1 \n", + "395 1 \n", + "14 3 \n", + "362 3 \n", + "\n", + "[318 rows x 7 columns]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = strat_train_set.drop(\"MPG\", axis=1)\n", + "data_labels = strat_train_set[\"MPG\"].copy()\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.impute import SimpleImputer\n", + "from sklearn.preprocessing import OneHotEncoder\n", + "from sklearn.pipeline import Pipeline\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.compose import ColumnTransformer" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# preprocess the Origin column in data\n", + "def preprocess_origin_cols(df):\n", + " df[\"Origin\"] = df[\"Origin\"].map({1: \"India\", 2: \"USA\", 3: \"Germany\"})\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.base import BaseEstimator, TransformerMixin\n", + "\n", + "acc_ix, hpower_ix, cyl_ix = 4, 2, 0\n", + "\n", + "##custom class inheriting the BaseEstimator and TransformerMixin\n", + "class CustomAttrAdder(BaseEstimator, TransformerMixin):\n", + " def __init__(self, acc_on_power=True):\n", + " self.acc_on_power = acc_on_power # new optional variable\n", + " def fit(self, X, y=None):\n", + " return self # nothing else to do\n", + " def transform(self, X):\n", + " acc_on_cyl = X[:, acc_ix] / X[:, cyl_ix] # required new variable\n", + " if self.acc_on_power:\n", + " acc_on_power = X[:, acc_ix] / X[:, hpower_ix]\n", + " return np.c_[X, acc_on_power, acc_on_cyl] # returns a 2D array\n", + " \n", + " return np.c_[X, acc_on_cyl]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "def num_pipeline_transformer(data):\n", + " '''\n", + " Function to process numerical transformations\n", + " Argument:\n", + " data: original dataframe \n", + " Returns:\n", + " num_attrs: numerical dataframe\n", + " num_pipeline: numerical pipeline object\n", + " \n", + " '''\n", + " numerics = ['float64', 'int64']\n", + "\n", + " num_attrs = data.select_dtypes(include=numerics)\n", + "\n", + " num_pipeline = Pipeline([\n", + " ('imputer', SimpleImputer(strategy=\"median\")),\n", + " ('attrs_adder', CustomAttrAdder()),\n", + " ('std_scaler', StandardScaler()),\n", + " ])\n", + " return num_attrs, num_pipeline" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def pipeline_transformer(data):\n", + " '''\n", + " Complete transformation pipeline for both\n", + " nuerical and categorical data.\n", + " \n", + " Argument:\n", + " data: original dataframe \n", + " Returns:\n", + " prepared_data: transformed data, ready to use\n", + " '''\n", + " cat_attrs = [\"Origin\"]\n", + " num_attrs, num_pipeline = num_pipeline_transformer(data)\n", + " full_pipeline = ColumnTransformer([\n", + " (\"num\", num_pipeline, list(num_attrs)),\n", + " (\"cat\", OneHotEncoder(), cat_attrs),\n", + " ])\n", + " prepared_data = full_pipeline.fit_transform(data)\n", + " return prepared_data" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.85657842, -1.07804475, -1.15261228, ..., 1. ,\n", + " 0. , 0. ],\n", + " [-0.85657842, -1.1174582 , -0.99069325, ..., 0. ,\n", + " 0. , 1. ],\n", + " [-0.85657842, -0.3587492 , -0.31603064, ..., 0. ,\n", + " 1. , 0. ],\n", + " ...,\n", + " [-0.85657842, -0.56566984, -0.53192268, ..., 0. ,\n", + " 1. , 0. ],\n", + " [-0.85657842, -0.78244384, -0.23507113, ..., 1. ,\n", + " 0. , 0. ],\n", + " [ 0.32260746, -0.45728283, 0.43959149, ..., 1. ,\n", + " 0. , 0. ]])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# from raw data to processed data in 2 steps\n", + "\n", + "preprocessed_df = preprocess_origin_cols(data)\n", + "prepared_data = pipeline_transformer(preprocessed_df)\n", + "prepared_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Linear Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prediction of samples: [29.07706113 27.78221362 26.08507595 12.68921922 22.24811759]\n", + "Actual Labels of samples: [32.0, 31.0, 26.0, 18.0, 26.0]\n" + ] + } + ], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "lin_reg = LinearRegression()\n", + "\n", + "lin_reg.fit(prepared_data, data_labels)\n", + "\n", + "# testing the predictions with the \n", + "sample_data = data.iloc[:5]\n", + "sample_labels = data_labels.iloc[:5]\n", + "\n", + "sample_data_prepared = pipeline_transformer(sample_data)\n", + "\n", + "print(\"Prediction of samples: \", lin_reg.predict(sample_data_prepared))\n", + "print(\"Actual Labels of samples: \", list(sample_labels))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mean Squared Error" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.9599557382767734" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error\n", + "mpg_predictions = lin_reg.predict(prepared_data)\n", + "lin_mse = mean_squared_error(data_labels, mpg_predictions)\n", + "lin_rmse = np.sqrt(lin_mse)\n", + "lin_rmse" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Decision Tree" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeRegressor()" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "\n", + "tree_reg = DecisionTreeRegressor()\n", + "tree_reg.fit(prepared_data, data_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mpg_predictions = tree_reg.predict(prepared_data)\n", + "tree_mse = mean_squared_error(data_labels, mpg_predictions)\n", + "tree_rmse = np.sqrt(tree_mse)\n", + "tree_rmse" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Random Forest Model" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9911761325749128" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.ensemble import RandomForestRegressor\n", + "\n", + "random_tree_reg = RandomForestRegressor(random_state=24)\n", + "random_tree_reg.fit(prepared_data, data_labels)\n", + "\n", + "mpg_predictions = random_tree_reg.predict(prepared_data)\n", + "random_tree_mse = mean_squared_error(data_labels, mpg_predictions)\n", + "random_tree_rmse = np.sqrt(random_tree_mse)\n", + "random_tree_rmse" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Model Evaluation using Cross Validation" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import cross_val_score\n", + "\n", + "scores = cross_val_score(tree_reg, \n", + " prepared_data, \n", + " data_labels, \n", + " scoring=\"neg_mean_squared_error\", \n", + " cv = 10)\n", + "tree_reg_rmse_scores = np.sqrt(-scores)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.2848589809442137" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tree_reg_rmse_scores.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.0767797889608994" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Linear Regression using cross validation set\n", + "scores = cross_val_score(lin_reg, prepared_data, data_labels, scoring=\"neg_mean_squared_error\", cv = 10)\n", + "lin_reg_rmse_scores = np.sqrt(-scores)\n", + "lin_reg_rmse_scores.mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Random Forest model ( Cross Val)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.5747012406922205" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "forest_reg = RandomForestRegressor()\n", + "forest_reg.fit(prepared_data, data_labels)\n", + "forest_reg_cv_scores = cross_val_score(forest_reg,\n", + " prepared_data,\n", + " data_labels,\n", + " scoring='neg_mean_squared_error',\n", + " cv = 10)\n", + "\n", + "forest_reg_rmse_scores = np.sqrt(-forest_reg_cv_scores)\n", + "forest_reg_rmse_scores.mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Support Vector Machine Regressor" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.088411910825019" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.svm import SVR\n", + "\n", + "svm_reg = SVR(kernel='linear')\n", + "svm_reg.fit(prepared_data, data_labels)\n", + "svm_cv_scores = cross_val_score(svm_reg, prepared_data, data_labels,\n", + " scoring='neg_mean_squared_error',\n", + " cv = 10)\n", + "svm_rmse_scores = np.sqrt(-svm_cv_scores)\n", + "svm_rmse_scores.mean()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Hyperparameter Tuning using GridSearchCV" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "GridSearchCV(cv=10, estimator=RandomForestRegressor(),\n", + " param_grid=[{'max_features': [2, 4, 6, 8],\n", + " 'n_estimators': [3, 10, 30]},\n", + " {'bootstrap': [False], 'max_features': [2, 3, 4],\n", + " 'n_estimators': [3, 10]}],\n", + " return_train_score=True, scoring='neg_mean_squared_error')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.model_selection import GridSearchCV\n", + "\n", + "param_grid = [\n", + " {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},\n", + " {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},\n", + " ]\n", + "\n", + "forest_reg = RandomForestRegressor()\n", + "\n", + "grid_search = GridSearchCV(forest_reg, param_grid,\n", + " scoring='neg_mean_squared_error',\n", + " return_train_score=True,\n", + " cv=10,\n", + " )\n", + "\n", + "grid_search.fit(prepared_data, data_labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'max_features': 8, 'n_estimators': 30}" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grid_search.best_params_" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.5787410401977535 {'max_features': 2, 'n_estimators': 3}\n", + "2.999602498867088 {'max_features': 2, 'n_estimators': 10}\n", + "2.9019422761340956 {'max_features': 2, 'n_estimators': 30}\n", + "3.222425898889705 {'max_features': 4, 'n_estimators': 3}\n", + "2.8973866892453493 {'max_features': 4, 'n_estimators': 10}\n", + "2.7825074985326963 {'max_features': 4, 'n_estimators': 30}\n", + "3.193349050542729 {'max_features': 6, 'n_estimators': 3}\n", + "2.8482872754035546 {'max_features': 6, 'n_estimators': 10}\n", + "2.700634845673968 {'max_features': 6, 'n_estimators': 30}\n", + "2.9971142221133755 {'max_features': 8, 'n_estimators': 3}\n", + "2.87655221071472 {'max_features': 8, 'n_estimators': 10}\n", + "2.699935644269864 {'max_features': 8, 'n_estimators': 30}\n", + "3.2761467526353067 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}\n", + "2.9582469709490162 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}\n", + "3.2594155209991964 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}\n", + "2.8225467027337037 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}\n", + "3.158636146007859 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}\n", + "2.9577900748728143 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}\n" + ] + } + ], + "source": [ + "cv_scores = grid_search.cv_results_\n", + "# Printing all the parameters along with their scores\n", + "for mean_score, params in zip(cv_scores['mean_test_score'], cv_scores['params']):\n", + " print(np.sqrt(-mean_score), params)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.21807596, 0.28901719, 0.12451093, 0.18856819, 0.01533777,\n", + " 0.11232161, 0.02920664, 0.0181604 , 0.00210384, 0.00108823,\n", + " 0.00160924])" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Feature importance\n", + "feature_importances = grid_search.best_estimator_.feature_importances_\n", + "feature_importances" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('acc_on_power', 0.029206638628792476),\n", + " ('acc_on_cyl', 0.018160399137911568),\n", + " ('Weight', 0.18856818756556581),\n", + " ('Model Year', 0.11232160665841945),\n", + " ('Horsepower', 0.12451093139694776),\n", + " ('Displacement', 0.2890171891922707),\n", + " ('Cylinders', 0.21807596492306472),\n", + " ('Acceleration', 0.015337766998897846)]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "extra_attrs = [\"acc_on_power\", \"acc_on_cyl\"]\n", + "numerics = ['float64', 'int64']\n", + "num_attrs = list(data.select_dtypes(include=numerics))\n", + "\n", + "attrs = num_attrs + extra_attrs\n", + "sorted(zip(attrs, feature_importances), reverse=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluating the model on Test Data" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# capturing the best configuration\n", + "final_model = grid_search.best_estimator_\n", + "\n", + "# segregating the target variable from test set\n", + "X_test = strat_test_set.drop(\"MPG\", axis=1)\n", + "y_test = strat_test_set[\"MPG\"].copy()\n", + "# preprocessing the test data origin column\n", + "X_test_preprocessed = preprocess_origin_cols(X_test)\n", + "\n", + "# preparing the data with final transformation\n", + "X_test_prepared = pipeline_transformer(X_test_preprocessed)\n", + "\n", + "##making final predictions\n", + "final_predictions = final_model.predict(X_test_prepared)\n", + "final_mse = mean_squared_error(y_test, final_predictions)\n", + "final_rmse = np.sqrt(final_mse)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.8958576977392307" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "final_rmse" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating a function to cover this entire flow" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "def predict_mpg(config, model):\n", + " \n", + " if type(config) == dict:\n", + " df = pd.DataFrame(config)\n", + " else:\n", + " df = config\n", + " \n", + " preproc_df = preprocess_origin_cols(df)\n", + " prepared_df = pipeline_transformer(preproc_df)\n", + " y_pred = model.predict(prepared_df)\n", + " return y_pred\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([33.34666667, 18.28 , 21.61333333])" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "##checking it on a random sample\n", + "vehicle_config = {\n", + " 'Cylinders': [4, 6, 8],\n", + " 'Displacement': [155.0, 160.0, 165.5],\n", + " 'Horsepower': [93.0, 130.0, 98.0],\n", + " 'Weight': [2500.0, 3150.0, 2600.0],\n", + " 'Acceleration': [15.0, 14.0, 16.0],\n", + " 'Model Year': [81, 80, 78],\n", + " 'Origin': [3, 2, 1]\n", + "}\n", + "\n", + "predict_mpg(vehicle_config, final_model)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "##saving the model\n", + "with open(\"model.bin\", 'wb') as f_out:\n", + " pickle.dump(final_model, f_out)\n", + " f_out.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([33.34666667, 18.28 , 21.61333333])" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "##loading the model from the saved file\n", + "with open('model.bin', 'rb') as f_in:\n", + " model = pickle.load(f_in)\n", + "\n", + "predict_mpg(vehicle_config, model)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/intern-basics/MPG_Prediction_Model/auto-mpg.data b/intern-basics/MPG_Prediction_Model/auto-mpg.data new file mode 100644 index 0000000..33404b0 --- /dev/null +++ b/intern-basics/MPG_Prediction_Model/auto-mpg.data @@ -0,0 +1,398 @@ +18.0 8 307.0 130.0 3504. 12.0 70 1 "chevrolet chevelle malibu" +15.0 8 350.0 165.0 3693. 11.5 70 1 "buick skylark 320" +18.0 8 318.0 150.0 3436. 11.0 70 1 "plymouth satellite" +16.0 8 304.0 150.0 3433. 12.0 70 1 "amc rebel sst" +17.0 8 302.0 140.0 3449. 10.5 70 1 "ford torino" +15.0 8 429.0 198.0 4341. 10.0 70 1 "ford galaxie 500" +14.0 8 454.0 220.0 4354. 9.0 70 1 "chevrolet impala" +14.0 8 440.0 215.0 4312. 8.5 70 1 "plymouth fury iii" +14.0 8 455.0 225.0 4425. 10.0 70 1 "pontiac catalina" +15.0 8 390.0 190.0 3850. 8.5 70 1 "amc ambassador dpl" +15.0 8 383.0 170.0 3563. 10.0 70 1 "dodge challenger se" +14.0 8 340.0 160.0 3609. 8.0 70 1 "plymouth 'cuda 340" +15.0 8 400.0 150.0 3761. 9.5 70 1 "chevrolet monte carlo" +14.0 8 455.0 225.0 3086. 10.0 70 1 "buick estate wagon (sw)" +24.0 4 113.0 95.00 2372. 15.0 70 3 "toyota corona mark ii" +22.0 6 198.0 95.00 2833. 15.5 70 1 "plymouth duster" +18.0 6 199.0 97.00 2774. 15.5 70 1 "amc hornet" +21.0 6 200.0 85.00 2587. 16.0 70 1 "ford maverick" +27.0 4 97.00 88.00 2130. 14.5 70 3 "datsun pl510" +26.0 4 97.00 46.00 1835. 20.5 70 2 "volkswagen 1131 deluxe sedan" +25.0 4 110.0 87.00 2672. 17.5 70 2 "peugeot 504" +24.0 4 107.0 90.00 2430. 14.5 70 2 "audi 100 ls" +25.0 4 104.0 95.00 2375. 17.5 70 2 "saab 99e" +26.0 4 121.0 113.0 2234. 12.5 70 2 "bmw 2002" +21.0 6 199.0 90.00 2648. 15.0 70 1 "amc gremlin" +10.0 8 360.0 215.0 4615. 14.0 70 1 "ford f250" +10.0 8 307.0 200.0 4376. 15.0 70 1 "chevy c20" +11.0 8 318.0 210.0 4382. 13.5 70 1 "dodge d200" +9.0 8 304.0 193.0 4732. 18.5 70 1 "hi 1200d" +27.0 4 97.00 88.00 2130. 14.5 71 3 "datsun pl510" +28.0 4 140.0 90.00 2264. 15.5 71 1 "chevrolet vega 2300" +25.0 4 113.0 95.00 2228. 14.0 71 3 "toyota corona" +25.0 4 98.00 ? 2046. 19.0 71 1 "ford pinto" +19.0 6 232.0 100.0 2634. 13.0 71 1 "amc gremlin" +16.0 6 225.0 105.0 3439. 15.5 71 1 "plymouth satellite custom" +17.0 6 250.0 100.0 3329. 15.5 71 1 "chevrolet chevelle malibu" +19.0 6 250.0 88.00 3302. 15.5 71 1 "ford torino 500" +18.0 6 232.0 100.0 3288. 15.5 71 1 "amc matador" +14.0 8 350.0 165.0 4209. 12.0 71 1 "chevrolet impala" +14.0 8 400.0 175.0 4464. 11.5 71 1 "pontiac catalina brougham" +14.0 8 351.0 153.0 4154. 13.5 71 1 "ford galaxie 500" +14.0 8 318.0 150.0 4096. 13.0 71 1 "plymouth fury iii" +12.0 8 383.0 180.0 4955. 11.5 71 1 "dodge monaco (sw)" +13.0 8 400.0 170.0 4746. 12.0 71 1 "ford country squire (sw)" +13.0 8 400.0 175.0 5140. 12.0 71 1 "pontiac safari (sw)" +18.0 6 258.0 110.0 2962. 13.5 71 1 "amc hornet sportabout (sw)" +22.0 4 140.0 72.00 2408. 19.0 71 1 "chevrolet vega (sw)" +19.0 6 250.0 100.0 3282. 15.0 71 1 "pontiac firebird" +18.0 6 250.0 88.00 3139. 14.5 71 1 "ford mustang" +23.0 4 122.0 86.00 2220. 14.0 71 1 "mercury capri 2000" +28.0 4 116.0 90.00 2123. 14.0 71 2 "opel 1900" +30.0 4 79.00 70.00 2074. 19.5 71 2 "peugeot 304" +30.0 4 88.00 76.00 2065. 14.5 71 2 "fiat 124b" +31.0 4 71.00 65.00 1773. 19.0 71 3 "toyota corolla 1200" +35.0 4 72.00 69.00 1613. 18.0 71 3 "datsun 1200" +27.0 4 97.00 60.00 1834. 19.0 71 2 "volkswagen model 111" +26.0 4 91.00 70.00 1955. 20.5 71 1 "plymouth cricket" +24.0 4 113.0 95.00 2278. 15.5 72 3 "toyota corona hardtop" +25.0 4 97.50 80.00 2126. 17.0 72 1 "dodge colt hardtop" +23.0 4 97.00 54.00 2254. 23.5 72 2 "volkswagen type 3" +20.0 4 140.0 90.00 2408. 19.5 72 1 "chevrolet vega" +21.0 4 122.0 86.00 2226. 16.5 72 1 "ford pinto runabout" +13.0 8 350.0 165.0 4274. 12.0 72 1 "chevrolet impala" +14.0 8 400.0 175.0 4385. 12.0 72 1 "pontiac catalina" +15.0 8 318.0 150.0 4135. 13.5 72 1 "plymouth fury iii" +14.0 8 351.0 153.0 4129. 13.0 72 1 "ford galaxie 500" +17.0 8 304.0 150.0 3672. 11.5 72 1 "amc ambassador sst" +11.0 8 429.0 208.0 4633. 11.0 72 1 "mercury marquis" +13.0 8 350.0 155.0 4502. 13.5 72 1 "buick lesabre custom" +12.0 8 350.0 160.0 4456. 13.5 72 1 "oldsmobile delta 88 royale" +13.0 8 400.0 190.0 4422. 12.5 72 1 "chrysler newport royal" +19.0 3 70.00 97.00 2330. 13.5 72 3 "mazda rx2 coupe" +15.0 8 304.0 150.0 3892. 12.5 72 1 "amc matador (sw)" +13.0 8 307.0 130.0 4098. 14.0 72 1 "chevrolet chevelle concours (sw)" +13.0 8 302.0 140.0 4294. 16.0 72 1 "ford gran torino (sw)" +14.0 8 318.0 150.0 4077. 14.0 72 1 "plymouth satellite custom (sw)" +18.0 4 121.0 112.0 2933. 14.5 72 2 "volvo 145e (sw)" +22.0 4 121.0 76.00 2511. 18.0 72 2 "volkswagen 411 (sw)" +21.0 4 120.0 87.00 2979. 19.5 72 2 "peugeot 504 (sw)" +26.0 4 96.00 69.00 2189. 18.0 72 2 "renault 12 (sw)" +22.0 4 122.0 86.00 2395. 16.0 72 1 "ford pinto (sw)" +28.0 4 97.00 92.00 2288. 17.0 72 3 "datsun 510 (sw)" +23.0 4 120.0 97.00 2506. 14.5 72 3 "toyouta corona mark ii (sw)" +28.0 4 98.00 80.00 2164. 15.0 72 1 "dodge colt (sw)" +27.0 4 97.00 88.00 2100. 16.5 72 3 "toyota corolla 1600 (sw)" +13.0 8 350.0 175.0 4100. 13.0 73 1 "buick century 350" +14.0 8 304.0 150.0 3672. 11.5 73 1 "amc matador" +13.0 8 350.0 145.0 3988. 13.0 73 1 "chevrolet malibu" +14.0 8 302.0 137.0 4042. 14.5 73 1 "ford gran torino" +15.0 8 318.0 150.0 3777. 12.5 73 1 "dodge coronet custom" +12.0 8 429.0 198.0 4952. 11.5 73 1 "mercury marquis brougham" +13.0 8 400.0 150.0 4464. 12.0 73 1 "chevrolet caprice classic" +13.0 8 351.0 158.0 4363. 13.0 73 1 "ford ltd" +14.0 8 318.0 150.0 4237. 14.5 73 1 "plymouth fury gran sedan" +13.0 8 440.0 215.0 4735. 11.0 73 1 "chrysler new yorker brougham" +12.0 8 455.0 225.0 4951. 11.0 73 1 "buick electra 225 custom" +13.0 8 360.0 175.0 3821. 11.0 73 1 "amc ambassador brougham" +18.0 6 225.0 105.0 3121. 16.5 73 1 "plymouth valiant" +16.0 6 250.0 100.0 3278. 18.0 73 1 "chevrolet nova custom" +18.0 6 232.0 100.0 2945. 16.0 73 1 "amc hornet" +18.0 6 250.0 88.00 3021. 16.5 73 1 "ford maverick" +23.0 6 198.0 95.00 2904. 16.0 73 1 "plymouth duster" +26.0 4 97.00 46.00 1950. 21.0 73 2 "volkswagen super beetle" +11.0 8 400.0 150.0 4997. 14.0 73 1 "chevrolet impala" +12.0 8 400.0 167.0 4906. 12.5 73 1 "ford country" +13.0 8 360.0 170.0 4654. 13.0 73 1 "plymouth custom suburb" +12.0 8 350.0 180.0 4499. 12.5 73 1 "oldsmobile vista cruiser" +18.0 6 232.0 100.0 2789. 15.0 73 1 "amc gremlin" +20.0 4 97.00 88.00 2279. 19.0 73 3 "toyota carina" +21.0 4 140.0 72.00 2401. 19.5 73 1 "chevrolet vega" +22.0 4 108.0 94.00 2379. 16.5 73 3 "datsun 610" +18.0 3 70.00 90.00 2124. 13.5 73 3 "maxda rx3" +19.0 4 122.0 85.00 2310. 18.5 73 1 "ford pinto" +21.0 6 155.0 107.0 2472. 14.0 73 1 "mercury capri v6" +26.0 4 98.00 90.00 2265. 15.5 73 2 "fiat 124 sport coupe" +15.0 8 350.0 145.0 4082. 13.0 73 1 "chevrolet monte carlo s" +16.0 8 400.0 230.0 4278. 9.50 73 1 "pontiac grand prix" +29.0 4 68.00 49.00 1867. 19.5 73 2 "fiat 128" +24.0 4 116.0 75.00 2158. 15.5 73 2 "opel manta" +20.0 4 114.0 91.00 2582. 14.0 73 2 "audi 100ls" +19.0 4 121.0 112.0 2868. 15.5 73 2 "volvo 144ea" +15.0 8 318.0 150.0 3399. 11.0 73 1 "dodge dart custom" +24.0 4 121.0 110.0 2660. 14.0 73 2 "saab 99le" +20.0 6 156.0 122.0 2807. 13.5 73 3 "toyota mark ii" +11.0 8 350.0 180.0 3664. 11.0 73 1 "oldsmobile omega" +20.0 6 198.0 95.00 3102. 16.5 74 1 "plymouth duster" +21.0 6 200.0 ? 2875. 17.0 74 1 "ford maverick" +19.0 6 232.0 100.0 2901. 16.0 74 1 "amc hornet" +15.0 6 250.0 100.0 3336. 17.0 74 1 "chevrolet nova" +31.0 4 79.00 67.00 1950. 19.0 74 3 "datsun b210" +26.0 4 122.0 80.00 2451. 16.5 74 1 "ford pinto" +32.0 4 71.00 65.00 1836. 21.0 74 3 "toyota corolla 1200" +25.0 4 140.0 75.00 2542. 17.0 74 1 "chevrolet vega" +16.0 6 250.0 100.0 3781. 17.0 74 1 "chevrolet chevelle malibu classic" +16.0 6 258.0 110.0 3632. 18.0 74 1 "amc matador" +18.0 6 225.0 105.0 3613. 16.5 74 1 "plymouth satellite sebring" +16.0 8 302.0 140.0 4141. 14.0 74 1 "ford gran torino" +13.0 8 350.0 150.0 4699. 14.5 74 1 "buick century luxus (sw)" +14.0 8 318.0 150.0 4457. 13.5 74 1 "dodge coronet custom (sw)" +14.0 8 302.0 140.0 4638. 16.0 74 1 "ford gran torino (sw)" +14.0 8 304.0 150.0 4257. 15.5 74 1 "amc matador (sw)" +29.0 4 98.00 83.00 2219. 16.5 74 2 "audi fox" +26.0 4 79.00 67.00 1963. 15.5 74 2 "volkswagen dasher" +26.0 4 97.00 78.00 2300. 14.5 74 2 "opel manta" +31.0 4 76.00 52.00 1649. 16.5 74 3 "toyota corona" +32.0 4 83.00 61.00 2003. 19.0 74 3 "datsun 710" +28.0 4 90.00 75.00 2125. 14.5 74 1 "dodge colt" +24.0 4 90.00 75.00 2108. 15.5 74 2 "fiat 128" +26.0 4 116.0 75.00 2246. 14.0 74 2 "fiat 124 tc" +24.0 4 120.0 97.00 2489. 15.0 74 3 "honda civic" +26.0 4 108.0 93.00 2391. 15.5 74 3 "subaru" +31.0 4 79.00 67.00 2000. 16.0 74 2 "fiat x1.9" +19.0 6 225.0 95.00 3264. 16.0 75 1 "plymouth valiant custom" +18.0 6 250.0 105.0 3459. 16.0 75 1 "chevrolet nova" +15.0 6 250.0 72.00 3432. 21.0 75 1 "mercury monarch" +15.0 6 250.0 72.00 3158. 19.5 75 1 "ford maverick" +16.0 8 400.0 170.0 4668. 11.5 75 1 "pontiac catalina" +15.0 8 350.0 145.0 4440. 14.0 75 1 "chevrolet bel air" +16.0 8 318.0 150.0 4498. 14.5 75 1 "plymouth grand fury" +14.0 8 351.0 148.0 4657. 13.5 75 1 "ford ltd" +17.0 6 231.0 110.0 3907. 21.0 75 1 "buick century" +16.0 6 250.0 105.0 3897. 18.5 75 1 "chevroelt chevelle malibu" +15.0 6 258.0 110.0 3730. 19.0 75 1 "amc matador" +18.0 6 225.0 95.00 3785. 19.0 75 1 "plymouth fury" +21.0 6 231.0 110.0 3039. 15.0 75 1 "buick skyhawk" +20.0 8 262.0 110.0 3221. 13.5 75 1 "chevrolet monza 2+2" +13.0 8 302.0 129.0 3169. 12.0 75 1 "ford mustang ii" +29.0 4 97.00 75.00 2171. 16.0 75 3 "toyota corolla" +23.0 4 140.0 83.00 2639. 17.0 75 1 "ford pinto" +20.0 6 232.0 100.0 2914. 16.0 75 1 "amc gremlin" +23.0 4 140.0 78.00 2592. 18.5 75 1 "pontiac astro" +24.0 4 134.0 96.00 2702. 13.5 75 3 "toyota corona" +25.0 4 90.00 71.00 2223. 16.5 75 2 "volkswagen dasher" +24.0 4 119.0 97.00 2545. 17.0 75 3 "datsun 710" +18.0 6 171.0 97.00 2984. 14.5 75 1 "ford pinto" +29.0 4 90.00 70.00 1937. 14.0 75 2 "volkswagen rabbit" +19.0 6 232.0 90.00 3211. 17.0 75 1 "amc pacer" +23.0 4 115.0 95.00 2694. 15.0 75 2 "audi 100ls" +23.0 4 120.0 88.00 2957. 17.0 75 2 "peugeot 504" +22.0 4 121.0 98.00 2945. 14.5 75 2 "volvo 244dl" +25.0 4 121.0 115.0 2671. 13.5 75 2 "saab 99le" +33.0 4 91.00 53.00 1795. 17.5 75 3 "honda civic cvcc" +28.0 4 107.0 86.00 2464. 15.5 76 2 "fiat 131" +25.0 4 116.0 81.00 2220. 16.9 76 2 "opel 1900" +25.0 4 140.0 92.00 2572. 14.9 76 1 "capri ii" +26.0 4 98.00 79.00 2255. 17.7 76 1 "dodge colt" +27.0 4 101.0 83.00 2202. 15.3 76 2 "renault 12tl" +17.5 8 305.0 140.0 4215. 13.0 76 1 "chevrolet chevelle malibu classic" +16.0 8 318.0 150.0 4190. 13.0 76 1 "dodge coronet brougham" +15.5 8 304.0 120.0 3962. 13.9 76 1 "amc matador" +14.5 8 351.0 152.0 4215. 12.8 76 1 "ford gran torino" +22.0 6 225.0 100.0 3233. 15.4 76 1 "plymouth valiant" +22.0 6 250.0 105.0 3353. 14.5 76 1 "chevrolet nova" +24.0 6 200.0 81.00 3012. 17.6 76 1 "ford maverick" +22.5 6 232.0 90.00 3085. 17.6 76 1 "amc hornet" +29.0 4 85.00 52.00 2035. 22.2 76 1 "chevrolet chevette" +24.5 4 98.00 60.00 2164. 22.1 76 1 "chevrolet woody" +29.0 4 90.00 70.00 1937. 14.2 76 2 "vw rabbit" +33.0 4 91.00 53.00 1795. 17.4 76 3 "honda civic" +20.0 6 225.0 100.0 3651. 17.7 76 1 "dodge aspen se" +18.0 6 250.0 78.00 3574. 21.0 76 1 "ford granada ghia" +18.5 6 250.0 110.0 3645. 16.2 76 1 "pontiac ventura sj" +17.5 6 258.0 95.00 3193. 17.8 76 1 "amc pacer d/l" +29.5 4 97.00 71.00 1825. 12.2 76 2 "volkswagen rabbit" +32.0 4 85.00 70.00 1990. 17.0 76 3 "datsun b-210" +28.0 4 97.00 75.00 2155. 16.4 76 3 "toyota corolla" +26.5 4 140.0 72.00 2565. 13.6 76 1 "ford pinto" +20.0 4 130.0 102.0 3150. 15.7 76 2 "volvo 245" +13.0 8 318.0 150.0 3940. 13.2 76 1 "plymouth volare premier v8" +19.0 4 120.0 88.00 3270. 21.9 76 2 "peugeot 504" +19.0 6 156.0 108.0 2930. 15.5 76 3 "toyota mark ii" +16.5 6 168.0 120.0 3820. 16.7 76 2 "mercedes-benz 280s" +16.5 8 350.0 180.0 4380. 12.1 76 1 "cadillac seville" +13.0 8 350.0 145.0 4055. 12.0 76 1 "chevy c10" +13.0 8 302.0 130.0 3870. 15.0 76 1 "ford f108" +13.0 8 318.0 150.0 3755. 14.0 76 1 "dodge d100" +31.5 4 98.00 68.00 2045. 18.5 77 3 "honda accord cvcc" +30.0 4 111.0 80.00 2155. 14.8 77 1 "buick opel isuzu deluxe" +36.0 4 79.00 58.00 1825. 18.6 77 2 "renault 5 gtl" +25.5 4 122.0 96.00 2300. 15.5 77 1 "plymouth arrow gs" +33.5 4 85.00 70.00 1945. 16.8 77 3 "datsun f-10 hatchback" +17.5 8 305.0 145.0 3880. 12.5 77 1 "chevrolet caprice classic" +17.0 8 260.0 110.0 4060. 19.0 77 1 "oldsmobile cutlass supreme" +15.5 8 318.0 145.0 4140. 13.7 77 1 "dodge monaco brougham" +15.0 8 302.0 130.0 4295. 14.9 77 1 "mercury cougar brougham" +17.5 6 250.0 110.0 3520. 16.4 77 1 "chevrolet concours" +20.5 6 231.0 105.0 3425. 16.9 77 1 "buick skylark" +19.0 6 225.0 100.0 3630. 17.7 77 1 "plymouth volare custom" +18.5 6 250.0 98.00 3525. 19.0 77 1 "ford granada" +16.0 8 400.0 180.0 4220. 11.1 77 1 "pontiac grand prix lj" +15.5 8 350.0 170.0 4165. 11.4 77 1 "chevrolet monte carlo landau" +15.5 8 400.0 190.0 4325. 12.2 77 1 "chrysler cordoba" +16.0 8 351.0 149.0 4335. 14.5 77 1 "ford thunderbird" +29.0 4 97.00 78.00 1940. 14.5 77 2 "volkswagen rabbit custom" +24.5 4 151.0 88.00 2740. 16.0 77 1 "pontiac sunbird coupe" +26.0 4 97.00 75.00 2265. 18.2 77 3 "toyota corolla liftback" +25.5 4 140.0 89.00 2755. 15.8 77 1 "ford mustang ii 2+2" +30.5 4 98.00 63.00 2051. 17.0 77 1 "chevrolet chevette" +33.5 4 98.00 83.00 2075. 15.9 77 1 "dodge colt m/m" +30.0 4 97.00 67.00 1985. 16.4 77 3 "subaru dl" +30.5 4 97.00 78.00 2190. 14.1 77 2 "volkswagen dasher" +22.0 6 146.0 97.00 2815. 14.5 77 3 "datsun 810" +21.5 4 121.0 110.0 2600. 12.8 77 2 "bmw 320i" +21.5 3 80.00 110.0 2720. 13.5 77 3 "mazda rx-4" +43.1 4 90.00 48.00 1985. 21.5 78 2 "volkswagen rabbit custom diesel" +36.1 4 98.00 66.00 1800. 14.4 78 1 "ford fiesta" +32.8 4 78.00 52.00 1985. 19.4 78 3 "mazda glc deluxe" +39.4 4 85.00 70.00 2070. 18.6 78 3 "datsun b210 gx" +36.1 4 91.00 60.00 1800. 16.4 78 3 "honda civic cvcc" +19.9 8 260.0 110.0 3365. 15.5 78 1 "oldsmobile cutlass salon brougham" +19.4 8 318.0 140.0 3735. 13.2 78 1 "dodge diplomat" +20.2 8 302.0 139.0 3570. 12.8 78 1 "mercury monarch ghia" +19.2 6 231.0 105.0 3535. 19.2 78 1 "pontiac phoenix lj" +20.5 6 200.0 95.00 3155. 18.2 78 1 "chevrolet malibu" +20.2 6 200.0 85.00 2965. 15.8 78 1 "ford fairmont (auto)" +25.1 4 140.0 88.00 2720. 15.4 78 1 "ford fairmont (man)" +20.5 6 225.0 100.0 3430. 17.2 78 1 "plymouth volare" +19.4 6 232.0 90.00 3210. 17.2 78 1 "amc concord" +20.6 6 231.0 105.0 3380. 15.8 78 1 "buick century special" +20.8 6 200.0 85.00 3070. 16.7 78 1 "mercury zephyr" +18.6 6 225.0 110.0 3620. 18.7 78 1 "dodge aspen" +18.1 6 258.0 120.0 3410. 15.1 78 1 "amc concord d/l" +19.2 8 305.0 145.0 3425. 13.2 78 1 "chevrolet monte carlo landau" +17.7 6 231.0 165.0 3445. 13.4 78 1 "buick regal sport coupe (turbo)" +18.1 8 302.0 139.0 3205. 11.2 78 1 "ford futura" +17.5 8 318.0 140.0 4080. 13.7 78 1 "dodge magnum xe" +30.0 4 98.00 68.00 2155. 16.5 78 1 "chevrolet chevette" +27.5 4 134.0 95.00 2560. 14.2 78 3 "toyota corona" +27.2 4 119.0 97.00 2300. 14.7 78 3 "datsun 510" +30.9 4 105.0 75.00 2230. 14.5 78 1 "dodge omni" +21.1 4 134.0 95.00 2515. 14.8 78 3 "toyota celica gt liftback" +23.2 4 156.0 105.0 2745. 16.7 78 1 "plymouth sapporo" +23.8 4 151.0 85.00 2855. 17.6 78 1 "oldsmobile starfire sx" +23.9 4 119.0 97.00 2405. 14.9 78 3 "datsun 200-sx" +20.3 5 131.0 103.0 2830. 15.9 78 2 "audi 5000" +17.0 6 163.0 125.0 3140. 13.6 78 2 "volvo 264gl" +21.6 4 121.0 115.0 2795. 15.7 78 2 "saab 99gle" +16.2 6 163.0 133.0 3410. 15.8 78 2 "peugeot 604sl" +31.5 4 89.00 71.00 1990. 14.9 78 2 "volkswagen scirocco" +29.5 4 98.00 68.00 2135. 16.6 78 3 "honda accord lx" +21.5 6 231.0 115.0 3245. 15.4 79 1 "pontiac lemans v6" +19.8 6 200.0 85.00 2990. 18.2 79 1 "mercury zephyr 6" +22.3 4 140.0 88.00 2890. 17.3 79 1 "ford fairmont 4" +20.2 6 232.0 90.00 3265. 18.2 79 1 "amc concord dl 6" +20.6 6 225.0 110.0 3360. 16.6 79 1 "dodge aspen 6" +17.0 8 305.0 130.0 3840. 15.4 79 1 "chevrolet caprice classic" +17.6 8 302.0 129.0 3725. 13.4 79 1 "ford ltd landau" +16.5 8 351.0 138.0 3955. 13.2 79 1 "mercury grand marquis" +18.2 8 318.0 135.0 3830. 15.2 79 1 "dodge st. regis" +16.9 8 350.0 155.0 4360. 14.9 79 1 "buick estate wagon (sw)" +15.5 8 351.0 142.0 4054. 14.3 79 1 "ford country squire (sw)" +19.2 8 267.0 125.0 3605. 15.0 79 1 "chevrolet malibu classic (sw)" +18.5 8 360.0 150.0 3940. 13.0 79 1 "chrysler lebaron town @ country (sw)" +31.9 4 89.00 71.00 1925. 14.0 79 2 "vw rabbit custom" +34.1 4 86.00 65.00 1975. 15.2 79 3 "maxda glc deluxe" +35.7 4 98.00 80.00 1915. 14.4 79 1 "dodge colt hatchback custom" +27.4 4 121.0 80.00 2670. 15.0 79 1 "amc spirit dl" +25.4 5 183.0 77.00 3530. 20.1 79 2 "mercedes benz 300d" +23.0 8 350.0 125.0 3900. 17.4 79 1 "cadillac eldorado" +27.2 4 141.0 71.00 3190. 24.8 79 2 "peugeot 504" +23.9 8 260.0 90.00 3420. 22.2 79 1 "oldsmobile cutlass salon brougham" +34.2 4 105.0 70.00 2200. 13.2 79 1 "plymouth horizon" +34.5 4 105.0 70.00 2150. 14.9 79 1 "plymouth horizon tc3" +31.8 4 85.00 65.00 2020. 19.2 79 3 "datsun 210" +37.3 4 91.00 69.00 2130. 14.7 79 2 "fiat strada custom" +28.4 4 151.0 90.00 2670. 16.0 79 1 "buick skylark limited" +28.8 6 173.0 115.0 2595. 11.3 79 1 "chevrolet citation" +26.8 6 173.0 115.0 2700. 12.9 79 1 "oldsmobile omega brougham" +33.5 4 151.0 90.00 2556. 13.2 79 1 "pontiac phoenix" +41.5 4 98.00 76.00 2144. 14.7 80 2 "vw rabbit" +38.1 4 89.00 60.00 1968. 18.8 80 3 "toyota corolla tercel" +32.1 4 98.00 70.00 2120. 15.5 80 1 "chevrolet chevette" +37.2 4 86.00 65.00 2019. 16.4 80 3 "datsun 310" +28.0 4 151.0 90.00 2678. 16.5 80 1 "chevrolet citation" +26.4 4 140.0 88.00 2870. 18.1 80 1 "ford fairmont" +24.3 4 151.0 90.00 3003. 20.1 80 1 "amc concord" +19.1 6 225.0 90.00 3381. 18.7 80 1 "dodge aspen" +34.3 4 97.00 78.00 2188. 15.8 80 2 "audi 4000" +29.8 4 134.0 90.00 2711. 15.5 80 3 "toyota corona liftback" +31.3 4 120.0 75.00 2542. 17.5 80 3 "mazda 626" +37.0 4 119.0 92.00 2434. 15.0 80 3 "datsun 510 hatchback" +32.2 4 108.0 75.00 2265. 15.2 80 3 "toyota corolla" +46.6 4 86.00 65.00 2110. 17.9 80 3 "mazda glc" +27.9 4 156.0 105.0 2800. 14.4 80 1 "dodge colt" +40.8 4 85.00 65.00 2110. 19.2 80 3 "datsun 210" +44.3 4 90.00 48.00 2085. 21.7 80 2 "vw rabbit c (diesel)" +43.4 4 90.00 48.00 2335. 23.7 80 2 "vw dasher (diesel)" +36.4 5 121.0 67.00 2950. 19.9 80 2 "audi 5000s (diesel)" +30.0 4 146.0 67.00 3250. 21.8 80 2 "mercedes-benz 240d" +44.6 4 91.00 67.00 1850. 13.8 80 3 "honda civic 1500 gl" +40.9 4 85.00 ? 1835. 17.3 80 2 "renault lecar deluxe" +33.8 4 97.00 67.00 2145. 18.0 80 3 "subaru dl" +29.8 4 89.00 62.00 1845. 15.3 80 2 "vokswagen rabbit" +32.7 6 168.0 132.0 2910. 11.4 80 3 "datsun 280-zx" +23.7 3 70.00 100.0 2420. 12.5 80 3 "mazda rx-7 gs" +35.0 4 122.0 88.00 2500. 15.1 80 2 "triumph tr7 coupe" +23.6 4 140.0 ? 2905. 14.3 80 1 "ford mustang cobra" +32.4 4 107.0 72.00 2290. 17.0 80 3 "honda accord" +27.2 4 135.0 84.00 2490. 15.7 81 1 "plymouth reliant" +26.6 4 151.0 84.00 2635. 16.4 81 1 "buick skylark" +25.8 4 156.0 92.00 2620. 14.4 81 1 "dodge aries wagon (sw)" +23.5 6 173.0 110.0 2725. 12.6 81 1 "chevrolet citation" +30.0 4 135.0 84.00 2385. 12.9 81 1 "plymouth reliant" +39.1 4 79.00 58.00 1755. 16.9 81 3 "toyota starlet" +39.0 4 86.00 64.00 1875. 16.4 81 1 "plymouth champ" +35.1 4 81.00 60.00 1760. 16.1 81 3 "honda civic 1300" +32.3 4 97.00 67.00 2065. 17.8 81 3 "subaru" +37.0 4 85.00 65.00 1975. 19.4 81 3 "datsun 210 mpg" +37.7 4 89.00 62.00 2050. 17.3 81 3 "toyota tercel" +34.1 4 91.00 68.00 1985. 16.0 81 3 "mazda glc 4" +34.7 4 105.0 63.00 2215. 14.9 81 1 "plymouth horizon 4" +34.4 4 98.00 65.00 2045. 16.2 81 1 "ford escort 4w" +29.9 4 98.00 65.00 2380. 20.7 81 1 "ford escort 2h" +33.0 4 105.0 74.00 2190. 14.2 81 2 "volkswagen jetta" +34.5 4 100.0 ? 2320. 15.8 81 2 "renault 18i" +33.7 4 107.0 75.00 2210. 14.4 81 3 "honda prelude" +32.4 4 108.0 75.00 2350. 16.8 81 3 "toyota corolla" +32.9 4 119.0 100.0 2615. 14.8 81 3 "datsun 200sx" +31.6 4 120.0 74.00 2635. 18.3 81 3 "mazda 626" +28.1 4 141.0 80.00 3230. 20.4 81 2 "peugeot 505s turbo diesel" +30.7 6 145.0 76.00 3160. 19.6 81 2 "volvo diesel" +25.4 6 168.0 116.0 2900. 12.6 81 3 "toyota cressida" +24.2 6 146.0 120.0 2930. 13.8 81 3 "datsun 810 maxima" +22.4 6 231.0 110.0 3415. 15.8 81 1 "buick century" +26.6 8 350.0 105.0 3725. 19.0 81 1 "oldsmobile cutlass ls" +20.2 6 200.0 88.00 3060. 17.1 81 1 "ford granada gl" +17.6 6 225.0 85.00 3465. 16.6 81 1 "chrysler lebaron salon" +28.0 4 112.0 88.00 2605. 19.6 82 1 "chevrolet cavalier" +27.0 4 112.0 88.00 2640. 18.6 82 1 "chevrolet cavalier wagon" +34.0 4 112.0 88.00 2395. 18.0 82 1 "chevrolet cavalier 2-door" +31.0 4 112.0 85.00 2575. 16.2 82 1 "pontiac j2000 se hatchback" +29.0 4 135.0 84.00 2525. 16.0 82 1 "dodge aries se" +27.0 4 151.0 90.00 2735. 18.0 82 1 "pontiac phoenix" +24.0 4 140.0 92.00 2865. 16.4 82 1 "ford fairmont futura" +23.0 4 151.0 ? 3035. 20.5 82 1 "amc concord dl" +36.0 4 105.0 74.00 1980. 15.3 82 2 "volkswagen rabbit l" +37.0 4 91.00 68.00 2025. 18.2 82 3 "mazda glc custom l" +31.0 4 91.00 68.00 1970. 17.6 82 3 "mazda glc custom" +38.0 4 105.0 63.00 2125. 14.7 82 1 "plymouth horizon miser" +36.0 4 98.00 70.00 2125. 17.3 82 1 "mercury lynx l" +36.0 4 120.0 88.00 2160. 14.5 82 3 "nissan stanza xe" +36.0 4 107.0 75.00 2205. 14.5 82 3 "honda accord" +34.0 4 108.0 70.00 2245 16.9 82 3 "toyota corolla" +38.0 4 91.00 67.00 1965. 15.0 82 3 "honda civic" +32.0 4 91.00 67.00 1965. 15.7 82 3 "honda civic (auto)" +38.0 4 91.00 67.00 1995. 16.2 82 3 "datsun 310 gx" +25.0 6 181.0 110.0 2945. 16.4 82 1 "buick century limited" +38.0 6 262.0 85.00 3015. 17.0 82 1 "oldsmobile cutlass ciera (diesel)" +26.0 4 156.0 92.00 2585. 14.5 82 1 "chrysler lebaron medallion" +22.0 6 232.0 112.0 2835 14.7 82 1 "ford granada l" +32.0 4 144.0 96.00 2665. 13.9 82 3 "toyota celica gt" +36.0 4 135.0 84.00 2370. 13.0 82 1 "dodge charger 2.2" +27.0 4 151.0 90.00 2950. 17.3 82 1 "chevrolet camaro" +27.0 4 140.0 86.00 2790. 15.6 82 1 "ford mustang gl" +44.0 4 97.00 52.00 2130. 24.6 82 2 "vw pickup" +32.0 4 135.0 84.00 2295. 11.6 82 1 "dodge rampage" +28.0 4 120.0 79.00 2625. 18.6 82 1 "ford ranger" +31.0 4 119.0 82.00 2720. 19.4 82 1 "chevy s-10" diff --git a/intern-basics/MPG_Prediction_Model/model.bin b/intern-basics/MPG_Prediction_Model/model.bin new file mode 100644 index 0000000000000000000000000000000000000000..b6611bd5c257acf1c47f590b9c5044fd612e1c57 GIT binary patch literal 660212 zcmdSC349G#8$Ujl5_{}X!L4ef5plE0VwsbmrId(j(*?2i+H;8(MW@zkY0(YcQdLz| z4T@H^H&t3iiLJF(?22;jd;2>x=X>U!obmqt^PivczVq?PW9B|*&U2paEOX{NTCtu( z`w!^deaN7w-h+nr9@t|*@2GBl1`p{yG`nqEy*704kkVe|!I!*6 zMth5fXOveIrAPOny}MEFz5}~w4<6zT+%9`aZ+feq1G*0#+Iwi}mc4uS9ol#BpvUM{ z;aIMbvXtm`_37O`dl*%Pw?ccP{rWYXx7(n> zz3A28_6Fw=Lv`JTW_Qo-?XB28qpDt-3f6aE)-c-05me-!LwZxyc`F5~s3bEn@hh`i z8k+3J#Pn8apHY%>XHh{056Sjc%_vRJs2Ya!?n!Ix<*ml_*)ywK_W@a+?%wKwT69fx zgU!1=*L#R=6>msJ33}Nb6%!j354tL%ns{d#I-LW>Kkn45qqqwN;FUJ>PxEKwX!#rT0zt(6*PMOuFJ>XK&s1 zRE8i=nf4xPYY#Q6Ctx{Gg|I4IY-AH7t8*H}3<~e=5*Rg=3(bH_UU7QQXuO<*nbv8y@b_{r$nw-UwZ1L7q~c z(*JjvD?YL!^VhbL=vCT#s(PvkE$~p$Ji099pcd|<-MkIj24&nsuj;|r%^PXPItxzy zZ)rUuOM4r(Ez@(*uz^`4qIAnd4IDNgyKna)L%NSB-HrOx;6c=a!+K_y_C_(T(t~=j zU%idmDigf!7Dak^qbGS|(!H_aZHu%mGQk@M#$MSYvgrNeGm26%`X+iCPkwolHzD1d z7~Zy6MiF|gsW+*8`}U9gLl5ImTP53@++%W!ApJ-E@HWZzHto^2$RuyGbZ_&~UNziP zrfmgg3mS9XdJY~oDBDXOr3%oS%HlA^6Xh{POZ8B>TBLhhQn@J01aB)(ypdcUk8kXK zNEhbebZ=`e%qVZ0_Tk2@2lVcf-L0pm?|@$3M+{>QG4cbu($;WOsM*`jaO-Rj4Mxvk z%Kxa5vUsR_S)LeVBnZ=EJ7iR+va)FI-K(4QYg)Fq<7jVsxaSd1Vq0aRx09zW{ZG(D z?_-{J^gqE9y`4Re(st-N?UU$zTyMq`>D~<543AZtPxfdVGST~#r@bemt!tw9X-@}w zkMN1!XFO^2ihH8B%dobI)M~-m-mX0+r+Qi|3fKKgT7i6w8u^~udfK-QN2jEbHR6v2 zLy0bsezajk(G9|m;IXf~_JitwuYIo(S_xbUQ1dak# zxu;vd-KUBYJ)#0fEYY*1e&`8EKZN@7diOu?Q?|CM-X;62s%Npl5k~kquZP!9c|86> zRL=39g%zeAQHAUDr%<9tg?Rjp6Wluw)U+2n_p5qusvmm7(hosScjKQg`q;CkkIqL;#(x2AS5j(nB-6*~{MT_5*jR!(tTPS5iCp?9A8 zA;{xa8(e@s3smkOjLYS?K7AmgA5|C;?OV`u8ugbvZ|Kk7jgr5F5Pb-tAC(zV1pB6K zZFW^v@>x0A4x*3g|Nl>ZCbV0x!D0LSs+B*ep&rv^H^zea^bJfCnsbaf*f*kbjPW{ub-fKvwD0M&ud8UO< zpm{Lk_0<={_ey?NkJJQzC}^O4O3uwn1wJLWY}0+SH%tCf*LM2~$59Zeg?eg(7S=b7 z+u)z6qy6AGzXu?k@5G_`^VjerH|t_h~<-{d6rqW3yyGr~Q%B{=s=1J&1Nif(mxXpU`N% zswBRh@|pV{DNlrv2=F%mwfMDh{h-tz{rh=P@CPb^Uu_8a;y{J`<6rXPR-f|Qjoj8X zu1MpMx+Dtxv7mf>z)q>Z#OlX+$?jFmahDtA#C~pLyoUZSU&^1(?H7%DVyyKgo_#Xk z?8k(5Q%?JSR#=~R-hT0DS7T5yzf21K9r|47Sf95?FMc%<@-+b!?Cu(K=CG>#Hi;&R zD^h{Iowq|%$fsJ{=kGa=jtkPiu07%80ZTkI1AlW+A%C_m zz3zzbe{Gy4$3qI*^$@6FCo(qwBc`r`d(3$hV{?&I@V5dL#v!>E9=QoMU$OXg3-GrD z74mg>%b-&#AMXlsP|p9Icz+n}Y7HvH`~1(|S%G+1C-p1N^QYbMbz!>)kw+lkbgP`1 z$yE>fl<57J9&XW$@VGJ9w5Ld0@Q(o%@F3qFV-p@N@j)C3!|$wIN74@G9j)cE zF0IPO{~p<*Y*5gTDi)=%4-iZSyGy zMpjw$^F8J|2G|^qlbw%0?b(kslkJxdf%*E15J%I>cRr>nduP1$XXiT7xbMkmFZ;&+pY(gFb|I?tB@#mT+My>t5xViqp*dj@1@MnMuat5z@^pI-I zbB_C^yz3&5gZ~Lo+3su}H~u!ok<g*=gS;Vsr?)2PvaqH{@nKDN68LVNH6gB1{M0pms^%OO#O`Jvxlck`uw;1l}yRcoc7ax)q{5R z1r_r3*G9fJ7Ubl4hkgGP^hIlMDyQ9Y*^*uqG63xwZEauLuuEsuyzQwQ>+E+CzTV8( zV#z@8j{+6rcHFYFs&eAMcUzZLC57jAF=P<;P14Ce>)G# zcCc&r@lt=}S6_raUI7*SEVtjdvp%i!`kt#_h?e3#mT2Ig3@X^KpmUPnr>UQo%f1$7 zKG$Mw;p8Roj|Ua<%hxmGXnq;jvCaEhh&2DJN5+DGoV6UO{}r9bX>|Genf+2cIJJXa zeaih29c4hiiJ-zbB=-UD6;+w04et7A6>0upzh4pbtk*y$p`MpPh4q53m&BYvKD+zR zx$MPJw&b4*c@^!N0xIhBd)FmZIp*%O|J&;3^IFE{bUj%iQ&G=r*7``-Q^kl9rL7=i zi%RyhJC00~`spC@I_jAQD#U{_>mTqbbhgs*!&*{)ag#T}|2}Bp@djN_p7hy< zzh18*&Huv5Ti~AwD(Ew__01!yvhV25fv**j@=_Ri8~pEp3V!C^_{>lAxs(1J@353# z{%t!D$zS~HEXemBs9*=p7?kNjUZI}Ga z={VB9K81Eu$^7bE$oC1TFfPb?;jaQ;Uae8xWB$6&+-Jeq;vBALDP$h%SpjNU?&MaO+F8v?|Nik= z$qsh)=``{7J&+Oa1Xz*-KRt-AAHh3SjvN8WFh#!02SgTvyEq$Pa(61KOQ$n zYTv)@XBn1!_9f(74l4K|d1CTTpRs+SU0G>7=pwn`Uj}N)XRAlVpIvxU%7Y_c_7d6bQ+`Q)v*XU|YDN6ch)RCK`7hRT znSE87ul47}d(KJgyDsuG_}772#uLW%t5O`@`TVjT^8E@b=%wKKP}+~R)E|)jZpqgh zz`qex@U#3Eo3B+B7u#P~*gu_)&+O{OZ5g+2f_$4n1N~9Z*)iG{ReAYV>l1eClk=zD zd?w53SGPdEtyXi_Kfr>swB<9WOOY1PYV zwCfD0;Ad-^&G^-)yl^+>)7Jj)EaW?9wL{i~Kk5EfC7aHRdr0G@JMU)~Am2q$VZ4-f z;AJ`<45RB(1OGJN$6;)4+xe{UxK$ySP)`y3Ao$a?Su^PViQg(ccmC;vQl5w;mr?Ep zsNmOMC*@LoCbE87xK24E$QAHk2Nl|_`b}qq<9D=SHXV`RFG3!buXR2 z7ku$w@xFz<_;X9^Aqu&PcKr<+$b;-XH$~IqC{G#}{6F;XsE5A@B;;4NACq);M|}3N z6c0}O_d6d)#o*78phEj{idMX+<~{qyoD+GK%zfxg9qFVv`0IlP?4V5hI%&766_2af zIIgU;->oIN2mGb2<=j&@T=Z$J*5_?&SiV{ulo<<7pZwR-*a;sM^48f z3aN;8RRRUkwLyj-r}_+;*ga(8Rkgf+#XRC|_bYZd9Tljf)}{X^mQ(?MRZ!u+jI#}yo~^wS~WuL&yXMQeThysEV9Ioh*uzooye0sebI zg?=?}(f5~pO4VCEr*!IPPS;WVYAEEp4-`b#cjn9K^tt^9gMO{>>UL>8t1hVpMi;1{ z7t&=vEoU4*NqH%l)CPYYP$7T%LuS!+KI8ab*)JvMYlYNByY2@S{4BT9Lb~tQt&g)7 zNqTW=cl-Uc5SO}!9mb#2a!&K0Uk!&I8-NP!$PYeF$GZ#l^*VX|g|452KjIeUy8Gxp zBxUAZm_NwlNV|Hmt}`@5yIO+^ag_DmUi$tKJ+%F$rSS_PQQ%Jj74lM6)y|iFT7}+K zcGUYvt)kz+JerY4;BO2n*uhdyOT9OR1!72@6BdDcbbv)i>#)vmwDc`1k_K)&XnLcVst zcHk!TSz3BN?IMZbPqLQFe=F#;su|U&aJfuRt7NA0&$je_&_b&xk zq{k1^I4jCwf8HP6Np>$E=m;|ZbNdfOe_&)Y5Ao7uxa z0ei0dfMFCstvd&9>Y)QS^-TBnV!%y0s?;QJZ%@YLR2`ow^Rd@ro;;gC!WwUUxW|vp zNL&5*Jc%^bk5x^{&a|#AMoeu^bm{0~4B4}M;GX4wHD%{Y6GllhM(OX0aqx4LQ#e)e zJ7H8KsCB}B%j)_f)AKHWBjGJNaExUr1s0yh>O*Mg{zUl~dXEvc%+L_f3Jm zz@LM2r3K@AG6m&8r=*ZUhaVbrxI`*>R=;srD$)0aKKxNCoMe6s*-1N?|C}6mCEjaS|zW3dF7Qahc|~`A}$Je+yvsxxL=+W zH(GNhPZ%MSU)B$_Gmj9uJWdDj1p4Lr;_@X!o)+YHkBu0YALmgz0HaGh#IFW#0bgXjfC*hsSX<#@`2enb!>U^8CT$Tt#`v zo5}M?Q^vnB3HME6_M4SVjQxF|Ro zwJ8uyUH#zobGZ=*&m@tS`Y}GyculkRJ%K!C#BI9-w4*U7k9!_BO~`K_Qwg8odA14K z(Tu!yDDkyJ$K7POZnr0R9%xGTj~HE|OFWO)D01{LJ$l8Gv30JzRA*-_sZ1Yt1kH?P zei6;{NHl5pwy)RKwsGwKqmTy({~h^LKr~(Gd5?edq(Ug9r2j=dLKSf(}Cl?r8{naz1{)2o?v4I46x*JsSU= zQ(RZv@Hc)RPB|ZMAD2IZ>1_o3A|eKIK<_nTa6kCP@Cb6c@AxAhJk)^o+jHrQ`}(ni z-=Ehf=_QZL$0?VC>y`6|!H$9ZuyGZ?Kc~EWeds+5G#r$-FB1BF(7ev>7dTgpBOG?B z3qDTk5pSPt@3TFI_3(svC=9NF*XkMV?Q0vawW9ZYxLv$f4@GD7M0zOnDj)Oq)5pC1 z)4c-#qB_u%C<38UnA5=q5NcMs*E`xfLBHtu6z}vo zPwUC4;g1B?1U4BeDEvpq^voT+C9GvZJF;H# z%H3aUst)-=ta4_CenQv4iT-T-BgxO~$Dhz{T7&bon0p~#O{<*lUoOx%(jNs@DR1UW z#^$s>`i4B}sRb(7xAl`dix6eKzNUFf+AHEbj_j_b3I3-`M(RMmL{K6AX7+3C_vL+E zQ#;%`nz-=0L9{mJc{Hx`yiHFtHk9(zskD$>4t!R2YBmoc|fkpF?L%RlAio$Bm3Fo-_e}b5KDq{;I!GjDVl! zjCrbYQEB`cZDJEPLpeT=V5bGDa$J9i_`BrSPUFaKJjfU%ew7B8aXbVn#Ji>}Iz{`3 zGgaT-c1n776+sC2Q$U5htCeU$G=SuWZDK9x4Px#eT)YA%7u%Ghqx~;Ss`r^!T zOFXmye@jpyj&fdqTYuMM&Mo=}yLrOeAK4p+$bM}*9xQu+A4a>{feLoWCGXPlXC~VN zEb2=iU$+K-ThP*=j8Okn)=}*34<&tuk~ZL@Q+eYM@?g%lYftzTMIRT8mHgUi9&{QH zcI{`ynzCs>$qs(CJ@nB5RPeJams%-A$=BokvZNQM?Xw&2R{!h>`JMq4#;r6 z3{Wv1USC78?EJb%ossNr*FUZHv*(|8x?Gke9`3B13h4^{e-0}2(>WbpKdok-Y;|w{ zTCs#Cw!lF$NH?7I0TuG6tLI?4&PN{&7ObjA_&A)grIAeV_XHLCO#|b|=#EO)k^Hj? z=??xLpq6og@yJ`o{&gDf&i$+x7YV8w946QeOjL-;|pS|ne%nV_7Ld{{z0H(ymxw%j+fqi z`sm-I$`pRrgKpL62mbz`f}c(M<3(C7S%3I=S(?8)?Kl1E0Ms)ORA`_3@AEt8yT5Gj zw`kY@KkG|^{ImwA{g_`J4Edh3%9%FbN3p(_d_O!g^&WFQkg+u}F+IH~C$vL5_5NH{ zxj-MCuRbD;Kb`B7KUWxPtuOz`^quru5QDpw-1LhyUUE9#RY*4K83ro&nY((0J-)kx z$zz>AJP-Lsf(qlF9M3q4)v&kN%HB(h62898*y71>@Q<*T%U$ve_0PlfQGDVhso%Ww zdGH0uHwsknGxklRw^#1{+jU)f2gdokC8JT#E1-hibN*?6nC6LRMt|V*tL5-JBhh3G z&L@Lf`jvJQ*O%{fNZRulPF@86%bpG3yE6xAHhz9;~ph7;#%9(wL zj(Zk#?DydY>7DPoCZ^|DloRq&+W0vXQ$lf3Y}Kb6$B}S9T7%uZWL@tW5BVm527xl7 z&yVzDos?hf)>r7;ZTgMKMEx&4CNZLjb~iA)jq7*+d55!p+WENPRp{e2P{F=zob_D4 zRoV2NFd;4}XB9F9{8K^2@u2<?$D`Nj79op14mREh=D)8c3O#-0;NPUrfx zXFqE^%z(siS@k)5VE+R??Ul!V`J_|{Qds^l6VvleloRqx;tOLa#)EO(eZPJi@_h&@ z_*3|MA8b;UclXrkHUEO;9kh4A{~o9qw;Mv}`pc?}bFV&dz%s6z3I2CMh5UJ8(wIED z?)D%ZzkDL)!C*2A{Ifv=pfTt6!p?Tu>qJ<{0aW#`RpO|GV@4xdifk11jh}2M zkE}RTn^eT_j3iqyJq7jhUiCm7?QI?_puR(=8kw5L~T2nY&~Sc_IIAIT};}q z5o2O{{)BRc$2Zh|3%A9ti@7Att0FC!o`HT$Vb3XFo?Uv4oD#EedzlVH3fC_Px zR(I2BRdH>8<)Na#N%OIAf(}5*Lpi~(T^q;zMt=@Fb#z6JG`@Bk@Ak*7f*e$`Dki4q zkC4+czg03Q_DoMHFF9X-S%Z4kf(mgIJbEF0?rR)r%>+N9SMGeCw>QojWm%tJhjwiM z6~-Y%Ewb0A1k>lK@0XPFQZV@i{Odu5_GdOdy_NdQtuQw2+g*@@*5I`N^Q#*n->;xT z{4oss;q+Cd1M>c}e_Kv@Jm^<9Lq3iPBIwh=7RXUuqwbs9fbi!_2769-l8gs%Pbln+YBnH15grt)#I6nm{=v#Za@c}h!-a|v?lyplNx5;EH_z!^!avIoA zn*L_Q$JM0%FUiF8+-ogotoLa5hmV<(R9xD35ocn0?m{^spSj9!KBOv9E$ByhE=l>U z9@zo@ouGnV7=~!O$2Zixf2TAb3njmS|94QKeg0xkpb`he+>WWRdcmd=)04n&| z*H31w`JeL_ArH_N1(}$hC(%CP_kxsqbp5Pp)32U}J~*ab!0x~zOk3W*?1L4F3w#FA9wujS?gtg~u8u{o z#FVNv{-5Hcf>=(mk1;LWkKQ4eoW*_4fePcgwD-EwZ)3jOB{U@JAL;o@tiy4+Le8U} zOQ52@N38x$RsQ*5LYs0|B}}tuasm7oL4|e{3|yJxyS@A8osWAiL%!l@n2-lE2i$v{ z#=8zhcuvAXi!?Dkuk!Mslm!2JnLhWOyL!#_>4&8LJ#Uz4`aIOKIc=XST3C**m!UoFD*X!VzZt`q70tp5@@owd(?zaqp5ZE+Cc zn4TO1FYsGLH58IAhDp{j~G`>zG90QbNGz$Ky{9T&P`@PG%O{{uVilb1%F+DlP zqu`$uzHkcl>v>Tt)V)$Xgbhl!+ zg3dRA(J$Q3&`#qbf{q%3e zI^WNL=EL9ZuZM_vKp*#T4A5G*q2Onp7pv0uA9D1MEAEu~qaeaDM>$5PU-!G#O=feL<>x46?mRms%H6ALAMx*U#QteBpHe;V(x-x^EO z>2ngN`6ZZeOk9q^Cdg^b-?g2tzKfqMNy6aKjC3R%^EU4R29G-VrF|B1xPa%%T z(|stGWWN5s+D55AvOg{m9eJY z>B%uOh5S?S(Kn@ua`B_Z&Ew?vfkI78Pma+k%CC24)3?3)0BU1`ns$H{^mw475r zIMt^@IOZtFycFcgsqpG`Re9}$FIH{XEn%Ie5RU123(U*l?>5nVowz9E<|n(PeTNBz zV}RZQBQ>Yfaq8Du`UdmO(s(f3VP5j99Mh9ybP9Hww&e)zZ?k&Vc(e46Qom_`9w+Ea z_c+^f3UNt`)g>~fr zdMTV=6#A@(NkTvcIsJp~DN2;q1wX}vFLP`^LC>_JdbaIXSWf48kYj+}0)tYS@*>3n z>GR6sN6Vd;)+b^K$MobFmV$k?HeVg~Y5I2kLuaLR%n-scKshF|U?(lEKi!Ygls+cO z+9%n)iUreC$b+tsvwojqeADPozX$Df9w3*qAGfmI+u}kRs9=ZII|ov|1PwY~ywOg{ zKO;yx@OJ#5$8M3DjA6@9zWpB@oZhse9IrZ%Q`kNN?eUY-lz$cki|)$R%Q)+Fe=LV2vY6|&L2l5^^v{X~y z)Ee|iCHh}F$RP&dK&cA+l=AO<`ox8-9!U(yunz~iY{r1(BDg=pA1Sb@aUTk#%kBq1 zR+7l18&8kiakMdc;`+p8gLfv7#D$}O+`S?ZzZfJX}W zIC^XS(OW-FVD(<({DI$%`w@N}RO9D79{D-s&;U@nu`z&D`R~y8#smiVx)gw#?EuJG zBc6P7oFl81{l+uD3Im-Nk9v4H4v5O*9e|f%akw7hyRllL|!mdPCvOBPpdvbgfM@x*ZdD)B_eK|YWiM<}@9>#K*sPd36ngxi(V z#>hL|egQd*cA0?Ju>jQOc7$CCKj)O&JC4aQ676}Cw=Q0`jo?#xQ`)ccaM^+AGf~ z!{r8`>@I$v05B*oXVCxT*Ct>rzaQ>nUUxG<=7d<*KTe7!#-{nI(F|xgHJSnV&Wc8V z1%Oz3&gussY%K1d=VsR_z--~)0azOw2R+1+Z8S~QzZn1m*4H#@Pe6NT!R{1L*XS>6 z!0(m@;?d~$`f%V|?jO;}LmW6YmgwI#s5l++Q9T*`{j3;rRX@IoWB~L78<73G=ARj` zodcmZf}H~GVC~`OQKaLym6kQ=*nkW&5bPTw??g@pxU0X(nlTeaqmOtyZU5&Y#q1vv}GJxV8#W!fyR=Bh?Q z#QNyai{GD5#ES-gFBsS3f=`*rUi>Y*5!wDnM1=d%I|rK&q{^ZmUOzo`J@fbvKBe9H zWh0+EE-l=JnJ?UxK{>H~1~A!9_5vYq2V<*e0u1s8s>1Ju0A~d`XwiQkaJH~soKBFP zE*SaE1=X6+r?B8K^OaZW1BF?0a(h;)WZ96!Hz-v?IYDo1W8C$gZVthrE z6WX5}9YtTHHVzqR4xzW1W<{}otOke}9I-(LhdXt^q8-lzdNgFqRf z8x(H2aChe)%-MTDD%+iYoDuE04^+@w&dF2M?hAGM9hU4DLTZ7(_ASbN+>Cw{$vAG` z3-onRj|)_Yqx@b+sJ|G;-QNIJ7xLW?D#U}fd;tA;sBzr=4Id9czSf{Z|KR`p#Cer0 ze{*PhN-W`V&Dc`R2fOuAPH3Ova?yqJx0aOkE|h`OlWZ@b3jRlHpdV*MJr7&!V=q3n z8MF9s^=gFYWyY3B9t3|3sNgRK@UODDW`lbMR+2VcC6Ea4Hv$#&!O1@;K&lphcA@8n zv;iu_1dxid)~B`IK!IF?^&bkP2Lr(*68sH8g??q44s505+>Hm$GH{;VgK9Y-7>N%reUh%9`Ui#^(HiY-7}eM4||Crd58G=IaRG`-$gEnBz^x9!3&St~sbs z&K2gN`8uQC>SNnVo8w}}7D^Jq-vm@>9|NY&Putb~#3kuLO9)8pvBcPNdGvh zK5o6!z|EP`Ml{6&rEg;`RpcX$1da75G{bwXUt3q0WzZIy^f8>1m5(QpUbU=way@Ax4 z2kqI<`eK*8a^od^(vLGjAMHSe_%i_Pl?9WZZFPUR^a5yI@(B3bTJ>4bp*roy{I?U> z*sj0GaT`SF5`}TJ2NnA1+<%TxIgjdcmLx)+qnvghtjhMYJ5SA&?4Xb|$oD>|;MWYe zvgB9cZ~u{C`mw>5_ax~E{_&tf`?994-s;mReoX4wdggeAv89PILd;{; z%n!XVwkXmW{Eu79T{*v;uG?I?^@cKg@gR>26bq26pwG;MrD(rteAG+c5NOw5B%3GMMxPe=ktMU#2aqyM@`|zu<#7cI__Y0lh`!S+uJksOV>#o1gUMHIJiTQMLj_ zd%)ipRM2Ps^<{rSpLL}?f9LJqAMyX;rAIfa%1r&?&n{{HSA`4!|3FYtFP&29 zi$TWmzY0|3SF_NrVW2|1lX-1ue#!W(Q>`MEBw&_!;st*;s1Of{DJ|%@_3axyerXh9 zJ~v=&A?63-`11wJcsKi2zz}yn@7j$c!5{P{lINh0mq3Nz8GvZlneD1hkv~`wMV<%$ zC{Q6jbGsg2M_(t1cJ83F#0*82Q| z>QaDPteXmPLOJcPn+kqJ%l+H-BbIs9XtZk#sF0Ut?s;x2T^HWFZ2TyB1F+Nagkl1@ zYN#&|58BS3g6Q)jW#(-J2DID%$v~0{84LNwffjy#M&mZIX@h%9?UedyyW?wXe`_y} zhCP2RTKm~tV7vF};+4SdCU4!Kh7RH-EuCq{1h(B^Bbhl5-JTc_@xT4ZJQ4E;` z{#QUPd1)e@hL^u0ZB%xXm%%?7REXPkYoFOh?XGXhdh<5v({8^h>(j5k3i)P&3i047 zlXZ;(Y_9i@eB+V@5Nitfr(4VUcYZ`)wA%N#t3~e%(sQS9G8O#OKn44S5C49dPx*>2 zL%(|7(%-%Y{@1Pbm3S^?i>mC^*QNGI`ux}Pi)G$u&#$fVFazy+%c__6j&+~tQJ`X(aT>RF{mk0Fx6!V5toBROKg`G0*>Bf)$!;E$ z<#ehSzd9T3de>?{<%i!FW4wF!=Q;NLQ|=#v$OmZGH=siP%xREzz?ai%QF?`@3FKb< zZV;^n`4Hz{g9_sY&*B?JiKc&Ky+oX}J`qQ9!2boPr9b*-RZ8N9`=sanG2|ogF9a3k zG=SPyPFXx?Zgpv0Kg)`X8WxCx5J>$kf&sls^XlJWxyjkaJ_wg+0eC>z{MM z{|TrNw`sjQ>Ogi=jP+e1KT=Mo`OJPi2>leT&v`t|N4q`;747i((?@+ufw37=%JaeG zGw?3}wdm7$?(~(E=bg)GFCOGPVK)!T>xy>mV116a2>MtGD#X#kgr0|0<-=*GE|is@ zABB=H!Ji8%_*veBM(b5&ivGgX70C|H^|=`JECChm-ee_xq0cz(ejfY^@~r?B^r;1h z(s7UOo*&6Ck_D4x;9m|Z#AoL5$-6N>+UQuHh2zhzpUM7d*Ux%c=12D8VYp@7vl9CF z8PpoL&EMUBF-QW2h&6#+zehP?p2`4OXM0KFl*`iiGs*(wD)<@s{Y|=lok`#Gf5s=} z38(qft{volQ!#;DSEGG_`Jdu{(L>hAk9g4MO;l;glGLi=;BoG(i9zMh*>?5k>|G58Fkbtb>!oCA{u z;vIl=ANL#n)3wsXEtaDIshe=lfvN=i`lk$3h%$%b7(A|+AIN6x?aY17zoC4fK7~Dh zShTa-a~=Lx?-T1&+L%DD+jzZ!-!oUed{NcjJKF!^DZeFdw}5XesNkQ|&Y%D9dET)d z^6dZ>?4J2U^cDI7Z_|CV>-=<^;?{2dR20FkRI*U=JLKDGm2=v)g_nFNx}&(5K@1v>x3@w&r&3=d&LVg1)F^e)S0Cy8$ZX zU8TwV%c|1h)SC9EPD{Wg$>b>buY(G4mUZz0-QQYQN7^{02IF@|8k1u-TqeI7v$XT_QvIM zeN`+#t^qqJY+uQ`+v(SK=N)pMP{=vx|2(LWKc{tBdItGyk7NhC<1=f07f{bdtKBoF zjim1p8Aq;^KmUFE$?<*}@?8NH;-TQnlb1|DEWxgn(|#Tl^M^jZzKVLTS?kkwKTGGu z$b*6$l=Htg9%OyqM7tFHAdGul&vxNK@fdTG)w7XiT*RNZEn>mmx2WA!S zOJ0o^uKfz<7lm-3Sq`i!#9zUv3UvSAs#6~{jXWhiH>^iEuq_8>7220yvC>JOvMB6> zs#6b3@n=6T3I3pK%I5q*Uhna%9JrSQmkRgId^w%w>%C`sEnBt4;%6Kvm;`Ifu7W=$t{^3l}($s}K+QHw);#-??S!0)_km3H$4cf*;ZPoQ@-_ zkozI$W1xbZu2lNrWb*mV_4f{~ZoYqKm_=(x_=kl!keXok+{4L-RPD8PKSWNbL_&=M z_@lKnfm|O#eL}yI*75xVs@CeloQ~Q(*7yIw&w)e*e+hnYLxE4ZIPprSi5Jz%Vto|4 zMFw)kZFDZJpaXqQ`P1J^UN~1EtrJx-fm}H-tI$5uWFF1e20-zz7QeQaC#>W72nf~y zRIqQx%P(%DdEzU&-=>$8C+y~Vxjwsj!Yw@~v0KhsUliKKfm{VY%Zj)_?Pp-NoR{X| zjV(Z~f?nL;G+asbq91qv14uX1`PGxk~fTW5aeS2>U?2QC%jh%CH1TU9~_{7`Mc7AYP=2nT-Uz^p>t=FA?v%*O%# zgzMBUPRD}^;lQsPs1|B6tZjVYknTZ zbPx42Azx9+?dwI*Gc6ZHIIt}T#ufZJ>)E0wR3%@3Zn#+TGpFMhyZ&jN=Wrlb4qPha z!OT_>yHsUp$kH?WN?6`Y=0L8u0FG5kwmzn6`uDOsmy+HO2qGN#l>^5b?!o@}zjyQZ zN$&o7ozs4W1HX2HzX|?SF#j_O0IO(pKUmkhZuicR?!R47KL~M2%h~Uz z3&(pfc^dL{1r5j(basrkMOE4r{eDFJ4k^EckY~W(1yt~ttX*p^VqACk`u>?|Lue6OM=>3nFg_FTI0@wvL7R}Z?dem$0nONXPBV7@syNp`sT`l{pg3cG{=KN4!GF zHj4Y3vX20W5kSIMIY4m$fS8rzcENq9eGH(-d8s5uM@FR}I|fiG1vc)j|8P`=94V|` z1@{Y+fQ6M*X8)xvNF^N*a!X4F;9Q~wyWbSFXICn_4}rcYAhS^)1!{h`Mfj157n0b0 zK2IP;YLu%yZA&7lZXh>uz}ZC7W`_R#yT*`*1LVe==Zb!4{G3zp7jXY-3V-3}ur~!- zHOebZ86~j43E-Q6-vfTJVxW#t8HelqcYYs!9h6At3YRaIR5+1S{zMJ{x!W~mdN>~d zpk{J$e@|jSuNRXT;P%r=#3)`K0Ny6RG52o{v)LVfyIAmZy~IL~ zjR}Plr~l$vxrzWhp2hVAIrDfqPWkWrJ~6l-KaXa9-6x4O+p|>v$9~rc8Q*Z{*oHe* z^5T!X6Bd3)Si7j78(4-t5l@i;pl%M_ZPQ--hh7?K(eE`KPNMP`rL3CGp{LmSAVIP0wFV? z<>sXP%VjS|gt$ql+Hm>VPLbsK$qUbod8Z*U!njQ&(ccxTvWNq*Mlro9(V*OZZgQCJ zOz;^;qq9!BP^dv;&uE0IheeHwu;g3(Mj&Ote#YDgsdE$}H3EI%v= zoGZqGdNjzpFA@N?k*r^A*$}}0oUbA7!{y`c4TD7;biC#dYp3u7@Ery1^?&why89LuK`TI8bHlE zVqm9O_)7o?nfXsNnQQ>`OTfq!V41~V48|k8UN_>v%>c5SJiz4Fczdk=W0+M5CrJhn zcwMx&9%x+>nz`%fh9a?~>*U>U&EFSGZr-3r(^#_Ut&;Ul?u{h|NXHhmVT~bMO z_sYFS$C3JCIg&>B#E(xL`MJ)f13M}eNA-zMYDDf6%V}+GKHv`MffWyIc&?87@p|d0 zu>nJiUB9EGAOqPJ1tNd-DX*EuL%B1pkh4CE>0Ih zZwcUQcR^G3Yo`kbP8aI^YE`tW8mQn;dGm)~f`1m30CJoz^g3;yVge~gTkYWf^bfzP zO{Zh$H|v^!(u|Fe8sHBF74lMUzkc*VOL&QMFP*7Oxc@S?zzf7RQBH`LY5iK$cqjS; zHhBTu{zfz*56~Ly+E0Fwvx*7C77jUu`{oQTNjI!MHR7FR+vI!}O=^SxK2Sj~Sqm2a ztSW!gnaIeJX1-)>E>Z{lE>IyJ@*n?{K8QEs!Rd>KnU)ur>@8$l0VV1}z6U^syu@DU zyE5*BUl&*bA@2u&Jy5~!42YNL3!z)2g+izCZrASCJP`)@ct0%kW7^cG>4v0SeJ;68 zlGADY*_AWPveDo{$QcP*3X~C=ch}`@`{L?7(gT{hCNNGHw1%JsL{ea%Tzp}o3r%6)3;yh0@LOt$V=;gy zzrjZ5n-77%JE#zU+VL-s`!s#ORhKHHE`DdE9eEh%kAn*RN=}s#bljt_q0)~_@_7Pd zOC_zr-^N-lZ{MWt^b64`>)u&$UfLLz>@dFsnLx^qqCT;GQwGwF*tutNsy%T;C+sqG!C)f{}tA!-Ml-%(my-_`7%I-_;Yt@nGgT0D$P5b zZ@_pG^*jYC*lG9!+gGWIu?AmS>W}Q(p|D;XOY1{M01Cr)NBR+WCU zpMS4tNeQ?s&H|)dIRDW0<>(823#B-6+TYr5UtxVJqz~HF-`c){@gujZ%J+@Gte>Np z>w1hW+5}SepqxCOV3&(Y<4?QeLD_x^>5F>$feQYT_1<0%#B}#x5E%gZ27?OvW-tRGv>uYKBk=Z=T(9~&~kR;-Q4F5sT31Pc{r{JdePqBMK`P($KCfAr}_E?v`YgO z{LD4x%wbhCwg%Lc`uDnI6!=Gj3V9;$>y>$`VtkDE$ZgBJV^GhFpn@Iz%C{H(YwYk6 zsqeJkC9N|y12Gy5rI9O@Zw)l1&q=@(7C2y#$P`~5@VII=t6wDv0# zA>TWof;_IWXO8&D)=HhKAkl!g4l zK4fJ8Se%m9-R$NGxqbG>1%>mjLSBVFW`GL%&VBvGV?IR(uc`w<3izjjigDZV zsm-clY-adX%DeW*$%W7dp;uYaw5mbBs6MP3L0G^?D!)t3K3{nLH?K!x#A zp0GP#k?mmDuVvshyLPuew|E2XdehoIZNaDCs!C81+5yTyuJ+p}_=8>pc?Q;raiu!0_TO$=YOHq%;)=zEu6dy{`WuyeX|etj-v6`y$lhq>zuaNH44k= zG*9@|4Lazxo;4#ep*fI}jasEpx)4pwp>Q zq&xTwLVA(~I6n_6^tZ-(vi9?Z504$JOZf8!gDvj~@;UgAf(rhb`+ePQs`g2>cjtUk z-u!T?!KS5?h2Y;0D#Sy6*3&0dO(}b2@-L;x1NfblYfrww`65ukKm83h=;O16O`FD* zBrg1J5bY6%@vfLa%DZttp`XtGrCz?O?dX1bWXa;@b9z=^82s(~zCdaLtYykg8P$B;EUz|=qAaPg56YlQ{=Uu&vS-c`sp)UzE_Y=`lJvJ!Uc=!#6qKkd)|#QV`IZ1#WhI%XB}8|3>P zRPZzZ)%A4$%ToPaA-|*-`{Qd_&Yh@d7pM@oxg)P%p!riDCy$r(Vz+&AzP3BBlE?FY zbr0m*3o48Y(w;be*r#;RKVT+*c+h!&v=8SC2uD$3ca-bxrw$0u}A3^~U(@n^NA5u$d>Uar7tZ@q-5Jpv`P^ zngTzy>OJYR4Hu=n8%|Du|0HN>P)6u;*q`)QC1t=bmt#3k;r?eph4IUTeM@PcPh0TI zp-ro$d=^Un0{>}HL7!RIJJNBT>vjSI{@Z>g_tU}TEZTJrRLILY^;7=S^INC>>9l(Qhw@7$Udfp#TE~4BOULKT^oMK%Id|L1Bi}U}kXuki$ehwp- zz;_u`=#N|X65%sLk zkFKMh8=!%BSMnOY@uSc9pi#$bmOSrleyfn1s7HYyLfobuSyqfFagRMWbEW(Nr4aHr z%KZZ>*stKkLb?z4{|Ok7NbfP&?N>4^`=#vZMc$7Y08+jM@UK7W)B#m#zQ4oNcjOPr z)g#5AM-Egh*sq{f)E-qCPUjs5{+9aN5Mq8vE>H^a!oQh(%JpB%`V10xG|&-rMy{+=8C z?qJ+ONiTN&TDF5-eaiijU**8d9LP|fH)=5>f?bip642?RgabX_5C0U}=f8KvHC3CG zH??)IEe5MLvdha!S3#=EBSr~`Tbj$?Qvw``l?ufl!f2P zh&gm$$$$88fefT9$T=-y_+^#3*Z=PNpk4n&m?4_{DhFQX9|jZpcLSK3VF{F#=C@A$ z+HPKw^O;}eK+3lO#toi#^}J7eK~LD%qz~I9nLx@MI9P~>%-;9X_iyzyU*)j$UO^lQ zgQ7UFvEXO!MNbA1u- zv-~OtUUoweA@8#1T(k8LrsYd{DU3vdp9511@y9+qas0O%xvjsE@{;{^K0ywneH=)+ z5$YA{%WJWu7-0eMzZ&lf;Xuk9s90!!rhm{`A8DpP&$%g$Bdb_|l!bWDPh83ON8Wv) zXuEz5^D=YN`4I3Lj~1xQ)Y%alv6@_oj+()i5jc+hDc zR0s#o=D^58`!ci7(f;qz^UFp)cU+1i`~ADDPd;Jdz{o-#$?0^QuJZ*^H*2<1T3>Sh zJ_!e2=0L?l{&Zy@yy#O3^gJ<3n%~wX40B6SI8d}uZrarsXr4EY+x4M5r~RM(d6i&S zDtQ&+{UqBvPXMm`R7bR#pYHvPA=)tD$^|-bWe8o$`z*Bgl7o2(q|C9NSm0z|l$s@FN9wd{#$nS{?w1tg9bAQVAQp za6mj>ALQ%Pk|pzI%^1*FC9ZGiF((P~L;n<*)2N36_HiIQ)~;5h#|=--BW0S9ksnp3 z|B@Jh8!55Z%qPxA5!m7Y@ugvA?T9bj9wiayO#l$b@5klfK!ChFr^&{ihGq*A znEfMgUk`%)e?A@`!<8Xa$61{-?6`KZf|Aac;a+ zT_FIVN?T8l6mqzF+cAp|!!MR5Fu=>R08o4bz?1EGd~l%2rep|xXDsyR05GQk5ZjX9 zhx=PoCT|}AMD_u|=tk(r1UyyA{v|`x$B&36;}hP^>G63i>Hf;7-^$I4AxmmjXkR%g zhHQK8{bluDf&P^!vgix_h+%q~jOzu_0BGfWoN_z4S)BfX>ofWF#^i&Yli%N23gz0IMcoAL7R4 z2B4-JaRa$Iz$KNR-G{d)iag%$6Z((qGlu2;eQ~V)Q#cS{f(gWG0O@@jkAB1&SH}Hs zVF%`y38Y;A{kfOQB?E|*1G;h`(#GV^H=6(X#`oMWn=`+CJQ?}C2>@h~mt09EkShZa z=D?*qzXF)HPdqC>k^2d67XWC(0DRl0G3w#x+-}j(C;c1?JJ9}Ua^u|2S8@(CVB?GI z2r}v1z3cmjH)ML&IBf*IM}fw$e6u4GfQ;Z%A`6$J@l_belk@TWfS;G6fTe|jL^)p= zYgeCe0PQ}A{yCi0mscNhg@NKay>FwH$LG8n6@fhSAbyVk<>#EAUyo$@?Oj+H$nlHO-bJ>7 z9LGITD#AICrH;v@scY_E(j%{&WnBW*dj--0412@uA%okA&Hm#5O z0`I*jCrrTE7b;h`@B3_*_`(b2N;=^a%gQJx%Bcg2X}$XY^YT}9OyEDp7H4q-Fe1Wi%rG3F;jTb&^>0NFylaH~5oAvVzbzENhdsds- z2UR8R?3lxGXQTW zrK7TMl@?x{FSwOQJrzK?|Iky}uyf-FFeLOTl9?xyh`?P~niMEM1F zr}hgrU+iiKeTWaxr}m={Qf~~oKCbLd$zPoJ4^gP65vULkt{Q`j6Qy7U1z!3^vV&87 z+VvL?Ul)f|el;5ZivcYLN=a6wnREm7h~{53cs@)5!foofAB)BPTY?ID$s9HMl&XY0 z(R%ET+R`|(35f%L5~yIm+(sYJ_?wcYrS%K4u1>(``OFaS>FlqMO)-olhLjgpn@H;ev70V zd)yOWo7eW5G~SIgU#x73azZ~gP4CB)s4}aTgPN~Po0`M)mM zyyLhuZmnkm3ev=E9HQM{%%y(j{_l99Ck67Qf(mwGK+QXUp84(D1(KiL`F_QopJht^ z8Ds)EK7#fMahug?^%Ye+PxouDcA4`_#^y4C93MtG!G1Z}ne+kP*i{RDPgKnLEMv3V zKgb(mgDgOfq8&CjryG}yhaEDox6^pHo3G^!C3f?KT+XkygC0Ky72?(yf0AHrTeqWb z69|*BJxv}3e;-hbUV2WC@zsE`K}znynb)z+WraxODi>Q^F2I{2Re<@0%V zs*eZtR$Y)uzw^N{m$Mi+O+XraW8TC94Dzxv)EdMshdG|MzWI(#yKjt)_ z*|(oyA1axBeahu}pJUJtqRb{GWtMt}-=%Qfx*&1cIRrB1(6(fojk!KSq!gTenC zsJzagl|A&{>%mnmFXm){-wP_*Vd*sbf_EInkKZD{@Zvl#4M9CaL4`a~P`l$npYoOd zmB<2VUgdnel#P0Zfy((z$XmPiUA^oa7iJBgq0GK5k^jujJ9{Uy{QtAh{wRL?{RrHcKVLt)$jjp-mxyAdn zjmh2*-ad_do&iE zhCK)V=Rp-alpRZ>d4`bKc&$7qPWKzHE6UmA{{nK19UH@e()o4n`^oO&l5_m`q9}mz zDyZJB7=JueKDwU1E*isL0{_dPiho)Fdj=oAPyOR8#d*U4dWB84Sx+9 zrC(B@pQ6QUukDfB{+Sbi?j6WC8dUMm$c4jJ1dSI4+`R7RT3UZ8#s+eH59yRR=x^3` z8I_OsCq6z)<@4Ge8SH(?_kmMR>ma%j`S78B5mmMMGq>|#PQU&T`4odH@wMEVFL<1v z(9rvJZa-Y*TsQm(`Fsqjv=7F;(I-q}IbWat{VdtRwVyfW%RhyDUxBKAwxHqf!P4G$ zfB4>It(jb(7i`%!kmCer`2r`Kte|}*x6Hh}c6EFIiC~LiW57Qav<4`VygL(T(FY1Y zXz)_i%9>xhwS&{{^q^gkO^iPw3T4_qA#Buwdl z>5OLDd~3Q5IAy?A(?~nLD$id@1GMeLeg*#$XSy9_g9+H}!%L@Z>2t)ahu;NB zXNz%P2CBrf(5LljUeU+bA0}$`&%M7W^^$V%YIlPzg?y_)mHObX{{BxvqxI~YM@~Fs z*1_+BB-=oatMFX0U;d>-2}oz%;7=!?JfN)`HfPJh{~M^%4-p606FA^qxz;~(KMqjj zpd2C{K#t1q#qT~aHE5jGajM&R=4}7mwJUlYG}s#GaXqL~zE$(yApiWd*NIOTZ_(!6 zV%b{ouLD)=Uf!{wIA~ZO{5bdfj5k2OO`wXuhz}p#TX^fUX-gb_wh{d0&UCpJATjK& z=!-bL)+4v^Q*Ymm{|m^`f7{2)O(VeP6-Q`s!u|NDVw`XvU-b528}zsxRMA^*KAq|p zkM(s?uj2>z`m88t1lu9y!w*WFk4R>fm@#oza-EF2TAa^dJCW`fXxPuNj==F4f2gLd zBXqQZ9RHB{f)dH=cHcHL&};hk=etza))5leZtxuiRoVyRy#LG$8uttz^W$cNRa}2= z&-Q?SKd54d!LQ7dADH~hF|WTD{QE$a`ff}=fO+B4`b>ErasK`GtLUE*ECl%ufGYC% zHXfjP2J70c)%RGB-jnCy?$W zXxL6zNAL4z^n)vPKt}Iz@K5A(3RLlzyc63F1dUldP^{7H?!6xUg?vss^9v+xq4|mO z353x7t=2xcZ^tUuKezoCzqUUzWLAPBRF)L-5-I+;ODWZdaWtO3T^p}>)r(g--KKNS zyH!KElFm@R?{&x+NK$8uSF6^I%)!${;|8+y%O*Ja+V+r)I zfgI29VVS(g>(B?|d(Rwt$C2%3-3s}oGYR}Cfesb_Ed6Kz?f>M*)e1Ii^(dA}AWaF( zsI;5Dn7VYnD!>80=4<_O_viR@KdS|ONMJ_w_xN}^4`f~cJwRQm{3JS)K#mfaQL%%6 z@Ry`dKFldwrS;3b@BfrQj#1F7(r$+4CDMFk^m%u;?z}*=dutoWQ35k6>2mL0N`OWf z2Pn^}cwXBTxAjl&C%camiraBIYm_1SS(bwNr*5;v8Sv2%7fjAX;0v3=J?JAkrP5*Flk`3f2ffDf=UJG&yf2REf z)^$wl_q1dZ`0*knQ2a1;0|)lz)s}!%mFM&(@9m$renBK_3i%|^sM5aYC5%5xK=&N1 zXQkF|Mzf2Nt{JG3uJrV8643A5pQpS8@<|}au)knE+_K-<+85-$eTP`WeQ2If0y#=x zMa4gduY7u=X-w+gXfOeXD)ofYHn)KsB`~8B4@#$XKVllw?^`?VzTH~;;C|kwqJKs> zfE<ul9OuX^!bZza&A1Xfi1#R7^g=hG8MB3W%wQ2d+5B#^WOW>o4?-Unl;UtnSWIQ8i* z&WFrY*ewlI$&c-*chau6id{)o_w74gi}HEbrv!48z=evx7*Tid5AIl(c3vilN#I8l zf+%s)e{w1H>n!Y>ZCd<{wHH7nkfW-X!-Fd^kzJYA{`p+bYk1Y?*-DoMeMsO)MW1D- z%H?^IGOgbJ{pG9ZFOjTZ)}Vsf3XtP>9MLA&r=U~?a{OKbIX=2^*bi}ErLb$>THEaQ zftk!g{U%_)%*BT?79YxF)a22h3F~D7P{{-kQ~0@s*ECt)OUgt#0${Y9=C|;30k|aZ zB?Z5cjr=6QS{m-t@xD|+Sts0s5)fq19(2{pW>sI9);Oa^j`-aVV7J;~0L1D)bnkdw zagG2c{4$%h`EGNY@0tThkpLPkz{O(#a$KD)-ecqlz`vRRSWE;!+&kIAi_I%w*>%Vgau5Kd z05Ze#G1&qrttk`vEQCG@NRjX9Sy=@@dUxu2Hks9Vz9y_63s8>$C~xNKo2fW=Is^B&=Zn;JqoJ$&8Nf(D@xH4}LF|dXN-)Dw1+0v7fHm^W#-};J%#P%`FxQM05=K1m;rld2td6u*uQ570f=}8U`ETI?@YscJF=5}Rq>TfVHX0T zwBpybsDA`lY1O}X? zQQ94p08@_+FpmxhCbE7!Zd6MYK(w#PdITW9Yh`_sGzoS{6866$33ih2m;Rc}Ed0&` ziTFL7Uid5SnUoK4BLG@1--CKYe$US~zg87MlndJf=&wDy(Yo3TyGx+UQopz-;6RZd z%2f(Jic>Gfa|A%#+t20iQV;Sz9`A`~ViR5h;)yI503RELfj33GON5;h5#JMqztooR zmjIanz}$}ddtMx?V*yIWvtB%0{MZKdG!E@uTgVe9XsLEj0E>oowPw~Jdacw$JX=jT zq$A$f0Tt!%cpvF){j!J!ndbv=^NMz`yL_)7^+M{Woyd>$Z}l@;gD-&RhNQ5I1dueO z-0c8(DD#&Ta@qVcfB8G!m)Bm@lSYt-N|eXeqb|2D zM@#U>g39#zbE)S`!50JCoE7{qs9;V-Ajcnv7X0KI$T9NgjcvRGIsVN1taJMm%ma|) zFBO3t=MO4aU;#NU>{GC4Xu+=>$npGv?8@sa4a^!CKd@a7S)t#HDngEg;9-HvdFAl$7La547M9uMDOA|Jwt(K+J}531 z)|COAanU=Knf1ET)7k*eXKzrK0~<++KXTcN1i*9D8i8vAIPVj!5tbl^AvYRU!99`E zpLa;0y#JmFFvTCJ2w@<{x+s@o2j3?#RheNm{grGx3$`d5P^k{mDeo;w-A8t}E`6Zs zb%Md|M3%l_;Xa+>w(H8cKGrFZNi4W$OZmrP^EmK1EG1e z!Gm{Rt7#jk-54Z%_VW*~O$##leByeU76-j97>3Md$fr4|V!uG*phKpSSFc0H zZ2il%QOpPaOF(737q=YPX2v<#ke~xgdADB-%GCl?(aX4zo7b2|>Q^m4Xi$kMengz! zCrsV>i*ti&E6CRxRH-ilATf4Bo15qUp)E`|XR+YF3^d#?Fv`A8AYiwD2@p#g$ma)D z^ey62fUj(Rr!9;{JAfRO^5H-hpCp*7O_+LZ$3kX2tA+t0y#SMQcSaDZ)tM6%`e=)6>4z1kmKAClmtCyf-3EFQJrglC;$A<&EHhINIP&A z$CAOH0jiWw*x?##9{Qcs{KdyQfWITCQs4LV*-1du$F@(8^zYK*ZWERQ{&Y|!UKfA$ zF`t;fc=zTG?`nP)#Ztka=1g}icM$Jq4gXgh7<3nx200GGx=W|~r*}W=1U+VfD*jTs z?p0bqzc`0J6@N&xLo}m?%DNb+V)xQcyQm$@<6m<*qSXhlal&i)+@`bF!B855<=}sv zK^6Zj8+|E_bJ%Bmc3dl;+x)!N_kj+7=?eMY0#)j*1xS^b;rsJs^Y%9IpT!o)vw;Zj zcb2cb=)LX1(wA;|d)Sm1)*inLa;**Icq^VO`B?`T0td_PY58??tv}zDT@L;mL6vb; zanz8xrt#gDsHVR()iy4ru`9rT1E}JkEW$7*Qf@b;`H_^))P%N_AK#TNkGtM5A(8_#+{zFeoACDjeNuo?bfgJAOt6l<{F z$mcp|et{id5dhYdGjGu81O97475lyY4v6z_ji1hV)(_>n2~=qxX3dycY6gZ5oKW|r zYT7)C_l;RMBcEHG`Yg8Mg!TMvZM5;){|uRVknbK)MK8HWuUu#vm)~F3^WG>eF44Ef zz&{XF&cBIUst>o_|3p!xI@)|eEb9;cJ3y6jK%jH2twG}|>esCeIr?=2z<>K0()E5; z0yd4)`UPJ7(`|oOpU;Y5cS63qK*Q}34q6y|JMC3Yx9z*Wfy{6KIVyG#z@OXs z2He9Q<<$Ex-u?4l=pb@UWlDoN1Gp{ZxDiih%=or`iAnL@xd*ZEy%q5M>?{tIbb^)>-E_1Em~ z-Ot?FJ$JTJPq<_r=Xc%8*;ngdd(DsF%%R6&ph`Wue)phBrZJU)&JKDyCy=A+pB5l$bgTD^_8dEF2T7iU9-ndQGctY{9l+cg z)#_v~{R`Kv*;C+u8dUM8l51}I^(=p=z^$L@`V0d(J_k9&_0}l=@mc~#iRGI;^beN# zJl2Ph`8@J@0aWRSjN6({{c_{`*~?eV(&B^@$We)dp;0Rc*v+`s-+KJhTAXmd-l*7z zBy+1zuK*zW{F%XCgg#yZRqT)#JDUJGtb<2;wDNgfM{plsD(WTD26B82a)$do#^C$z zApo9*{6JkDt$m1QMc{wcnJ$#WKa6))0T$esPl+ESS;%}H^1bPh69?a|kNeip4u(gt zQQ&_ARIy)RbZ`RsC%^P@m3KM4#ZUMBU0pA4ivk#5fhxZjx5*{DbG^LShRJm>!PcF< z1O87zmHJ+6t^fV8o4&5zQk#FFtwiAe1XQW-k?ezYL8CuylKHu=V}0{I@Q(&n>`=D( z2*tA#7atsO$k67Yz0OaB%=eMc$Dm4mhulp*V-{38w>t% zplUtpICC4~L`dsrxz~&GKFYzX9YW^kknf8#$ob)g++X;m$1}Hf(EY`$pE-dXm455n zgKE)1(P-}1IuMK3{M_o(*)J#&3Nz+_D)n!8WThEq;Kx_mKhn0I76;QDK#oefqI+x3 z4H_Ny3~uz74$Pit136Abeo9>OAAN`pl-K4TqTS(`f0+#aDWHlzjpBRxc#O|$e5(1U z*SO@?ubuN6(;(k;P(?333n18dj^=ki(E3YW<#cOzeZC-qeFOPsf+}{fKG0Dt2XM-wsUp4Dynx8Q8&LR+}YrAJw zjAs!HfyV}NRP3JHb-=iwkvnHun>&8d>>kBRQLgWu_?RACs3t*j2v|<0c5lm2O^c{#OXF(>+vjt{fvC(I`cEqO9RiKJ}{lmUH7-Y4tX;gP{ebxrQ3)0I5 za$M<57dih{+P79ftITVwY5g9b4dl22>6H4J_b|=780*^6gyc~zzBFNF;9ml&#HF&x z9s5ip{mk=&UdK60kgdHdG8@Jlg&829rM0V zbsh3q52}s>cI9xuCVuIF96pcpUyc-)sKqHeT!PgZp+x z)ibXTn;@SA(oy1z1t1u>d&ks{<>xUU_$(6WY6Cg$$8)9riTxT=Z+*7!{A#S3n$GCT zw%~p{sA7lQ-L5akJ@Vc!_#N`? z16AxED7uH{KPPs1>fM@~wE64SHjv{^XZiA8`l*Zntofm}#o9bWtVjP0nY)nBUZstftsgl?Sp&ZEXDsQ2k-U$pN@ke=tBaL zDgA3-_Q&&sfnklV>wKUZYXCk$GS~s!{|TzJSEZk~Ab^_IZNJ!i;*@<(La?QvaM8_4k((kXHpd0$Z6z2uJaohuG&e%72F2LB(R3JHDZ-)kEA+&_QU z=0l>{5ilMF4abRyS7)TrzHRF&(c+-{ahwtd_?tY|2k+^Qivk!YK$ZH?x8?1$Ui>cs z-t}4^PN7^9XixFa&}SRAnZ|4Fe@&+SauxTDv}S)HT@?gCC0%6J@0(0x4aJFFd$ssN z?Jd$tU`#cB&bpWOqjU&NXHRX`{Kfq`kn%pt$qD4B)T7b49SLx92ajiqw06anBVh+&i;f1a;$-Tm3o$c!Jwb0o#yjI zw`+RwT94fJUvzzv-$6bJtQd|j_@GzhuZ?=IS)l2K_CX%f ztG5wM0%=NM#&G$t&hz z37i(TJLJ8sjk~wMSe;gVFNj~ zKz>TQnd(2XI>`QWX}^=*s%ijV$xH%2{;$A;NgQc(m)5_IV-jex8S+!wqmr6)Xg=$^ z>lW8}a;?@LwX}g8B`~8RrvR9Z%vk?!v!Atk^INuN!a1e%nwFG3vSE~H{j-1G&%E_tLZ$?A zycUkD*e|kq&AqfAWp1zMDp#sFo(|-&6!3QkRs7d?V~eAvk+pvKU7e1bQ9?oZH;4Tn zK#qZe`uog4+|zw-+k8Nqm-31W5Wys{WjDyF_)Cc|^|Wa`UN--=5&N`pRU(r>j$NJU zd<&0KJ2t9slk!h~*V@1KHjtwPE>zn0lIi{Bxt?-u+#hFe06zn8WbuwWkI+6A4hg9D zubVIl{3wAV75n*iU3ZM;iTHe-9_PK*zkk}VLuNMgp989vZ^UO5UkDK@=JKUleDS`Y zy)*LZ0;=>w20lE1&X4*29rMZF>bv)L<#OnwC#Vt!i`O2fbuNCbJEGNFKf40_JwQP? zck1h}7>xht-vFR{B?P+$R4HG{UAHd@2KchtCx^899?Px*e=ktQUy4plAOP~ue)#d^ zt6Q}C?sZ>+!E%vLZ%{R!1s7Ig#t!k}cSR1;uls(o60ay-6V?a$TRDj>v;3;PWPN+-$lW)K?TbdpxECyV%Ca21uF$&R*y=Fi!wSX#bkk4hgau_%3x8DL7wWYL^yqCbR5*V|K(Ep2JVB4=pn+uL7 zrn7m&_RJl2Zz`KGbk3TT+Ubm+;lJsXRG~it^gIyaR~mpjrM)GEKM`=NVO=Q#z_CCA zbiyx65JlBNrLebRw#;@2f9Lf&Umgk7hm zir=fGq8_FS0M$QI05q6Vv0MaPE964C0v(x!v$<9R#wMd4q5K5MncZ}GR?}NY#z+cFh7><*C)6OTMboLpAzpgh*zwZcO zND0gu2EMi8)ppoh0f1fc-EDg>x-JZa%hxzoev-xnmG!5i@J|BBwSc2PNrm6Q-x8(0 zB~3$|1wb(Y)C&JjN1RI&bWFG&2tUkV!2y%M>_cc0-DkhNeD^p%yZg(jD{kDKApAPV z&&EBSKJMw6e#BP*VKz!Yd*K&)W$mF~Nu__p<2SufI4q5phKN8_MC6_tNiV z9FR1b-Tq6vH~-w6z`9;YtK>f+pArC!ehzsINfQ99++O%`11VP`<*?q9n8f;U zw%+o6@rY+q&+<9+Menuz>76iO?SwZ|y83&!Wn(Jc*SKsX3q-9~?Hg*BX6g_1mW*L z0xk-=tde!5y%E*=Spl+51HY24tkaNCFmQi^=N~Q2vVkHjHa5UMAlC%x zl!2-EVpweL`AL6nlcV4$>(D$^07!R%L|1@7>R$kk5snRY8diirY&Q)(`QqcHsAe zDt=wwq8{1L;DdS{Sk|lk-0CyjPZeTCums4L2&(8M@`;i?=ue#ciTq^9*8x<~XI|V@ zbl~X6N%8l8q8|u%-#=68CFKw@Q;<(8sItIV7G0Az%J2ht29J>Te5T?0~yXFb4wl`~!5=JTYV8CriS(g9?v*vVIW z5N(+M@oXN%avzr})?2Uo44Jvm$F-nJy&b*eeuEk7UKzdp9{r2aEo~s%Ymlzufe0Eu zSW}rgAVUo61OBT)75kM|{g&)kT$^^7>h;$B!g)o#xNjd6IY=`1^|oSuUhNkKvb_^} zQQ8#&MD^?Nr5nl{X>m7=^#y-FP(2Q^>E^uL)%7%B=XiDl_-_PN>|R=R8vzTQ@gR@; z{*qEpCFS+^c2+-|^z6VFPIM4oIn_x>|4}<>^P{q&k?o6CT z0G!cpEI;pNm$!^m*%jdTKDdi?j zM6ze0kKv$-{n*SmHw2Ai{HxdJYjG)pJqP~hL6x`^N*P1|fX1h1(5Kt-ImeCe%BKS^ zd2Js;<_jp-Th8*8Je3v<27)vCCH~w*n-9rkBfkAJL<-@W%I+}ZtX&FdTNb(HH(P^G>^&KyAXp`35BnWX76^8W&|Ew1$CI*Kn` zFHfB%y|}GMUh9K>J_T9`nQ!BNpMmP_N}wxmk1k*ppC>qgY!!W$txhEXYFd5RboT+R z-K1|#BcG2zm2~<2>eIL}>ed4dZr!QP^To0Ez&{#Psei>{{_MH?s}K53Yd5`a&<_LI z79&3;4vzb@7xj1ZChvN1>Q7p|bpqKc^^83bOYLSU2acbl`HRnE|HWt}fm z;Qx=Ik553A@)ch&Zz~s2Ofoyj<^G`qyG!>f3#nci&&t{y?!{%Vb}IeB2=EU~OmNtJHu%2- zRmw3q`9xLx z%tgqj3{zy#QDf^KJu3{0+#>X_HzPJErEPXopKsiZF`;K z3-3qj!0LauoKF8-4*7m_%31crt2?M4@*a)ri1^+rwB@PBwK25-n#^|#+4tE=0oN;~wL-^@IEx<^ zaa$jp@pBX8+w7F{*i8|%t~QGId-k7mzupS@wt*^smU~BU0#qDCxEQnAXzicdaj{;H zLgselvlCPq=lP$1hX4c?+}vYcje6R=X%zb%{5zcK*z}b&zZ6$LwCIbS|FAxt{^_p$ zbM~`#qg)awPpP;5wOKpN($f!iesa@=_6MykcGi#WK{^Tas;Y0(1(tdc9=N5_9NZK7u`Q2Y#`g?kW;A-q0=>}zss+H4rt?d0NE;fX>#$f zFX=-VlP>5uX^u9|X>9}99zlMJ-OF!zj^@F9d}H2ZEzY}dR}?){4l(Q~^7#W)k@M|m z->3N{>pJ)A{qE|KZa?pKKM8$EU|GfP{)gMI4I23?2H(_qyEb2t$o@n+352THPXNpA zTJ*(;yL5oT%`j5`aJe0NH54o0@>$LGz(DyTs_Y^^nRA&pzHpNHXbvW1hSRDw2J-w3s3%N8pHXA z&Gqw!?){}=oR44<_*MevD*XZh0B?T&gRfp*XE;Ra@Os8TA@{kOI&gh2_1Y!0gEC6Kl4 zgc-2*(;m}+@zZP|+om!;2}SUKBlb?Gb1!q2Z#!CJr?!q4&m{1z1d3Jc=dT(`=R2&c zOpBkB>jlBKJ9l&Qg4F8+Ubmx=*LbPx_2vm!fB&HUx@|iX65j!)=&1i_A}*u z^ri?Vfp#S@t@3-`XZxx!qsjko{h^{hz1If`tSy086@3Se?b~g#s{Ma`VX(m}jN^<< zCV^}vP;A)l*iSo*Z!p-S=`-g40T>`f%=|ZnXQ2X%m5kiFCs*N|B zFbQNUfoT=JGGktPgov+0h5N6glXTkL4hp1g2H|De{f(2D8%rKl(k2 zp6ONY?OsuzAyWb+OQ2Zg_q^eK2=BtWe%Aafl1X4@2_&tQKlD@ie!JdQl+$~CaBDwB zev;hlxXNG>_*Md`Dsjm_cI*CN>G@kmzY^KN#@!KmYR)9kt^}r4(gmu0OL!%byNc`V zD%awf`*EsXJ_%$ifn}Ba%C9`1;;!$51}{~epxG~)N#I)vOsl*%cgKi>WcMb!H+Q&E zYmdCohj_D}+cS?l zO}}SE3hOrNqnExImdT#Dd)A=WQ?uCZm(;ppUUnyDc|{-t0BD)w-Y`J{gt`!X_H%ik z4!(|{si5fq{$hA9-WQPhG4SD@$@j_Mmm!u(_}%8wE9IC0l@iQR{&^s6M(Kc z^1iD8uxp9?+DyFX!7TCqd63H|fmpM|durqNKv=IVW8d>D zs}timq%()Z4~jDdVDS9_+?7DFflL4Zb`W(o9%cft zk^G3JxL1DS2Os@zxi0|%TR@>L!_N(Vl}mtMCV&-JgEk7+AItxH0;u$mtp8G8d7s4w z|G6nJw^;`2wJbM)OB;oOOE2XBs~>j+&?Eed0BS9H2)Ndw#VG(r1c2=1Fwm_4j!Y5$ zb~6BY$7cZWH3NPHfKmeDb)$VlrxL<{JATb?Sp8097UnyGx)?@;fWN;*XX+t0$ox^1af36WPeGj=k{J;3N^RIwm1rCBd(d zZVa9;l>RQ$0|@q=4giP^>t6tHN?_kqhPXX|63bVq{dii@Q>?r+7)?)w? z_muYlt|cH`Auj-yQ)E5NW>z~fx1)H!^gHrvAusB~ooTG`__zDLU(e6(nbP&1DL=Po zD{ejY+pVWiUK_}>9n!^vqMXHHy?nvJ4tIs`t$YI7y&>P0if68@^|>jc09N369$I0nvWRRP0Cjswxf_+-p8|( zjefW#<8)j0Qpvhy5ewqj4~4xhjr*gu&_h7#qb>9j2P&WYQJ&VqufJ`B-@$(dpi#rR z;srqa7UW~d_sVSZEZ*A!GzPS#pzJc-w}yX7eo0%izWe_3%(f2zXxkF@4M@97 zzec{L(vF~k1V*T>Uwt&IEr7M1=>-t0e4nK9z4ATsy?)V7Hqgp#>kE4DNj*xvYW$^; z*Di;iZ#?QF{DXjktvE%%ww6EN-5%|?76-_01dz3qKZO;91{EBr2;_QjXu%=ZK&}&3 zAI$a+w$FxJY=JxNy+1KXS2_INK<8RpgQfe^Cx6r}o+X8!(@e$H_8z4R@m!HJ z@0Ur0E%$2inCvN+Ry;!y$g#(iG{CT~u$+c(Yz&<>{;I==-6k~DJ~o(QV`rX+bc&qi zZ5Ghp#iY=ndxq`M#-2_rS4GbJZKvg&*h0q`(%YEM{TzTIKb6SsSTO7#LJhQ*3w_iF zRpu)EUksl?l5^Ubb$aRoUJy2yVpWkLY z?VYl&Wt#mWZ7kqOq*Lq{nADi;hmT1q&xzCfoRM3*SG1pdyDM`MBxlIH0Oe{3s_4ZS z@z5#LSoLQ~_eMI_MspSg{sy2Cpn{Z}0`n`V>C^jMj9a}_w1f9Gg=mzgDX8Mtd7p0m zUHD6J4Gr7MZ=dyQ;!Ni|{XOkjwXQR)<%0hrP^BD!o{^h_hSfez)Z&Eu`cTndy!xki zKf4&^Y6hzKVeu!Kge_owf98<3mK)=7E<0rUkk2KcN_;8n^ghkqS@m|I=AT}%tqcd2 ztKu)L_Zm9uAD|;)eS@0){{H$<(eBZ#1@s}?Q^n76$2Xz&@A#0Uu5ZxCXTc{(4r__~ zcA!d}D4INAzge0yVCcZOmUep}*y30#@V5q48Q7!F{3txtG z4*OZp^)-C&{^>TpD1J*4gv>UOFWxCHRys4}M__Lhp@+xg!MQag_cjpYK z!DPQyu*IRc6fc+&S2oK=SyF@!_dyMct7i(hI|;PQg5v@%7!%y^M_U+Vpux( z(LfqXd?`OUl`v=dMSHQ8_t68NjpdqQF;wWE7Pottu#x6b*lo5(i}PONuE8>qPp32F z_uy&5I*sP@dfva4pxB3UaJ$x`udRCR&%4jBqMWpr3w?9}RqAa~!xF-xxQ17F9WywB z<$%94sABh$;L3S$hyT{Sgkdb#tDJf%{_^3mLE|w#PhMMV|6*8o@Y9gox|DccGAnJ7 zXdeQ*wR+^feW+-^ka-32>EX;Tci!pmgA&8HV*T@8k9s1XD?yd_igq(n)FWlD3vs&d z@9O1q8?P0=rTijUFUXe*S~0%TILErqeS6dg^1TD9lq2_e#+IN_axC(^3p4F_X|a{w zz^(>=A*iCa;sF*YG_|GmgP;{VS>h2a5u^Ixj zstW#_Kppz@r@yw~iCtQpk73t={{~Q{eC5XN)SqWGVK8-_7UzBJdhquJRpN`$^t2rJ zuhrJ#|LOP{!ES_n{hZ~?pO!%7v#x=eN*tgkUgdP(A5{E-OW?8}IZ)d(V6a;(`3>VX zP^BEDw{N3)l-}&r`lyE5_#wrC<*LMkys9m#vNL~6;Gfq^f0XM1P{lt3{m0Q6pRxxU z-&BvzTHtp<64?OU-wvvjFaPrib4`PNwZ2lXkhZtaJ4WLj$md>XexcK)ggMK69o~3u ztJbc>u{*(k7pPLcqRy#gzx*o?y?pg@t^Ro(zZ(uLSEYThz8Pa!^YUM7<7w~h-`yzJ zJ)nx;uWHqT?|mEp%a&hX)8d5p_Rn2=lqa`}LaHcsAO3egsG^q{Unh|Ltn1vLt;~mf z1)xg%U<6`m?|wc%6TMN>=igm#^EG`M>_N!)HmDMpidLo38PJypjJ)cr#@e3h95x92 zuYxLe5Ll-Z?@Nv7(tyeNQHw2*%^m{(FlV|l%YKi3GxDzst5<9{Y4^dy;2#27F^*6_ zgl`u5=#U)#}%T*~~;Gzr_lF;?uAjw?v$0&CLpnvDk&hka^GoLflSkhx88U}MzE?oie!+@3 ziu2{S?J7LEOlzlO*$D8z2&&kx{Hlw$ko^R4%Y?*8{_}>Rr`n$y!og#hidfZIDMaLZS+Mf@ZA0VI4 zK$UtcuxiCWgi~a zuszz_Sgw5&?s?_(lKN&##E_}SdJ4NgFcx@lt>P0V~TfI2@1=CTk??9FM zAh6}Cw?4h)+9O)rZDM1&&PF;#p8{LXI>+F|miq?$vp|*l&aNLp>y$>`!@Vw^rr9Bi z%>@6qpi2KV_2@$fOvCt!?C^|c2e0+PtsQi%H@E3@jBvO1yIq@~aGTBuk-td5te2^B2fBA5^KgzDFJ>tlDD)b^7&*v(#TQ*aGD9E2v@zfz?+!B>BLE16qBL zW(&c;2vmu?`PRI?b^c_I$NH{g?zz?H*=vu=P_EseVLvl044~3Mm!+*ryTINzX0Zjj zvL)bO4yyDgN?FSKV8F+}`C3;S2Xtgh!M_Ytjq_JEq<*q>>Fel!cl^}ryTN{gd@Dee z`W~|OQLk=)Uejkz+xt=lTZ+qdCw(78gpK989r-EsA@pGUPSfDi(7ldmSUyQ?75F!T zDt5^Kv)Q-w%^%uU(s;Ml|BSP-TsI({V)uce`)M60VFiK1muvmVCN`GqTBn=>8_;^L z_aoigPth}f6I+LT)`KeLGoGxq?0@kWx9y*9cem}B_jHO~sYDU19Oc>ss>G!|^`dBB z$>RdkOf5H^%XaN&%KIpXkhvN8Yynm3-|$Q31?gJazZBQYFIs!#UN05>I)d#)KD!+GiE}7tS1(@u z+OV-)PeD$_p8~O`x0-=_Z@Ds~O-;u){q}HP_}cK2)jd4nB6x&8zV*9SwaYfs|C9DN_W&&F~+?$ir=s_Y}v zsP=w`vj2oM`$e-qz<&%>v3tbx=g$oqdpL%+zW>E-e@VByTRS-Qc>?mCbe6C0@F$j? z<#kH8_VZdk9i!i1f1z9wD^;;W(bCOyUTr~-lo46A?Q?B{o$4Rb$$^uSE>Qm=>Q5B& z4opz%C%d(SUOu;a(fykCzafBC0afbzz$Y5eH|xvz#^1S`oPW2UIp;$pc5gQ1RO+AA zFVFMWx&NV6^;v?{JE!a#Cb3-8WI4mX7me<7$_x}l^y_y=jf&WutT(Fxeu>4U*stu* zBL{*3V@8*?yQ*m8fGe29CO!l9p?^xoQ8O@nz|HHrR$|SRMx)9XflcYDzPZl{zU1sp-L*QJ$@a~ z)|tKUUy|78XTUlw-j{wbX!IXS9lP~f`xnO~)_Ogs{d~D~=^Ihj{^Xyuet9gDSgsPA zRq^Y;0n6NLeF&L4mMedSfYkkxE`LT-jbKk#K z{D?FaGMnOo#Aa3GEPtltM6k4U*_X#}tE9DK-p|!FLw-I`#ePL6CL9eK!~cKlz7@;o zzW!CzXC!Nm7fCEprCkyG+4qk6Yf|PWvyN~${F`WFxk{{4C7n2@2>(>#4n2vqv0Noq zs`7j2hgBzn#*cjbr=Kg2U=sWF4A`-3M?J!hMSc~__s`ddzdKG;w0p>u*sl^>RVlx} z;k>_0V}9=H+jcE=v||#hJ034o>`-*`WQo;RrnM_EOk%l8Y*wWnl}`MQ{Cb|SpCSiY z#=U=5ET4D#wZn@fwyGkJz{S(Wk?jgKe$`8Yn>xj(Nhv0o)NtI|Fe^=fef_1$os!*pB!D(c0( zK6U#^Y+E^CR({Wm`uMnzGhfFZ^)nsIRY{jSuI>?2*x^@g{lV+JhWq-b>qTO@N^Did z4(#yYO3ZkQjzQD6D=OBbmdr$f7^sr2e96?)|8?E^u16B_1hER)!;5<6CjpG9MLQvEC9Q^i7rWzkE4&IM?6Z)?1~XkR9m!A09|-RVBZH<4(~xx7eT253bbD zTSVDdt`eJ7v2WS&fgC5Jwd>6m>O9Pste6Qq}?@b13D9TM}rs6%4X5e0?PsV*BXaZ;wsFXXI zacxZ7o6N{MT`s&?rUNQsBit7!p&T;3L|2sjQeJs4^Of>LpM;)jSeMLS-b?gLq$`*5 zCIhuq-iJ{X#e3xQ|0O@81N(T#?RP~cGj{Uf@vXKzlEr+FhrX}zVK(E@{FRS^3i>PT zUnKniv=pengf?oSB`Q>)xS8z1sxM4y{CJKiS8*4?_hJ{}HS#4;d;t8fl`Y4LV6M9?jf+kDp_zZ+q+R*R2NSvlzC@a~LVX5n=)fjUfb z3jK#sTdn-#AxBG~4<|~wB+X1+R*Gl2^Q6-lKlmsKBX+XA<>P*3UG= z0icIIlOpQJ4`DP^A*bY*?+K%eihR@Iw?Ge0l<^{mt+_kYvlCE06Buc+$y`FOwal!b$y)b> zGCO2Uzz;u>H2k}0Uu0ZLLVF3shI>1|_CPyLVw-9VE3YvukqJM8o~fLo9wv!;GdYZUYx&JPGH!#;Nf3V3 zGEtz-M#%R7&9_k^>(ZHDVbogdJ&ojjd!e_5$s+E&7)DpM{DII^Ex+k0{U+>B&jqh+ zfA_ICc5_Gn$~p_%uo+)3z9jkkIK;!YY~y45XaBLG4dboSpe1q8cRZ-HPuq&mZB$js z2mO^wK1ucWN&Yr?pZvWwP)S?kxukJuk1wtj)tBR{T;UmMwUB?MkoTQy z6YW#T*PR69Y9U`rs(`v$$QOwQ74jt_j=fsQ*O>Yg@)en(g?xR5gRs^e$gaFR48mF% zMbG)$`M3A_6!O(9-ZQ_P&{+A`=QtYcv2Nj2kojbEe$h|zDlWL;{b26%qkq_N{T1vx z`IJ)yjkOn^R}TLk`1qzB!9ek}gA3PXu)D+0>3?A~Rv(@#vk_v~;%jVA{`X1jGBq82 zxloQ48{m1B@b7HUJD3HHZ>g<1QmY9*IeVtanfJnne*^>k!$wI?^iX%BxeEH?IoT*z zk;qrc&)0Gw%{EwIz|}OAhFBY&r!LYtMuGf!ppv$0*k`||4${f;8U}Vh^%bZ{;pdz& zn$-k6#H<=Jgz!=PgjrUN>`L1hGGXXdt*IcrOhrzvijh^092WsDt#no3fZraIy@8p z;oT5=eQ-Z(uG_C6%GDH9@t5+^Pt$1)KKcDYCA+=}wip|YIU4B{f68Bffa;&M>Y;zp z(fev;BjnQL?vuIvthYfZS@@WF9=w)H8>&oq2OiH;I(^T(c`FGU@? z?ZgL-FRHkUK9J2W1%C{vV!yx>J9nA^9=KLE*H%ls$K4jlrzNOTzP#}hX?OacR-`;j zal&nV*H04}_9>b+kW*=|LJd|>d$eJE^6VA0?6_yK5!#pRC$vU7C7ze;Eu&d%YnEO| zf$@TY?+_RFnWOlZ%MV*)3>J#M$J zf-Qx`gFgjS(WgL})wsR=#pr}HI>%T;^p5VU{)X_fl<+J14wDNiH_qZ!x zuG|a)sod6g{S>Fca`A?@K$Z5^>c8X-`7QIwClZ*fpB5YI$9jYR7Enc>#+)|0gRI*0 z6-%DJ)JD0t*aE#+AMjrds*vc2dk+R#qfs?4*dLx(5Wjmx;|ZD9AcKCO;qu|s6JM1m zY2X--T?_u}K$ZSWWc)Bf(c)LB^E8S(`|18^IM7(baz6gZefMmlT@9)9dBhElQ!H-t zQ{pO@oZZ0xrRzpP42NG^&(Hm-?VBLq&7f-g&e8I%$1IBJ<#VeS<$d%jukCxtycP20 zgDU>Q4*#~&G!E>&tmlOnYNryeV0qyG52#X)d;@pP4hCAi(y>S1s`h-DV2fk7fqx)q z1gId?FCR|x41ekU2_NeZzB@n_y>+)vOGQT&A2ff}{H%!sjaAWG@u8Z8iWK0dw(a`pw+#;ev?)o{_g&Zjvf~?Im7KA zzIcCAwNGA4-=^&{Phx|?KLk|qPxj>4@j>HlYkP_o&%DQ_N0HBCppN+v>-jvbKK$MK z)OT-3u%VFeDNsc(uikh4H-wIwf7@dRR+!3j;*4j*!2blO;@4%DjaX+2w5aJ?`Mk%M z0P=YfRE^i~9iVt^T<32+UZ0=vYCpI2T|b2z!JdYE&wwg=DL!Bj3UA(3gJMg|G`)B| z-4imOMLy4gI@JI0#)L*IMrqCBH66XXEkB3f&X<-r5yg7x~vJx^;G3Kae6JE+xqV8PrL#7 z-ULR(%zUfLrLSVtqB;xCb} zFQwBcXSF}*UZ0A-NU|^*>qn4N=`RU%4&#AaYy3K1i}O+JL+}@aD*7zxwuJd(-%2Nqi(i;V^U1W?89#yw+S3>uB!IrZ+(IvQki8;$h~q*MG_tXEAKzWLJ& zHf#RU#71NN9O+a!ug)fPO=I*K{KacO%WYiJ=M}x%;Y*ZjBB^y1cj&VH*qz3BbAkU16dO>@fW`?&I+pt11#SCXpyp?zH; z(c`+I!KNdhdCvTDGsY5nQ~Et0EU6mO#((W?G}gIDr_>{M@dI<{E2Ff$`Na+m^}^4- z0snVrNVjs-`k>LB@8jI6ovw?w(O73AonrU0ODC=j8f&IL^LW`It-eRGZ^1vyna=v! zt5M2PV5WPtyVw4NZg=nXj{=r;m4YhmU+HsQ*3tX~HJgoo(fWhlQPaOiK0kvhgk8~a z3C%~=x%#cO`d7A_vme0t6R7Gh77A}($Bn&Sn(MIN9Ps}Ls+2F|wfh%Re%8jWvt&Q7 z?Yr0Z)@^=z{B#?abpLdlU!k_n$Y-fDzoN|#(f*zZv~4D8y*BUW^V~ixLq5wv)q1<{3))xd6DX2Oxrx(jf61+% z>GN*h=cQJnT$@1^Kg)l9$UZZ0vddjl)>g9j;aO~f9yS{5TBK9@pV32xkRAB;iC$GT zfAQI9tZR@?>F*YA*}NFxoY2egJBUa7x!0#+SIRPEu0zHfK^6P@<~&3FrDKdwXF4%YRHy58y<6@z8&pWg*f!kn0af&p-|q!N z=jeImdp9>(rS>>%4yyQ5-mKv?&oJeUM{el2NSk+S@7k{`)`tkT1NrO*Rq9dM z$R`PHA;8gef70S^oCA$jmGkjBgbHX~`uvjDc;>!epqJ0x_(6|@?&EyL{0tk7^#Js# z>ScJJqoy%Jpjy?&?}Eg!{kRW-D(z~9X(UmsWemN>n}YxnU?@dwH;k{yJ6hn#W> z)UFO@T%YP2H2?J8P9H`-M?e*Q=0?7L3Vt?ETL*G)zl!?w>Ys*<#(DyBDtas5=BIt> zod*zn;WBMJ7RQc(|M(fo*ZG$}F|Rm5>(6_a(_4LrWG5ltUrssmEWhT@19P=F;bVV- z{}iZFUj)jO^?aPxPJ8W_yN?r!ACUx9A0VGRh^Mr-B@60P9JH=d%?@7W44D!wmcx4R zOKBg9uQ#ZDu;!D`);S{g^}V8A3?{$cA<Hv|sxQL`NpkVkNq&;%AX<7tvQ0*$n^qOV()fgYNrT5C_tROo_%S(MlEn6km_9 zI9F=(gMP+O6Z4CoCgztCC&bqy8uIfUTeZ0BzF(lckKP`^B>FBttIRLOpUUr>S&TTS z*CVg>!E0O!nG(%dq9H5g2+V4{(=>9+e@=*$Luo_jybo^0^dL@oO=z!n&yPob=M1N%ZUH zNT<}l(hc9yc+5hPT&VR6yv8%{{uu-LB)X~+UwmV#P7R*jd7B6((OV_@YgljC@BJ@X zXO?KV675v6pM`pFd_eOy*B{pUyM89oSS7k@xO|230BIvT5@Prvnby^#1C zhZ5(g{(0^9xQ$EQwR!IdCee2#x~dW<{kMI*+%y7wpW_J6dZ}1G_w665H|d05AycCH zOY~9IudT2B)TCvZX8Rm=Pr-{M8f(}Nz=PngFJ0@oU8z{U2qwQ)AkkIB`5{gKrM6-^ zuX=G?kMwmCgJnQ3(jioR|K|bPk7;f6zeS7lf46_?>xK~yG*+eFj@z2P#bov7&YW?6 zx;D=7-fl{?Sc#6R_}PvHgXaVTZCh5paAtiQM}@l&Z#T1{z#LE|F6DJ;P2-2ysmaf` zU#rz4ul*3ifyS!T+vV@xxs>e3zdAoav!7Q#bK6ck?I+P#yF)LE{c?}ILHiCz@p0oa zO-{G@>3;1t4m#5n@&Ul0Lf(B<&^&pslw$_*Zv^xy}3)J{SLw0>vcqpyow_W^lt0u3vC zZ~bobf!~nt%>?=t?gQcHB3*_+g}NaXXliL9KLcoWljVJy_`P+y_}xbH#C>T8q)P$q zz}6i5&!m@{WwBdFKmYQkXMqN}4ycViy8@jM_q8R;V-B1B^77r?GbQ>V^g(h9bhJ*a ze8+h&e~_2OrZ>*$Rveqf23kKz{xIsKK>d^Ghgkxxt$UV`FBg(_&3LQ#&JYGPIjQF`ilX(Al_hxYbIK!7wwQQNrEHYP1lk+!$7BP=QRbfwbgpb> zy}x&+SU@A5hBZU2Nn5xQl&!`bxLfsK1QecaP05=Hq|Br(F`d?@$%B-V+J zKjvp9iT4^n+3SgWmMoszsDrpSQiMHzOF+5~&s*JL5?px)3vMv*R?ZRXw9OR@y&UP>69)cT$3m*A5W z_1Tc|D}(+1QoWvsAL+>QYE7fROvb@ZH@E4;)>~I5{9MK@nO@dw9nCV6HLze>)7eJ@ zzxe*asvQOTWobr5^h-j=EZFtOy82_&@%{{;g{BMs;pw8Df1EDRB4dGSJXzXbqLRw{ zRAzPKHpu&Qfin6B&^;T0f4fBclzj4eN5~ z*ewn;9<(*$kVLU`q6%^}wQD5`r-6J3EipK`_r}%Z;@C5FI~^;3x(%EC+`-24?}=km zr|>JBkA<#$pS*ATzsMnf52H<5_32LeT*@2A_->7YCYRwoEd>q8`__0KE863J?a
KhR{31gB*gRZy#@F8dHCM2u0+vJu1*q^$|>Sy7%kOm zkJBV-F5(`wA3WSId@&pct@iOw+_Ny6tCdY4N!0WHC{LNRqhHj6p0b=$FVNp}63tbX zKLMzlGVbQE?;GAre;v^N;d!6~quCZhCzgDvXulE9U&MO}MONq`ffe$J!a;?6ny?}o zC!f$8TF9s8T%&Pr*q_+VI~pgS0pxvOK7-h&kk7XPjgwEgRYc?DlVgJl`P7(&#>v+T z`V{h+sG)^?UWub|*4EHC`8*SUJD;cOQ^;p^BpN55snO9mCkXYZ|602-^XIQ#+oAPU zY`*%7g2p)%&nt(2&%1o!>Y#txfhkQ03wvPrxnUF!uuqf4;W>#Sui^#m2yJF*hv9b+ z#&Qq&lv6^jkfWLgcpe`0i*Ju}(B(VsU=>l*s24B!>L6VNs37HL;F5RikF3&|)voZo zy*=8M=nBecv+tq{Xm=K$tlM2nJ7q(waauk~I^RWo%1p!0yEA9&+b!-#af*FN!U#qK zD(gBQRFN|}twAMbJVw2cO*L)33$`d$3;a@FRd7#aM}8yPt#MXouf2{oz3RoVPjA;p zxuoCGZSLaF_R_93{*82f6}E|uqE^qDuC&uG+Qk{*&F0x!)plP#rGAlQv>FHbqCge< zl^@Na-F4RG{S>tBXKr_0=yEoMe3ybMzn5Q|779{x+`s<9_FBD-x6wEoBb}^|bnE-@ zIH9KHK9o1R!zKSi-J5_{Q7rGn1Bir0i4Y(t$PojE5aLM!Ng%*90TclxBFLg*5JXgj z7*Ih0k1UFc7;ypjh$y&W5Jf~J2U%s2Ap0VORY26kzUx;#{q~$r5BGlapC5~N9-b64 zr+T`&x~h7a?ze3}6>PQbxKSPHlzJaCv-}3yRZw#7kVXf!SrqTHgYNXAqZWqDYarjX zPB}yW1oxYU@!Q%3Gyc)O{zbDI;I9d)>hp>hI9k`GSgq(>Rap!2)jmi0zVy>7!2VC? ze(+T(yB!g15zGhv>p+!wW&~m>T|S=$yV$6V*>dt1QhAMMAu|SVs1K_6S?-tX2xYb% zEv9|Hy4~IhwrG2mLS3YjabMh0Tqmi>wXMVow11@7m-laIBS>MIrz1|z3TO^v&T>W>dE%3W@^lY%YHM&nFB zM}GAmpk1^TYGrQ5@u#zIxZIeY$U_6@TUeuoV86u2ez(1Im|oIraS9wMY7_zQGzp zz9yhbf5JCp7p?xZt~pwK@wr~Lt=KKS$-N&ba!|S&4m3{XcVA>Til10rpggB^UfXx~ za_aQ}!!;P?&M!qC-=0?qHO<;(s-ymRjo0q&vv@s3unZxdaWkkACnnlx{;ZPL&x&C! z!G9B|;P$k`xWhLnApLOZ0)-HTJ)63^opSPl14}mKF5G?ry z#p~t^Z~ySm+D!IqEjC&mc^mlea;D3E><03qwC4LhpHfXby`vfH0RFC^ik%5mfCM_b zGqKALHadtsEr5+-VyuZpcBKm!JAEARO?<39{HX3Iqq*KN#fu+ZHm_}dT;XR=F zL$m{pQ%NV#o~&I`yR`Ajg|2reN@-`5>rSU$@@LHsl6?kg6=!cvPOovvt^et032xKr z?O(|3hH`ZWRpN*^eI;6~QdR7MIK9Se_i`$JLit6qyCL8Gpo$#|yY7*C#m-q*+NZ(@ zwnTOh__ILee3-bU@xy`>tx8V4EjuJ^u<@mNpD zcOR&tm)s67|4HK`KJPqJYgfGQ>gk1idV?xys z`5th}IcrKsnkVYSKT93e^x}0jU&xg6#1A4rrTxfDpS>Hq!1Q?LwtTwZdX0l2^I^!> z4^-*Du<4`6o5r(MZhz54$ee00FwblA@tUvf41y$lf z_H7|*j|w^J>k6%1iDCo5pAD+i1FO}F&^4@y;ptkvyVWQAL5Yu)gZuuOA_t{&9|!ex z15vIgK~;HH4BS>=@Q%th{gfY{jm9|y=@h>WBo8`l(*71&j&atZ&&R+&*qLAE$u|hC z%eqcD^!YgWp8!?rFZa#kTmR?g+4Xwx+8=xh`WOnTv@6+%B59rv-yalx5vO}QQ|*Bg zdiLAlknb5#g$T6tx&>WxD%LIDZ#CMmr@c#P(_|VFn%ExA%*=z=W9X_kx_G`6Mj9Rc! z;D7EM>0-+KQedP+^**?ydU13xqd6N5{%1jza^zKB!smN<|LirbAL6wgb89d9D$Xz( z=c|xY(Pt=f)w+U!|BW;EeRQ=pUP-gjILDr&e49t?qf;uz?K)Jeq}H#CVK0FHMNp+4 zHhj8gHclfdjT1Hm8GtUI91^VP7?IA3v=FM8A;1*VaeU;3{6wOYS5 zn!ODETu>#B_=Zj<^iTHIIZo?w>qnVd`{&kP^!|(6_Rnj3tM>;(=4;T$n@)X3zL~P3 zz*yFE`P}1Wv~h7fdma1}L6vx&--}jj2M8Ow#I1(*JtvC20saZj{Gv;z7ZN)3xmGp1 z?T6_4^jZ&Y(>cF$y@hhU4XVbaQjgIt%sH#SIN5W%X4me=9ZLM593t2|$md*0OKl?STW3w!CI<0jj)BjxJgRjhdVE_C~+$7_R4f_xu= zD*f`o{L~M|PnU_k+FnN@*nAE&P9>e#t$kj1xw(xKPJj3q<(dMj)I;uj<5rr+)mIcX z$faHK_+1dM^LKriaq~{xzUVJ!Ibg?shX!ZCKy?=U=Iv4%Ck2gMS`qSf8P@cilO! zAW+b=T%}RvG&JLuHX7$lq*Kb5y?FLC)0p^H%J*qH8fUVN#`%p?PNT=W&r!dQUwbrr ziDWax560J^N`9TjMJ_-(eZKtS*Sj}+38QfaQ9i|QGy6}QS72Dnn)UCg2{sz%_edA6 zKO?i;5}JQ0e2(CIbkwGJ8;x_eGr!2R+`Z7}9Ic<_^E|F{tC!+&sRo+^`5=&?^mn_~ z?M-@#7ASPZ(?zo%kZvxh;tzRm4WM1n=XJf?g}1Zf?WXtm`6Ki(A5_t2@cr?-3j*VZ z{FpYNl!l_~6=gPLE{AU>`3!H2Cw%I zv^e3u-=oA2%E5hmTf82k*b>P16R7gu%;xbw78q*?74@z^G}N?MkA4(kujgIu)JsvF z?rRC9zhMSRv$F1**i|(3cxGlAVpEapQfOoZkJ< zZ5%9aXBRrY=)2!T=33}u52#|-f!v2_J?6(RJ@sIhquRQlM79q6J3$qH&wr&7eHWcr z=fIwC_iO8d;@NueZva)=F{9Npw9aGs_pRH!uvN2b@2E{1kMlz8sZ! zrREPYY!mo@b;yZb>@2^>+uwh!`9p2C8T?y7mHHJZE=6Bh{Z>T|;&k6HSKdeIy!+8s z$hQqtk;nJo15|(3LcpP#KX}d0U`5DhJE-D+h5MeNc~fhi?_z&v_Wz*RJ4xm~zUb+8 zpbHhA!IZ9XKL9R&X&P^I2|{W=}`*VOwF$amaPJ~6(v9tZx=zW+tCqu@UV zs+2E#ekW>=tn1R-^$Ey#5>$zwk)3zQddSz}%Z2VwIOkDLL%zR36@LiTSVib(N&T0` z&fTZAw{;z8oJu<1@we%eiX6U;P~YEiq08s&Fa3jZ8Sq=hUW(p%fS<H~Q=(m}da+Qt^ZDnod754On2p|v7b@xUzW9Z&oB4N~ieaO7I`tWNaShG0 z2Y63ejVoH~Z1vv1S%>9yY7_IHc<3Dvvzc{jd! zpI=V&NTAT|?_arDN2ec2G){>=spu{H$x8p2)_$i?cWCWjG?VC^68%$Yr!z||rT!8h z=A2`k^#KR~A{jCkj*Rc~z5 z;!f5^%Q{u#IQHpJ)BM4Gd{N>D)r{AEf!qFPCvDsq zGIcag#Xj>}G^TcC*7=NQ?)_bOL47?+G?VC^65ZS3e@p%y`t<65 z620>r=%3kDIv+0x96b;@YkElQPoy}|I2C>Rt1kK56g3v9t=I6{zjo^n`nb`F#;N#w ze!=n*%;2C#i|1+M#w6F@R}_1oBFC}jurm`>`CXu%*EpZ+IKAp6f=M*aR*(~fS6lW? zTmCV9g%6f`H^tEAZ4&+)8t1ILPaZ^jq~o0UT1J$G)^9k zIc5-#t{roDtW?oBc?^_joXbmpTDZ4b3JV=x)6yT`lpXxB#gP*U%>`OiL<_cHKEIj? zG_LAR1=>`fW{e6;S94|&L!!|&0ZL?JJZ}Oj@0+nYw~UXur4j>b9uvP4N}|E90H}?k zXo}~A|8r{L_hR6b|g*k7d2+Dtz@yfB3vg6eUs2hKe%##-jxqAftoj+v4(tK>_DIwZUnkw1v=c3U-4n|L~HwOatq`u z(LFPeZ%fb&HtSn{ne2(Sxl=A1(j4_8(GkPwq?IiAQ2f3J^qACda~nm}urB0F_E<~~ zLq5-7!xnZKx^M#Oh0q|a;VtO-O-B3+*DXA-UUKh(dC8fn7+ zU@wNGK!bcc75ODWPsyN3Y<#J9H#GLAF`6ZenzlI2+6B|BZDXK6hUK-?Kz3@?*Zedl zP(9N%zn6B^gmKKuxjX2z5`Mjs&aSV`FIf&*PI)iU9-Fa@nrm9rj7k;$m)1!5-`Iwb zw;}Y}NYv||RG=Bke1Y2fskC4D9PgVY?Ny?!ra>=_;5Sk~k|wjeEf`e!zQ(MTbxG7! zi8?CZn_|E3aL+AYwu|$#n?KsybHJKpW`Rl8PiA#*JNw>UJCfOuD|R<}Z9Vb{qI?1Q z9!aHN0VS|=l8B?@k5KN<>s_G!%4^Emqj zP*V3p4qL7i5nr#A^^we8<1nrdHWYU8YD0l8D^YBHc<&yGQrJ+$fibAZH)Xjch5iWb zuW}{2#wRikp4((^qCj7qkO({Q3mQyhjmPaw8@Cgvo7JU0Km(w8gs;M{89?bAi}wV= zXq}c`2=&pj*Q=y{q@41-$k({BxEw|T?xlP!S!pv=%FK*sy*_Q-?19%4*zsfh@(X`i z3x3Mq%GZz-`2^$fygq0gD4qvoeo~GE)}bun)2;*>W8Gx*|>OB_u$@0fR&e-C5AQV-reR{Kwc+RfJ?=hgY8THoapG+5z_uhctrCwuM z4j)ht%HhND;%J5+I2dT0{2+(oXq?UH z$)FrQ#Iw*i`53Qb4xhmomcz$W9F6k|LgVaQqHl}734L#DXN=C_rx)p^Y1I|K; z@|7OhcKV6N_AXY7Ezrl_brXklN`9HW;{PZJPQS(1^mx3DzGATjyW6Y&l~FC;U|72w zjnR!)ePGlo{IeTDVeyPwJ-ol=gXk+*V`J$@BB zW+T0g;@rq?Pc%EfoioL$~V2^Cza>`L(;qax^K zphS*z<7eYp*WUB=71rx)WQ4uDvMS_LW=#vfX}FHgx4(kXh$ zd#W9w&E&sVvt+71%TU+etr~@NihWM};zL>;X)z*uPouRp*W<~mHXkAmaS$+4jktOk7LA>fEWY)lY z>VPWmE!uRLzUFMLQ}Ob5u3|Ed2(~zTw|H%&Q|vSI%D3q3)ZRt=)}0B*OTku~T?_u} zKoz~^&E;pRPvq#|8@0F;#cF}y2dd)NB$U!=WDD;DXLdiQ5_qt!&# zrN?T0gNV~O8I;vx9=+myxhkezxf&_^(NRluz2vNf-3D% zu-$!snT9nDSXFDs5?BN9CxI&YWfv_tAinypy;5r*=xjXjCxV9iO+%mHyG0G_YjJ72 zKPK2BY&1?k(kXHp#y_-c$+|*XyZP^}KfT_QQLcudO8p9Slm+~&n%+LRU+t#U59JWW z8X=z)P$izty!8~Fy=h&0J+}{f`P}yFlyZ{<5iAYzH3n7Wj0h&kuWE+&Rn2>RaVux> z@);~0@^uGQ%8@y0($a$9>bI8Ee7}m_{#a~*n{71CJCII^yJKFtm)aG67|=)M?f#Kq zYtEX1pE=Xz4(z(B!00=7aDHZ44V|_TYYu)BRFN}OstchB#Qxt<`IYxk4qofQU@ahD z2B=c+dHD-}7WO&3goZBV_dKp@iF|GXRmvgIaII1J9Deg;`Q#n{VQJYk*p`m)dy73OPAjVO&6=P9*xjYbZgt_ z7xyDwSx`X;-Nw3hX!aS&dV#Mus1na2@^%wCUmov&Uiwp8+}4Bcw-2CPeLto#~2Zq|m(ZiBosHu~I)ftI4!l-!Qk`x+xM;2^b*CM1piZ@iXTN*ok{2n zmqahczAunuZuR0kePuYxH4;?u+uXFB@0umJet3rc;>#J zu1R9W=e=Xuv*3RjRH=szH`ECg1n$`R(c8W2YV&R}>^bm{16Arha%9xOf^)t8Wr$4y$2i=cC z=2(>LB~V2#nWM(jcbVWkT6b2U#rX?vXO3MA?(8gEi=QDg7v*{tROu&Y4IM_PX$xp| z;Mn7uzeloHz(4*RdYRURqn`8STt_dmUYw`Ey$1PS2QBU|9L;eu9gF(yMV3=P{lRT~ z$CSp6O8S0NL9o-jjZ5xMw7>URYymn`9{f{5mG-^x`f2M6SeLt|7mSLt zzhetFTBQa451r|kRfT@_7$biGz9XSEKRtE-vUH&91%9qZsUc?@-^&S~UE74CQ^4?GW82L;Ab@c0s&gbqU?{WSU$TtmC z>G$LYMsG3$3#eK7EK+N4ee6^4f96c*f3FRp_iXL((uDqp9Q`b>cJ?{)`2sWoR1k`v z*6BHGwD{@0y>%z2juLFxXq@?wPw~Id!t6cd5AP7F*ogBar`vjGTD%UKUqQabpo-sy z`gZ-rWK~}HXVCt7+INdY8;x@o(kcCrz|hY0U8XOcQog60Hh<=4UxWXfbEI3lp2yuo zzubCX?s>A8kU10id<&}d2lK>ubJYJ~T&$xDd$+UiAm7|`$Z3t=kGd=22=x4LR z{{yJvw~;?yLEpm{Jkl`mtsc*!*!SR{1FF<}Uh-&Kmr%%$$=3TJ-s7MnMT_6CAQ7krM2(TEC~MjPQCb#H~EG7*L+*YQq4Xi**x(72&&YB zkw5$~5{IL^UF=hnx;p&bT|GG4_k}3eB2Y!2nN6o$Dij{C<S5-KI63;>d z6ZV;b%!Gr_KVP58?=}`Y>uIBLO7s^c&gWJ8@R%9+ZO+;nbz+LIV+r1Fqj7FQzDiuO zPLQtiA7OGf)&fIBM?zq7?~4p@VHHiIg5mUnkLts5QeFBetJM0TMPb8pi2GCO`A>Y zp>tOc{o=h9T0E<3qj9cx=4Y(DhWs|b(L;2U1@H6F8<5XNP{lrjJ#uLrZe9PY>khrP ze+K&%`q&Dp*qQa6#Hcx;(_^nz(AL4X_H1X{kk6l>VgCb4>69Uh>m^-Yd>n4HVnyKp z15|0pLfOwPD=!#ao)WvbO}bVlpHB(fdg{|!{}hhWu5 z*O*3C{=NTzX4f%nC-`@PD*6mQGCQxp$Q5?2ypK4&+O@%UBcDB>ie8G&7STHK^Lo0I z+y1;B&zxwSie5s~CVfZ!mw(52^LOa+0H_itjHyQ-COJ8p)u&oN%YFSR<)$3Gwkuxi z!LZRd%b`EvnCHuRpzQZ2kD8GvzaWilG|sbluGnwZuGzHiDP~TW`Vk=w#VpxI<2;6R zihTy+j?njT>-6c6){gnuA@CmsRrI#^-Z6wWiqm=&Ifyfo9R~jqQ04c)lpJc0tgB5k z<$e5#$9U$oeRrGAugyan?6@d^aRyY;XT)F`-8V=^L3Hz1o%&aqWbw==-{0{ zQF~kQjtQGz*6iB*xbYP7ISs1#(T39X7EycqDaFr=j-IUP(``LC=O_L~xk@f6jS&{!c>M!~0 zY<;Eb8m;|v9|sltBaP5^Qaq68!b(3fYvo6TCYQyx$>wWz9nDH3-Q~`DFnWAK`@jO1 zVtnhg7m3Cx(KXfh^ZBW#DK3qn`JNuyxWj9`yS3{!+BiIdm4_ZB`lnLwp*K6we0e7C z_bkxlywLH}iF$q|sxWmaQ4^_YY2vQ)>sa7FM(f-3DpbhX;lj{QseArg&K zqH8Mtkbm>Qzs*2glkv-*uC49w@ZO)0=$#V%)6p+@jpK%t($;l(Z6Dm)i*x?08tRR2 zq2^b(-i^!;YHljXE0MqHvixfHejJM_n8_p>r$qNt{4daA_bD^b>&S#Y{mK>JS76-C zBzmVrQ&rOSZB=`VY3zJq)xB>WH03^2D?dW1aTj-;{bY&uD$z9+`}99hk-pn=_lw%2 z^|Knf&QEzCi5kUfLXQ#+Qu#gdho1@U@Xv}#ogUxdSg$Y9Y$Y15q8B6YJ6exoZRg*p zwGUqHGi3T8r$on8{2_A1@g3A|^2@nS^*W@J=$cCT1ZuC9?$Uq%b89cEo=J382j!D! zm$>Dn${N%07|q+za?I^I`fd!9=%h|`Q$wJC`u=bGR}?w8EUxXdc=_DN7o}b)yC^2n zI5`FbzZ82Ze0Uyx*Z%S8!4tZa*Y@?Kvijhcrz0rovc~^#wjj`*U#Bz_$V3*8bP{b; zNf+#0u0+rhf^Y?j%jvy+|1W5qdHY^JNvO-`b3E;~KcUC7FdC;s$5i?gxl{HXqxCOi zQilGmp8^+Wqj5@fO+{}4UD!ec`9+H_-us_A8mD5vStXmEF(sO#Qm<5{-shp+`nytY z$}fsZbW(|~srt*CCkbs7sFRmkPL6rPFNyxC$mz?BxQrP~g?$z;pI3c)jW3b*hrLda zR~e5Pg$uXPe9xbcUt3hc#+wkOqWyp1@8C=qI5mvo%gH}}51!Q5dpBefy;GuND&^06 z@ETfQUNX1K(W|#>-$~*b$AaM(M|Xt=7Q-*49twLF z(7H9_J?j)PL>E|0LL%*PKz&5Oh@Ak=ck<7@-Nt@*cJt92ddPsZ}!*{OpJ3r z*X+f8y({nI>UZ6~D|)76A@f!|xD8ZkAA;Wx=HF#H`{O?OP#bT0?MJ#TpFZ9+SSIAV z15_!0THwANCacNOeoJZNv1oQX_&b6saXIky-34~PRe2xj#e2WNZMy<-c-_(ERxi%> z-Ccg!+B`$Z%;63=D2Ka~f)?9`ZaJnE_sWhr+=d0FRl5@HN<5dtZJDFRPNl)=s)lQ- zjaZPvtmTRQ)7d@C=B*fhU1OHR+rOKeGOJjGKKS8_3A6W(Xv*q+^jgQZpQMZDzGi|3 zKo#^@k*+Cwa`oF=kJJUf&1Z^qMl<%@p{tiZJhcg1)w&u1$Von#ucY$*_&u^Q(l-&* zmxg;#LN$GF!}ITMc)qzP$6}cuXs|i>C6&K3@jMGuqSq2SsKKw`|G#|IdyP$8v>`?C z8;~<7P5b%A=0O^f*H4O+ZYQJ%fl&bzQ4kJ z|JYQZ*~xq)Mfx3X^ zeHqpj){|wA^psD3j6TC;_~h zD7R+!ggR^S*Om4UG~SjO0&VaBt>d;sza5b#&XfL)**-NNYwdZqlm8GC$Wy+hr;O=o<1GW*?TqCERio-FCt zOxWdG89(qlllR~YNPm(PzZ2T8CBKmY`^LTf9P-x#+V7hZ?Y1e<8N>b~#NVC%mG)KIDV-x$ikSm=9d;W3Fy1A+B7_D0S@iEx3FN{_z^qqoq zsR9Lc72ZDppF7bkuX$omH1m-k_N75a&T-OBeMy^UrY$G8+rGGg%_ z`MZ1%(1ANU^XYJ4!EFZ?$aIp{MZA&s@_jlAZ1{HzrmFMx$iFsd3`={aa@sSm`kAHP z7Jl~PmnUBMa+V+QClRR4VU%ElUxcPB(Sob+dGb!OK0$52!+k*dx%6wve7!G_ ze4;&)`hb4y_aQyK&ys^q>ku@RX!!_+ z_pSMeq+<>rj{uF94{3^{(elZVK{=i2uZ2c?C;g{mP8a$+ET=2|1&y{F zJ?C%lZt>p5xd@H61EJC0&3_>@+BUa@M-NMddgMoNewX)Xw|5KjyL`8!b*)?eBO2}f z=SX*b5}~rS*fj30b?Nr*c8e|RetR@l3F(wsli<$-7nyl+(XX%hq7h5Q?}Bu)cVS+E z=iyPlKqCrrjPZR9wAE$__SZ(44;5Wr8-~^AXr?@lU&G|@;>Q@zqh~oQS@4$(r?YmaiCg`vh}YRUucJ%)8V$KBfGVTsLThy?P>hsW zG~#rhpHgm~gXem<67pRIs=PP1W$A4NhSklfZrh_^i?Y8yL?WG1j{NqOj}{mPAJ6`; zqJfee~6*d$*)j2Ptp zddOQpl2-LEuQl+s{(ot+@o}s!_-_DJ?PYPlf6tlb^&nrIQ%>KIT@+usP8@9JY|`3W zTJ@)0f8!pn34*HqA$k;LqtV8LLGkyz%_ol+7(Q{voT6vq^x95)^>?rF#jw$6o1lD3 zyv`a{htM>3RIU8XvRFHw2(}F72Y+Kw#a<#a%KlDz*>_<0k!Y=-RhuP(KM7RvBWpLY z!A~2CEot}T1e?!e{Y9{3yS<3Ej3O29$44I9PPYS4FFSEW% zB9ubf+qC|}HQHAnuU{JsyWgCK{1kl_9VOI8vHEhd_VwmM$E7UC*9Oh~{yDe*4Q{5y zV=7U|Oh>uefGWQWw4S>ChIKevo5}u$U`w~rXj>wkQty$2wj3%5{P@&Izn`dWpC%#L zYTIbE&5=&=hfrE;LI>)8^t(+jTyx&+1r3M6ke^~N;_GQEKK|Cxz`WW^$ZUapGC&o* z1or+yU;Bc*{adWri~Ih(Qa_Y~+jyq$)--H1+M6M#5??bPJ4U;gN6{>D4X0jOga0N_ zIW7~oG#;~7cfWR?%IDUPG97m9&L5m8F*Jm?t}IZ+-y=tULnzB3|6|{st!|HN1Y44g zM%w}D6gw-l;?nX%)61QW(E5W3tR48yFsgUvtJmu>yW-{Hi~rz z|2?2eJrw=AgrgMl(-X%y>ftW%-wo>U2P5x1t{!shM_%KZb2YhF|MQxzC-m4G)G=T8 z@Q!Y)+FYj16Ghl)w7rl{v6sB=6L`JzRlWxvo&I&aKJ~`q^)v(qOT%&a5x^9|KkLE1JA{PeGvS ziuX^yQpG+U$6^b#VGn}8zcXF#z#Rt)0*~U(&U9Hj%2NE~t5(jj zdgx*B_X7==@5F6X|ub) z7`CD6z_g0?{Hn!9s|lU}|6ouhE*Vn>&o{;6&6nIhpM-p`gDQF}+}YqKGtg$-jYHa% zwdbn^o5`L6e=ev(eAk}ZUSK@*!ozGnFWsy@+y+1$Fd4t?wPXwD{sypH91WXD{}q0Z0`x z$Kii3gDU0lzrE)O;-KEHc%7&9>hBRY8trS4)6xHI({SB$i#BO~RD+EN|Er*md5zqX zZ$(@)SE~oF^O$bSr~8A~dN*AzvP-;caYEfph|niX1}qO zcHi|MUcN*bZJblXfkvyO%j~ju7wtZ8TL0>@8#Fuf>PKGd&ujlWWPSjB%m!83_t5Eq zd(FUYdm27;!*%xeZ^4$%CV_tjs8a7Ns>hrHl9Qz4s4_pHPWH<|ioEr=W^`2CY*w8J`E+s{YVCV8`vUy=po*R4t)D`uEqMnC1yx7kh+@;g z|0SrRm(YM%Liq{s-Nf%X?8RMstJk0V_^HT2lDV}ruk%D%j{cdu^6B5J3k={S5xiph|wm(61Mm zZ0n1w?)Wo&n!LppXvtQBe;ugO&+=dX?!tn=)5~w4J*+e5@?J) z`oZ+(N3?!O4YmsWzksUsp8hedn~CQ0rVF%wf!A@I`?#dYL6SwXHIQ%ZIpi$&zREgKKTIS`O;_;=|%NEG@JE&sUd3h-` z&N;le#z&h=XzK);*l4snkWT5p1u73(DC(WQ2V9BY1xaIDalai@v8TTEI{!}dk$fGz z{#~>-+Xnt3P({uf*AD-J`pNuz@$&N&cipxR#ZVeZGOy#!2pf%dud{r)1ESXu`pV-I zXK(pi8~-J+UEtphs>HL2A2rx0>?}}L8^3#%Gi2^TKEHt~{fVNgH`BT&YkR8xeba4! z-fMqCPiL@wkZ(VzVlRasJ@jLN(I+#m{TzLLtNZnzirrEU?&E|~Ka|dEyf)Y$DAy5Z z`9i1uqSF`Jb;)`#r;PTUqy_sE{C|Ne^(Rn%cF;1i#XGcqq|ftulo0Yc2&%*hfojsE zJxyroXiM((sl-*DgN;Ue82KsXEBq^+@6+JpTYdi1yFa+=@3zs#n-T0NvC zmV!X1>>rOmcbOyZ9s~brP{po|MZNP2jJgvyy?OZ#tzS^rMx#B2bc!7oO;4uvrkVF_ zxv7+n$`<25qYd|8M(yR_?TxHD2ljlMr^Q{j-yhoipx6UR=GGsaD5&o0L0<>qHZI+* z)nCXw3qAhr)MxH{b-yx=r^@DE_CZOlKj;)!>JzD=WmPxc+i9W6PQS`g7QvBR|hi^x2p*EjYmq|2Q ziT0|bEBdDlwPT^R3ua83uGuG{V?r>AF005HdZpG1(_s8myNf-}ajsvI=(Q3ZR`DZt z%U9$N!FfNdS@({^AIhLW5?xmD+svCv&!%?zDOw5fiZ+hB&~Zs`H{JS!*K~Jl<3{)W zEX5wk6GG+{cp%YbRedJigZ)7N0(2*dUh71^75h^I1Loej^2(E%|GDpn6px<YTi3oE|npC|wGYS-S=Ni^FPPI~=u)Uzh$g z8HtuF(O#8!*7xyVSbu#EIVBpfM3+^{=ZmSx`@8(Q^z#hv`e%B(Vlau8+W_^b)O%s` zcd7nHT(c~%(*~{H>oSQREzxCFI~#f>#lbOrzi)w~o%SYYq>V-^(Pfo5m|dka?H^kp z<|m5BYp?CC`}sPh+}sdckK>d$K*`+qLyD)1ViKKKqWda(iTwB^)n8+Ny6#!WJW(P9 zm*}aAKN#0_BYcMVn1$T~tF`%%WE+jP5z;I2WJSJKf^j7nfyG)snb1nW-w;%>GyhA= z$d4i~f9KH#Uukw0=USh5t(Cp|{Z7SD(T~;mMM}L-L#*%Z*gSoe};`Zs@ zUc8pCc)AGoU(jg%jar{I1svB|ZGOV-xKWQUAycB$%K@GeKLu`uRb$@UhvNElUk}Cg z5;9FZ;JAzY3frgXzXYEyF=5mF&haJ#zeJ-|?8QI0-$^r&`_7(+kDk%&x-QevXcfKW zm3xueTRu;8^LDMj0-&>qU7Vz1^$57)+w&O0-?2{<1R~(7OA!e81>#nqDHAjz()0Qv3kQ39Tc==L?EQbv@1i;Pkbr}7deC15J@sC?vvG&n0atP}};5?tbUa&5$0{03~$D=i@Tw-1C@; z^b&=zIqsVQMNj^20xd0kZ&(*&{bIlTV9v8rPA1S5<8YrVP1rddn!9}%lk)esntTDYAypBWd97jx1~V$t0qw>TM9J1 z?^@vZ44~}+wXqveCkd_6LOYw$nw9;d&es!i89P0>!>P$Hx8NuS+09;H_WLa~xQ)

LbPO^Io zg*6WMOxlm6(heF4{;VdjJ3NZAxX zRzjB*Xv8UyOY-CWgvM*RM@|a6;qm)!czj2Skmqu|pH8h2_5^tipmA1jB+x%wrLu3W z{cVz8QkgDIypK>pE&a$i;XtEp#O^&<8an+d;2M*WhViualVm9u|yyieAqFG}Fccm9{bbp}mY7Cj1b7n+!kvI34JmP4RoW@Z)qD zZ=1sonhR9anqj?LVr@ZM-o_LWkP3+n~+m)!Y@fI>d4nAOuShHc`nM4z@8n&FUVCS(MXe6ZR?V#q)9*}miIt& z?UT%U>>b@>Z|O$t#@Tx(y_k@~tZs476t=cS%{47*O232u+NjbJZL}e4aFPQfNWDnE zOcv;?84cN$4{ysqc11(@HS+y9jLK@2gY-MH$<&ceV)6S;vK|`3ZshyJXsse0@hMDm5xiTB1Ly`*725ocoXJDvxw$Gv=BTcD_JPeA+70QCob8PJQ3S{l}i zXvgI}DEYfYL$%_;n_*O5gI`qN#natr^XK%UPUxVV-t@OP8tVP@WLQog`s*4E_4OZ1 z-02++^#RI?_m%q+?U?f*&zN_UN9R1me@J`2rTnC3a0HCSq?t@xjzPrhU3 zmHFhW^jhugv*0a`qJgX=SX+Y1d%6u6(+(7{yXV)b^(bSH;dhG!!)T~i;<;nApS%CI z7pkY&Xl#P*HYP`TWs#1GAg}yoH`1tR`KEm*%GA=(^%89qEjfyckf|(MWLjVx?-&{i zQmpIQFJ;z&-WYAaN9GeQpJ7<&i2o9_G#Y?eS9wrn_LAkcJ!=~41PY+kyI}J^+OL3o zu5jiTd}OY{#N!>>tc%y#6R)$#A^WQi1X4%eX)97o(=cOIqlaet*)=GKMFOo^B<`z$ zD*B9V-loV5WUm{1_pa+~^i09l(%!Wlg>;Ht=e@juP#F%i>@}?KWw!kbwi>Jw_$z}d zc9{3iZkk07^5y;CYWj3P+pWk!Ik=sz$=1Gths-LFuc}kd$e1_z*DZeb(+EvYxA}$R zmw3I`dN=Idiiwa@DZhoX7Ks0*=Fq@(#nA`o%!lgWk9U@@sBzCj1;#$Aho09kY4?K7 z&#nf49Z@$O%_IW+zivd;q)<32KeND5ji~Uv8xf-Z0-y>KY@B z>NEX4`g%T>PhXTcZ>ykhL_U6Jej9G6L;11uxhu|Xe9?C&hRh_$M~QnfG(ev>R*S?{}Yxm;-C0_9yT#l=Bz0lWC$T!6)r-dTG8g%}9%(_I@0l!-$ za5rm>`#zwG|K*P;O{hJshW4KF+V!?QT5Rl2b`$vT0#(|F!riaX>f&n8PQ1Kkw1&EC zvYWwALu>0&;zZ=yZiKq~>*V>v%3P(PE~Ta)~ibVf1SX~m!apX5~D zN9jUlH{{bDRB6WwN8h*<-IIKW-+FCt-KHz9PlMeJ`Fete;|q2b^Kli$B{^>;*nI3B z@b>^!{HQQ=6QRUf*B;GY-1~zr=e@`$3slK3)N5pT)r+3atzPu{^P28H$alX}&cRC= z^?O?J@83Hedg%rJ-k?f3LMw*sLVr--?djehl=tx*T>I_$(#r!V*W;i{T=I?FPN!tG zdU)OAMYUKAei!6c2O6qU?-O^oU1J)*(e9dGq8w<_58^!!fhy(Cdu_{>0^_~W3o}mt zqoG2(--V#-l#<%)S@1sxs?>uqp!Q~3rO!`s z+hZ#26mh!mCl@bY$Q*-wUIJBqx6l!dy^lUn_WO<6?$R3UdGNn*j&$`Opm9K8#iuLR zF4Ec+_x*B34$2{9zKDFro+H2atI_IP>vWOcTD*4eN2;DF3zznyqb|8k=kz~!?N}$r zcZ*!;;}uZFA0my<==)0djOKecR?y~Yz1PEdU+BrJnMZMH5Q;?#mxIeSb*nf5tn|P{ZRt zpfxR;pYg?me`@h1#({>aq!YUntz9|i3l+t!o#}o{C|uCThoFj`1>Pz6oY1+Sd8AW? z60Bxkzp)3;N9;+$xq7kWNfFQ0e4e1vj+4653Tb-F>|T<8NAI!@@QAqJZY z`KST0E>+I@ncE8j^P885`Y=)Z{@$2<0{(nZCGHkhYD@Ece_fT*eRw^sADPHL1^;Kx zbXk3p=Rk~d_Ie({=5yH|IqUCpHXc18H7IOfhzHnt$&T|n(y9=J*veQukkEo z{)l{j0#({u-^zP`rBil~Ez7UHU+YiQVDrJhz?sh2JNd2xaXM&F^CPeAZOB}Rd=`N! z_3m3fd>xICI{V{3`B1YL_wiHFGtYr7Mm|eGmG&rlK~l&Rk29Mo{Y!e}wI6w*{kEUu zd+{=qOQKaM`pk;_XuoM3da;iAPMrPSK(L3=Q2#)BC0%g;<^^W3)ZYnP7T02a{BDuJ z9X1+jA)YJx^dF8nP!N3l4)f71;q{P$&9u=_S0bH~Usk>QHd4QiZzsIi{Z{8XmQ|2% z|2fLHWp`nLaZ~rg`R|vq*Ov;mruKU5jn4ArA3aXvzuVFtetr5W4SgV$tp@)ZP{n>T zuN^SIz-Z3DTb$MW)+>5^1Y3)IHh?N|qG-u6LfcBF!#+-hG=Hzb)`5RLsM0Tp;QfMg zqXBr06Yl+}xZiqhr$go@lxs7n(tpbe^{4ejKQ4JW{gdCc@4jA984R`s`TPp1)I0mD z290yt5BWCYmhI>5JIPk$v(1@bX7hNeclK_e?vLxVajI843zit}%uV;$0kj`M9C z@!DNK%h?avgL3TyRrDF?`}%77E^{V&;QFr|?dEUb-wUe5U1Qkmk5fNu6!mw9Yx5}H z{m5JS+}49rpTDDA2S62jF;)yDwE7Kv-^6;Yd|vw#Zu^6J{YBbns7E2E59x z18!bi|4e0eEq=F1;AZw0?hk<~aU!$TSM>cID7eb|h%=gnz<&@_@v~r$T!}_?>HF7* zA>R>DrT%=~>l{P>?9zWN9xD zQ0kxkeoNDL?VWtF|#AZ7awoO zCOhJ;w>aolpZdBkxA9t^zmBlcP$k+ZipfhIh<=^cB}{yiu8o>rqL@TaEsX?9dmB3? zhSmvKmv=NHMGktCSG~AxSM+!tGUZlJiFT;S6ZpLP9@F^f?~1D@5jvUB%m~tg_B%Db zcpZ1RwKIP+RSrJCE74FTx~ZZUWADOj(+G$-p|o$@W<1VcdzF*+|3PqxzN*MMbyt&} zrZKtnUHPTAY4zY;pArpKp4Oto`QWXGX`VKC-MGgd{mcnvmsR3*=y32e@&~?8 z@jk8Iz5Bbjcyu#Ch9|}2Z4IF;auo?UhBcI(NJq4KSiIJW-r+v^lS5AZrc^T zeZSE4FhcV`xBj5Fn-NT+p=LraihTzDoN~$xJn=%gZ}(JY4b(Uv$Yc@?RieR#}efnV&LSVHR$W-y7?dIJ(DaYUSg z@_EIVj(%`Zn0m zClr0rd%WAHM2D5=$BG{XzW$K>sQXnfZ<=({tZd0E|1@I>DAzgAH1o=>K4u2Wx8MD4 z_AzaKkkDR`?i^^L;(LE1K3}(Ao0p2W(NHD2sbZf3Wi)~gzp1rIvlsW@@f3TYLPpzY zs1n^&`Q86@QyRyeS5#WBaW`a2v{s33s@O$Z)6&1g&h+`u3qN0==!^6j$s`)BM6-n% zaD&RsSw!Rhwj3X4msWpX{XJw#G*lT_6}{xP*nJ9mS>xyzq(d-?ZmOgUG<^67(w(n$ zI^OHuZCq01Csju<6XlcWpGv&4sn`Z|7X)9S&;7}B)>Rs7FqjgN8#Dzwt>(|g?4 zUvW93SO)Tu=&Qi1}%m6>r{;SFk zoQ0dgFVSojKl9BWMc@CTqRd5G)@t?V-QOh|szf(c>OEwgViU<>81?U|Zu?n!I~_9H zp?v2+U(Nln7k!s8+6|w+Yl_yt_TK*KXsAj(WhS*hO8(BrIlZ-h`Gxjdz5nUHKd8u0 zwiYsP$Ahk*il613I9!rhpDE9j)YdPhv5w&H464Klfg=9Lpfe-O@6^WqiR=#WcLG)V z69Ub>P0^yH*l)D>!&gxb;6(e#3}icS61{po$-5&F^%^Zr_#Xq)+eT6}NIK^+WkZ zvTl&?Zl^x;msL7e;Jbylo0r)*R3gCCVBNug7pUU5ODy#N^SZ9mt9=^m9>~XGe)*;7 zJO8&%2D2Xi3;M}9gGj(ZIgim_1&#P|y5$&XPY~^xGnoDg3^aj8JcR#BXv8OIk?^qY zb$b79rm~rr#dc~(=$jUL?Wc@&=hvpD0$uN+<|uD7pzWHtmsFy^HpcTNf(BCs4W!|D zszB!?^xVW>##M?mHmxuEcXnOK_80A->*=7io%D3^pNXTO#J)!Pe zsC<2-KEf!;*7Le3PoGvmyF__6B7Go(m3lX&@WGKL`{2s`c~{0sbl_$}|8dZNK-Po2 zZ^pL#$}fpF8b;$4a!d4HP(t%HtP3ck$r;T0YWHDl)JtoikG5tlZcXZY=GDgRNLtSi zziyt!`mPS7T+z1)+d2H6jwk&ZP=J@*F{0^5GT&4-pTN9dE(y5^b=b;}%3+~&OO)zB`2BzVNmu`L zpjaZEEElB{XpZuELlzPBNTb2GrLdj^!dpHCJhm$9o9X z_!wVaa8#o0HU%oK_MYTa*2OpW>t2M$D)gAdvaAbe#miHG_KUdEK1HCFS8Bu_<*;7a zjfCDiquf-_;yua2&-OQhKQ==7J zKZBoF&%kp~@^^z@#NUp<$=^TH41Sl&ezxkdIlG6emC&`V{1=7&Tgaou8A21c-eQOwGegt&+;^#e3!ZC2Bp;ksBtm$8KFe z=++6z?4AvaM-RKZkwCw#9Y%GQD9sJ#?x;U^QbTsA=aw(q#f4FL#rqqv{)7Utd1eyo zF$v{K29@`XSj96z`X}otg+2GpfUc*X4c`kCUwNM_(9Fk#>rUG*`pA5#j(K-G<*I;)S2>`>Xdia}tx;v^8zNSko3L!4Eb98Z7MGjtf8= ze-q^jK(9fmUrC{NLYW;)Si+NDOcMSVFMpTikoSHzjIg~Ic1aTX5>Aa3@1`X}?l5|- zrMLEBv}Q{!B!`8%eVNR+AyCVcP=DZm6ZuKGDIN+G@i4lx(2KkeQ_G(uYC7qAap1uU z6BorZ-|6YKPEUvagAH&Bg4A=ke4_rq$K>ylCbChx-@B>npYbfQ!hC;)`3;!WEuI|D zcG2{6+PDU&_XG{aINp9P-d`X0H-g52A|I*`gI@vpyQESMnGf!RaX?X)?~zpIBk#j< zSoM~WB=nyqQHG)alVLf8{mXlxl^>RJB*OmWeJc8w_1NlP_!S3~s8uByzhhk{RBk0MXoRRd`LPH)!|LK@Bn*I*Ud6xciG~_D@4Y`GahWs2o z=Wicl@jlPF2o1Rfp&`G(e<3vFw41`S9dm@b zL+*g*>L}@I_D4Z(nP1yP4Pq=?O&9EA?*@&*^YAE8pf|B9rJj7GbW@g4EZrSU&PJ8T zb1H(oibmcVDhRyWb5H)?QQB&j40{wx10L&AM%`2EUs-|~mOCEQM*p$)ESH=ukd$6x zq1zgH{Z~|cag8>s<$iWwk)K{kt09DVhFpcD{2oS;q*15TgJAc${<^Ky4<)_Wvj!2Y z0?JnzRMDq@X4*E>7_zutlksIVl(5D&ifkm(Ddo>QTZvW`1y_G@vgdY9FSYIWR6Iwz zZ|@_NDeIc5&7ygqC3HKRqSPx%5MiTBRDzsge=x+Ei02ix%j>L2B#VN4wLqo4id$O6 z#IL+kO!}F4?zjE1hIpXPrewBVLnts-YpCzujb&BAUmaA@OJ8fXxRq|F!~d#*KN?i= z_uS~4=&NcZ-+lJ8R_|VCqrJ|$M%b$uuYsH;L5YOYT1!;2OOK*e6LMV(s`zczC(}4; zvsgu;$WNSJXTQDbGi3T8-}RtMyz^&ullt7F&C*A*>%d+ zgK{->md~=Yz@d%D_8sxtsNRCDwS5{vD$*%&%R&cd?HUX%TQ|v$&w`C+4Zz3e24~A+5G!)v33*YuISW$;eN!>&zS9 zJV~oB3Z~v^RM2+C)@Ajsloi3Hr1_uM zxa+s|H-^<8-eOT!BqgDQ5N`RdXTp-J%Z@?Nd}y!RuUAfI$l#m@XY@1#|W*7u0{T08Bw z{&c;#x0mAe7r~lAJ_f4jCI7B=v>GY3?UK*BM%n#a!IsRLgP#oFx|I6Oto$PNKMNO6 z{QixgRz9!(;8rhAwAmJruNA0Lek;x!rzpZcT~3SF@hk)UEuHB$Y+e&3PuWsUSY`?MCg5B8d;2#01yfmT6KuEHXvjUC=`7SyWC`LhugS!eLy3F@#j>#)G>p4$~A zu2K$O<7de13i<8=b&PMvv^p`g`(`ap#ItVT?+zNScc76oerW2a+Bntyu3x2oCF*x5F-q6MQw&ML#vfqu=T% zB5vb^GcMf+ee?oV{6V0Hj%aq`t4E^jc@x3b!e#$VUqx@Q-pJ<>(6F5undO!cstyOW z>Twm5^GJe?vHQW_7gVu}yoa|F%4s?+Qm$Iop6?WFwOJqVKLG0R2kZHz9~VCe`TBu6 z+S@g>c)M_~*51}&4}t$-P{q&kn~h&V^NQ!%9pZIf!+rm=cs%oJpOLIT$~6E~wU-ZS z68b^hb*V+&%4%^w)wO*pc0@Tu*z^34AwMO)_!5TGF0z{w{<&^g84Vq^p^b)|gLFzi zi*@Pz8=?C1)%Ta#-wgzt*Ekq52O^(Apo+c&7W#qJ9{sNMd%X9v-1aAm>obZy4*8w{ zRrHzPD{-@FWQImmG<1}2uV@(&HX8CX$WMu9#z(%Dw0k%D^)+-#jUoqe#;_sa9}cSc zQN#yN6q<(r>ar*H=<^}9Z8YRz&isl-Pg_-B zK)3#P{@RtNQLX@}Vi&Yhp60=TCZX1k`*{t$U2z-Fx_WGH`!rMJrxJzCkto*~XZifw ze%e+Luuz7h?C*AhEsBi-|8t;<-x^;|`mP{gEhE#>W+QAgXlonQG{JiGYi8!H4c-Ue0dx9G2(+Y8v%H9z&< zSf9!74Hg@nGWrtu-vCwG2j8U7r-VXSDYRnQb=tgeEE@;@m!0VfcN|?;V0`>3T_rU; z^Zxxd7x}yjs>H#<2`!e1dMG-e^+SB@74VODrW2@7#=qlx)oYONbx_65x?YyI-82Hc zzjVG%b@OhY6CmG2rrc3igHC^c6ZyOas`zK#9o=YLY+WZWvj6F) zD}>B zf&T+%x)YQ3(QZZmjQs<@(NU(N*!$qm162rXTb23+>?s;hPuKM6cK*{@f9~S7j`Ho@ zUfku^&(Us9h9YKwD)BQnqxGT!Bh+?Tn;%Nq>j?x~WA+jFzXDa_XXx}mnrB}_%TAjf z)aGsc>|^kM0;=SfpI?s9H3vU+@Yvif+HRW!HU<1sK@~e=r>g!y{_rKu7mU*C&%3|7 z)2GuPK81W=fGT>)zrN-dG{1XgMv{W^ECeRa}?0|j_;K2^r`nF4VI65rh_W=9(a8RojMrcC}{6#al+?u zyy@OvlyZ|~-p6rYqg>yBD(?-|*dCfQbPwPHtB#>L2j|pkk{e4G7iYwxnpHP;MJ=q z)tesD+Ra3^1pF&N6}^O>DWr8J`;NW7_WNCq_UI?@F9!|V3%);C&-ZKkjAl#0zYJ8d zm;CRu2o0ph`5bq+^*_CT=Dz-v`k@kq%%4%NRiI(L;Pj8-eF@J+-<4j2tptA|sG^t1 zqMMEr%J;uxz1uI4Z#AeAmwdI?(vV2=$rK(K;I4X&*%8hZNJB9 zFY6)S22e#WkyqRx(IhTC+T|w5_uDz-OkPd?zWMG(zrK3dtb*Sy5@2jI?stGX>^h@< zySh#O)cW(uHX8DFXF9R_nr}+kxj~!Xjb*=rzX(*RcmGvmN;0E&W?cI@E46-4UA7hc z+d!3gmL1*bY=N;{#Cb)2;=J&2UWvz)pV#lj-u-AN^sx(6jW7HAP<)By`-Fbf+FS2> z*^PYmfGYJ6`KEcC&^39SpQgnL_j)PbZhDXNdm-Onpo(1#e&k^qKdkCn>+0WibccAh z5B&R`>BRc^Xz_hI0>2C5wf_<_f5&?cfGYlw_4ol==NMXdCcn*hnjg6z2Nbu@X!Zy4 z`4d#pi$JFW>XTwe#Obvj+{fMG^=>%OkR5ulYeu2RbLyt$!p-&4vCa?Aj zuimy-i)UW_FJvA?J|{qxdJ^b3Z3sN3+GcGW7tM}=|2U}Pw}rP}LF*2!eIZ|K^C%a( z-gQ(?!-0mZw732{gM8in`9;S$4Sk$(>Ls&$9<49`m!RYP4f!N`ujF`;{B9u#h*#SkSWojOW_A4 zE{Xj)Ryi*H`VepPS>ES0B--}14!wx)je&bw$D}NaDn1Sm+{z>xvP6$n>aVEBvl~t0 z)s~ee|4>$&-)&~2AxrdMrJh0u@BGO$CbS=Prs*k1e^5t5R^m(E>eKu?GryesW!&mh zk%Qh7G9_BGL^oE-XH$r2r0k>|%x_slLZESQgwBYsxHizFJdYS&BB2u;2tKP6V*FB-+7kxrr^ zEA>?L$n3lVxgJb;PUZ93-g@o7xUcu(ayrqF75gllF_=!Vvc>_IeqUrQ)PqESRqCDH za@AHdFl@}Km=2NJI>+YBhjgi+YI|Fz&2KcHb;IZ(FYBjDHD=d=U!uq2mg?3p9-X|^ zG>mbFy4_PkTPK&yYJ*Xt4TtR>^KPGWRR4XBaezcajzM~*9s)0vUTzvi=W`y#yPegA zd=f1$CKI3|_|pAyc9!OLSw!?gy`| z`ZM`0AOF2}k^9Ncc`1oTEzyk?yY_!yoxZ2`<#FjJO-}Fi=dPXB`|}}Fq9IH4Ud4}Q zy|`nO8HjB%e%U{Uwr(cIfrhNqga5k*vrU7}5UAQuKP}XI`;Y|tl4!$bjPcLB0wYlJt%z&pYW3i@oz_t@-L?;UI;LS%zH6T~Yxn;C z``tg$yFWhjID0>9uV+2$d7gFIYkk*%w&9&OeV)pO#f*GDW=R$s)NcjrlEK*F?y2J= zZvtxGxaL3y)EUpXIj2ng7L?(6Gmici%wXxpe0JX~e&5@SQy-|-4Cry0NGGV^2O8jj zbUaT7YE|gBW?mWmxj@yk&@R(}T7>5os-NITK7WJK#^2kFqej)uVUM@n`Q6-`TCgF; zb+QG!`Jo-HAL`eF%ipdw>p5s;tD0MLI6Bk#9FC3^1~kjcIb1$1hxI;GqxYe;;5(_H zP--nWpAYHAwBqI62z1DHH*@qRLa{V@H52BA&?QZDEkg4Y=$sr?i?Qlco>|f85Mzcn zhR2I~66lsd$$T)IqZh`t0193R{j+YQab>e%jW#^rXai72>3y1Ul?v3+Y*xd_U=4n6 z#PebyAJ9B2|LPH`?9nS@9`_wiWs?l_O{(ugYBqX&k&gOH z-&gD3XR6Yup4>yp7^M>XpzP1-cza70pyo98vF@u!|<_CF81?%FNdjdYP%u zTT_7&)|B73>`LU926Vh8kQ00s%3%uL*MwCyVLQe9GZ;`-FLw08J-=B{6X7GBi0XuJ(#>~TWo29dROve}L(phEW+CsP@ zTbedb|D+LXKJh!P<4f@zb@NOk{=QwJ{^DWJs7FmufjZZSRWYx4_R@PBM!mNo9`)52 z{)XQcY9iiC=y(PebyVAUpu{!e=`6lD{B8`I0Dn^7hv&YA;1lU$+0W7MJUH{GIM%UO zizlw$*$C_uJCU+n!5iGq$V_TiPs%nd)vT;(&-3DR{s5E#e2z zK9?myulDEMFOrb2pvllP&y%qpXa+>zhP76})9+ z%+VOf8xP8$F;1X6g9_fJza|>vJM^DU1@F?|p#|^JUjvP?GNCc{me3gAr~Ag+KQMXy z1{a|*_9isOiN+H`V_ecM)H@fekLZ!OOf<&+9j{-TyS1HlR=D|4LSwuY+~q_nI?HBu z`rbh4$#2`2d#4$DJanIWQT?o45NWtC%|`hfenwyKuFhNZ;kIN8^~hwSv$@2m`D&!I zjTT>9`fMA$v4yV1+1gsO24S{z*u`wzuN|T65>2pnCyPcH{~20MDayg`M==@@nO7xHsopvIqq!RIpfdV)Ix7*f zE4<$Es_U}lb3VIJHeI-d#&|sh2-%C~@9^qD+Qn7x+AB}qXrcabwruMRkO-uc-pe{2 zrmwv#@9O;cjn~;wx;)^oYEM_#GVNGEJ8O>5mDx-8vr*NMPfbv1RwC@4HwZP$_*#E@ zw^DyzRvrA|ppsp%qifgen%@AQKB&xsxScK4tld4=+Vji3r{hjt^ZniKS?B&B*)8SZ zbatV?vU|a4I(1iv$3n5Y4&@Vm#eb6j_4{|A64i!$iJ+3b6la&v>f5lP3rD|D%d&sY zmTK*ej72)hUJ_b{9niHwyG}lpRYQrN@zxoM^^s1Bllh-ar>~QHru=a0SCte$iefi` zKhmCG>9J$9>+j$zU;1CX(u(Vxtv2(5zYeHm7yefl6Z+M^iUy?Q^j(|gQuiBb=4SL11{De_4HmHNq^Z+lRGf?c-YifZbrI=B5Sx9zmk z`cvD#pq`F$<$y}{#Zdx@Z&PT9J z@MnQa`b^Lp(kgayRl$Yow+8iQ$cKSSe&oGBn^xbNm-^MuV?$$<(v_Z>O{mZpboG(@ zc;+^~I7`=0X&-`m3+S;8sBACEFZ>?RPWKr2{rLt;y+^T@;J^8A(p8zaC!kF=rad)l ze9757tQGiMgG%)fzIqI;w%Ef_$Rs-=&VRaHv7=%-)2E7}8r0jOT(^Kq`eYBs(CQ;| z8te)MZN%+3)opyy7)>>p*E^t6`)981U^g9WIgy?(8=3_W_mSM8d&m_6FFL z($A_rTes}#4O$1*9{e3ZrFJ_1-7SP(w))Oxqvv~>7`JgYw`f#BJs0`(1eMB{YocGx z>2lw#vui5->l6!(v4>sG{tdeB*R{xdO82g-s;mY|vUY!VMLMZJA8Z}|Z9p5iv*)_@ zD*6?jO$q)kptkt}^Zp*CU*NXh-TF~bza8>*2bJ{6cOm3U|Tl~2@;JfmZ`wsM}V9l5DbaaLm^0^OGvZs;*o*fr>b*j^Pu#X?^hkQdor8r;y z;|_}hzG2-yx-z1?5|yX1fJ*hwrktQ%ao(bW{$u}8;!?PU z#`p-*N%k4sylE9yVg9JJD{k8dr*SFQ*8hAI@(lvD&DUL$RgtP)2ldAwpZI?MYCn-V@ry{7R^2)GvQyzhW6Z7rIBj%L>1V~T=fOV=RI2xqLp^DJ z*Id>5tJ1!^?}rRWJ}-buap}OWowKPudiw&-54vxUUW9xjK_z__ri>=ErtxbJ{}8sz z7I&T1yWL(!A)hgJz4+2z+8og4UU65^753epFM)qFs5EZ$H@uI~9K6PZB})Cd_gkms zlk`RThgoQhuNdOcB|Q&*PAHt3W~_I**yvs=I$KaL$QX`^;!R@(ytY}cHcfs zKt6ASO7-5q_UFIrnz_5}Vz&?K>i!TK;}?)qil6@S<9-bkpNx9+{;Q&GhKNZwA zjyp7+^ckVd@5WeYj8p9S>EQniRH_I5-M5Fa8*A@H?nm0kN6zX&wX?AQgvQ9x zUb}qp@S;`~mD4FQU4Adt*i7h=9L>C>cvkpe#UBIOT2I%L$(ps^g>$8|S>XQ$RO+{S zQa8~2QtskT%kTV6K}(BfUxI%gs8oLm#|Iyx{hn>quR*2yD<08`&;Yy~EmYDo zak?Ep1oZ{TXCbK6P6r>3DGg{o1C>Zc3;pN&yHdGHGUxpeNq#e3G0L?9RI(Q>qv*7* zO&z?m!hI){aa^2*#<&FOr1vJAKSKSbliPc3@BfEl*Rj^=+~3>tJJ}=bD52J!==}Rf z>bO7LhQ=t#=}Xu`>paZex)7}*~dNi(kWTS{ELb{;B^^yJ!~oRSq3WkCtt^+8K=!nRpOa@Kl%mvEC;oJ zuQIlUKd-c#ZtKBm{B+xH+E0I5iE@eE>r(yYzT0b8AXsjKckZxQ>$`}_UfPGPLb|^} zZz(GL!UfJ$dW8^49u2&UQ0f3;r#jQu*>Wk3Sml8OxrUomS#Yl(pV`vppR%qSPRPwXD=}ph*d>nq^P>D7opG}}rJj-A9bh%=F`_hk#own0zJll$L z{R%2QXIWR!_i6Jgy%waomMm=jhbm)&6c!-wyfqgG%jq;izI- ze{F0BzNQ?jiRYZ;u;1}}AE>0yqJdlf(tZ1S9?mO1rT9ZE+X4Q)ppqXIhyOwA$jogy zJ9J53#2LkQf`1RFl%GGZ&naCqw;}CS=I6uNF7WRLmHa5Ts?U?g)Wy|Nb{~5*(K#wOtrMSh{hb)O2@fI`fJ*x0D4hQil*(g}?>MMbe?=+p)2YQiIxO&xfa~u8Qn@Jy_wyPjA>SELsU6E5 z*OmH_=CwwN6J8q{qg1}!4(E>1IL_GRH(BYQx%DIW{m8Q@*Evwh&Psjn)Ax>l37Yg@ zkWZkyN&Z(IE% zqokMMq_xzp{6Odgv|mcH2a=FZFGGVM&=?`ML4w~T(E3&rhe54(=W$nRZ;V&!&iXI* z^~nMavjScywI6$WkEC_*=78eT_s;|xV-?6L`BBk^WfTXCo;qBV`<=3GE$Tm^G3L#= zm+U34Uc`iR^OgFGWGWh?q?eMJZxTA2Hj?H;dMW)nugf^EF%^wbs^8p#AE-ZJUaXlU z2iSD` z>7^ujDYZw&VP4x#EAcbkLSq!@k5WCbqeCuZ+DG3mJ~LMR?i9@gdZR#plU|6zD21ADcMipfX;GV>cq*O`uXbzJAwS-} z&)lwW^;l?(0$owA_mYEzUJW$jvUcs(-`%%k0*z6i9ZL3++w!Ngx^{fxjOI;L6x`ZO zpf?KiN2xtdFj3^pb^eQ#ewK58m*k*&cj~w5xcHxr6ZZTB8eKq`l?w8Kull)z;c zrPO2f%=Sh6xs?g@#%v@A*(Xqwubj|e{w}#(W-p|6b5zY2UY>oq z^4%$u2{cB5CMU(SV8x{?1KL5)+!>Wm>t**Nq%eWrD9{5XyUyRyfxc^-sNO;S8c{Tp zHemu?RG<%r%BOL(?EXDQmv6dO=?}&-fyS6%FCRyRHV!fU#E!!0F1~nJBJvUFijseF z6kM}Bm%e}Iw0x3ZlH|3SK#LS;hbXRDDiiHB#W-!e)D{N?8fL1!9{g`VJR4~Iiw>mdY}$L& z8D%~z(e=2a74qo>D(THT=M7q~;V;=ReBu#hJ}aKJ27g<-oZ9I@>jK(!f28i5x5E}c zZw7xGP$|y)&C{{}c0R;yJveQr6NK5DR&KQKw?Mv*b~#I0K1$y=%b&jIt~MK$`Q&JJ zEBM=iO8U&7TjOh5?^YprZJQ!xKFc|pds+MRu-lMNdr%Og9Q?EaRj>@NMmd47_f&HTFHMmNw<`~+HW z4-@Xw){b=r|LvesoXFp}Sgb!QQu?hIyL>_Y4#;;GD2P#Z?f!?i(ELPx?<<$v(Sf^z z@lH@Fp8W@OV7K#_ZuR0eT~P0da`gfQG1QVfWX~Zz*X$UzQT7-A^Zp>oVaUP?CefWi z1s~F12_1Mc{WLJpJ|fzw;A8sBG0-?V@D$@Ip#z_!#mx009=_*;7Afq^3*C=yJC?~l zsJ5d)_Kl3Ajm~Dw$V5wM2DHBn{#!!XxEW=KOaw%DpUv0&JpBCNrQr0>$-{O#WV0jf+iZ^KbZM^TZ6G(9RP13KT8~i~KA*%mVtS zc)yTC=%EQOPlaYc+suOe;yuk!{^qRv8?Cy(@qJTv%Lhl>e$XU^?W3=ZuRjCS-cOPt zkDyIhF9W4_OH*cmL-!n%!k;txE@57vg!*e>qrMg;P6+LgD1U1#JpDPr&^| z{{HUxO{m2D{Ru31xlaFpZeD}&bX7y>*W#6e?-_hP)w@|y9l9In|50(i^bj$KegzO#_XH!@3;K; z?l^W$m*o#_>lV+tFUh%fW?>xar7_}H2=$liF%Eif1R4)2?u*}vxS#YtqRN`~u(lyk zj~jr$q4hrVc~_B-`uesdqegw?wcs%pNR4c+L-Nm;{DxE+?dGLWZ$qRdut-EKSJx}@gJzev*1^?fU-MF zpw$Xg++=1>zYR@fZ%}w_et#lQKLY6{K;MK~YszDz!cUXfjiw-|-?bq*c{$=Cm(W`b z?4bdpU`r9VKJ*sF^PzP=JY6(s4A9qO(LRWJ6{yWI79UR+3%`iNdxhTBdJ*zO^7bS; znbk3_iAn6KtNy6>xc zE?TI;cpstL^XH90#rxv%9--&ZeG~n7X)^oCxZ0vUq53zz8a??&6JE|;qW(kin#X|@ z)*$=+YCEPi0lKl^6R7zi^yE=yJQMAekY7;I&Lwda_X#LZv0ZQcP%_bv5akV_A)Dp5 z^pXWVi2hY7E0{{1;6Vk`=xYowqRPecx zF-JrG!gx>y4Y`Q!3@VsGe@!&xne?Ad1+(by(1I`NuYrc_AvEOMBsApNbl-UU9FzAe zgNx9RZzDA1xyBPhL*CFP^mRe3rlv>Y@;}o3y+APf*5pCGZ)0LrviVR#Lv8`?aw3(c z`Lxdu1cKe4Y&-3i95yI)pU{x+wRQXnKR#%KU&UR6P*`YTlC34-MZkW z^j|Kw^vBtv9naoKa!^tayBhh3uSBB$`EA<06l1LN*{aNj)wb+FtS*$^Thec*u}aHW zEwD(L)p95J02ot+Bm)u5LeppqYXd)&SV<=dvrPDNT@>B5mtnw`pB z)r?lhCK$VdmMeO3UcRz=aXTxbSt!*tA*bYjrEixvR_hqoRK@??&N8``GpN_%f@sY_ zrP;8wUsA7N#Wjr8EJ;>*Og0)#TnGN^?dkmb7aD%p#_u)_{rd${!xJ`F)7z2sk>PkNbD{k8Yrud2ks+Sb=~(Y{G~(Z;+^y9*ASnRbYFDNFuLIXL&f zvT_FXdXO&~RMLxf!(Y2}?G9raW0w*?-TF~buaA6UK&5h&%uFJ`EsluIZ1;;2U)=j& z1LPA6DwV(V`%SbeOq+QL&@w{(DlV4WIIporC|APYlrPg*P2J>*z>K65ioHZy=#Y(( zPO?wWuy9)CT4c=o{HDZD_p|2C`XTwYuX2fyuL-E+4~4hSF;?G`8)eT??4>qK0)H}S z**HS|0&U9QpcJ{aYo~fqSK~TOr=pyOu@sam6IAls+~vFJE0Vd3>>8_o%h|$ND)`et zC4G9H_EX&TBz1Xg{9#3(?)@(v`DEDhqsH-1T{GvWF7}zL_T7qEkgpl2)bHtkAWLJK zHl5-`zl-b-c2pfQT=OD<%uA}jVBBk!m{$A|+4YY~{W#IOL5S}rd(d*AM0}Ha5L(Uc#(e1&O1~%4LOH$-{F0p&KYE7xXXZt_Ebtt}r9R!-Sy1nQ zjD;OZ{fVMsJ{sS~7~gYNDg7nqt9YgNQBFaF z|I}DllcJOxtmFznBX$0Bz@WP2Rzf*UAy59wO2lDA| z&#$=r*9T~KfichUi?Yhc`FN$QT|3vO?3bG6{`4eg^{)2MG}aUP7-`dsZ|4NGIvdSAEd;gz|m& z-1o*+Q&4p>SRVNA29@-d*L5wO{T@g2d=v-8ycK6la2a1T)(83A4=UMb;SI@T*GV-; z1y7w*R`tcPzTm$X)Yfk;F;30huk`05EHvbMkWSJkKa~il;Ye~2r}KWDq-P@smwE~6 z_d&k?pi=*ZjXA!Y{M|sW=%e(roXaW2kN--}0g&$jP^rC5c-h!BV+sl`l zBAsqpLdhrpZpB2NN1OISPss4O#4j?o^ppQuQPMi@oG-N4V z@QSwk0^+nE={}`%s~6{XePPJMFYMj5X}u$RC;8dRz$?{A0J@zXRfy8k6CRO9u_kna^x>AAmt zHl1o?UY8y%xDfJ90hRP=qRsm5Sl@Bw6`|7}O*Y@n78>$oq?775Z^}ICx3<0f_+!^s zSNg3<>^1PeXV1^G^jh-Ur?ak{cCecDotLx4v)94@u036Ghwms|Os$otSq0np{SEL> z0F~katN6vVfL7Z2`;wJAZ2gyU;2#ev`4K;TRV%60anopJJ}aEP3I4b2>9nF}22;I{ zH+Snx`XWx}ek9ourE?lzR1|ur@hs2QZoZ9jy#p$hqv+LVsUG?p>u(My?aDvh{<%FR zR&8%J3k`W9$|u>&$a-rQ=-R%ui)T$bZ;MMGfZuOVcl*?Hbh^S}13mPNq8F$2V3*Tr zyjJaH66E_3R2n}3W!PLkb%Eq`YM=JZlb+|Vnf8m$?Myul^`G`XwH>3cbdYZz zs1&dLzgDE(V8yrgeCS!fEnd5`7dslV6hDEgT6_QYlqYTd0=M}sK)Dv$%g1-`n)h=R zG#3ZHk{I z#&(EbmALD*p&?84p1(~qPM5tDr<>ei8+ZJGa{UM@#WR1z{F&tM#s|Qk6#I1g9oF7X zFF`&(f!gA{Z@7upEy+QgZtc@)d{NgW1ofqmPwa+P>#sEFyE&aUH)h?zXOhx9whX@o zdXQ9(63?E4y7&D}y0>~=CceX%?EXA!-SJVRm*RC^$&=f3-xrU6J+*yxmVoCbVV&4= z{QlFPPRn0R^KPU1+&`wm)n!i)^tEIwz`q7mDj!Gx8GG>7X(Kcif#;lLvl9GX2`Y_q zJdJ*#`4IoE2aX*mxj^lhW}zXkMt+iBIBH4hy0b-X<|*x%^Y2Ge{Gc4XuIIhiLcTqq zQk?J=KJdG){nFtv@7L!P)Pz(E4S7A%N$rvLz?3lot-{#rKTbHJSH^QroTDa4_Gctz z8}OcOpwjc;<=qG!U~#ibW1IeILrvHS{!&n>9(+q?uhz9DD-tW5IH<(INVW<5zky2S zo4O-|^itY&;SbMkR@&RzY%}<`fJ$~&{OdOqceSB3;WP6B#igLW75V%MD(fY1YC}Nt zbxDYwHcaV%I{&^Y*#qU^G%nfWr`vYSSvqyTRb$(skKLeBy%)VyNc$K@8tubIrQRbf zG~^xjbR6X-hOfVt?14Dl>Ql4OkayYh^ZoJF3hLK!v^Gh8;&fgQl06tXxQ-Lf>fsLC zJjz~_>j0=kI4bA8#(uS+;zto|9~k$8N`92~+)=XY1Y`VuvHRtAyZ!_69R!v9#dq=` ztruQp^s{y={^z{@r1u#)IIKVWJZ%v29RZaHuZQ-&pZ^+iOo>aiEi~lANFdo^uzdY( zx@K&%p1M;hpVNMi>bGw7;&fg^9an|1V<=ZOC|W9?_se#Nb>GpL9#uwEW;G;*Q8lpR z_$|;frFzO6+3C2h9q#wcrhVm=^=BFE1k#-bmGTSb#L;)4agX+?^2Zsay-jB)!G8)= z^6M<~RLl#CCg@b3c7Hen`Obn${glFA-lO%y3w%d4?2+c5Tn^9P$xp!=e5l zN6pj5@48{io_z|sW)pTE>HY$h;!DZi=P15-jX1BO3_FkWQvFa4&h5HvI?X~uE(ZgX zZww(tUUNFbYoF3 zw0f-kSeh>{YEx^-{IwTod>h6Ddh*rCSMsCcit7kndIL>gk1esa?*fgwvXD0k%t1i|FNOJtI>K(6zG(o*0Zd9`8SA1(9TDNUp zmma0aS--&Ux6abp*NInwJ_H)MtTz)C>4J{KoyI|XyW*^Ts$PP+Ku;EE!=ZSl72Vfw zWq=u|syCNolKqh-L@EZ z$ma!>^)e&<1dUgW`N21o{-E>r53hxG+}5AdezIEc8WU*90^L^fKl4-+-{_e$vwu9T zUtgyFT3Tqx0*zPFXF`qnGEKTFaV<>#@XAxn18#}9ip*2(YtlTr`S78-IA5=j2% zJ-b@OPx~q90zFxv8%yQ)PKl!VPxJb}Q-6}a49Ok)L)m(;qajQEYtISKv4HQ@!H-=3 za(UbORuv6dl82ujv7ONEZdOk@y!hh>6%AP`UtZypM+5A9opZ+rtEUk=ms2XYSr3`G zA<)RB{E7z{`_X-^>6ps3O1l!qR5WDCuKk_&2t1GfEB#&j{EI+O7HGqg-txjH5w1gW zjY(I3@Ru@t%zsvls<#1Y@#m2&Sr&vva@J!AXgq->V9aPMsopU!4Y3>d=B*+}1l zqrmVbu z%bzmXmv5Ey%6Te-QLT@TpPvadz%1~IdQQV{aX%yvuXk}@Q1Kl3`P13s<|Xn^&?zB7fRtVX7Cw6}Q3<;!HbR}Rj-a<)JNO#?cf z`rdT*r|BReG*ivIfcp4*3d)(zjA}hJPW=9#QBRK>prnJFB3%+2-e|+~jW#sp^>75} zaIc)DdG?g={osuo|NG@kGGY-{#<@ZF$odlZ5=3bX|v!BxK*-h7d!Y)(T%pEmveI~I9?4=3I zoH{IH>g7#YD-#_!gwDu^4 zL#U!=K7`x^i4jIO{Y&BP!hxpDwC8&fF9;Qw+c!{VKTBle?wmI6&IU;= z_Qh*AEhK$%572^7j=QE$+f&`WYif4qHCP*gRM4yehoqFfD8t~k(G zPW_=cqZt>WiyG*LG4I9!?X?kGV8DH5it;8f^KiH)Q6J01{ZPG`@6i(3jU#`1?&J-P zSWZ}-;hr4i>ubdL^EjaAir<0?{R=tc(M~{KEspn#M&q|nluOVMpU8*PSfHafMtg>G z3$$4+fqiG9S_?U1dH*C*@CiK%3N+na3Csj*Z65aG~mB2d4-$_@QeCL zU*AfnnO6*c3)+Ge1gO(FsGyksmPI37M0bW3d`o{FqmlZ4S$MyDG}7-VE2D3`m}sYh z?~RN(8tD(lgEDBOKhm8+1xx6!iAMSp{ijpG&-8a_!BYBbppjlfXr$dFG}2{s-+22k zChu~Ci_l2B5gO?V;|ZaWhTR&PEnUOaB|f?uzx?lQNtzZ$y=`OpB$yrl9KKl~Jp zVsDCJI|C}JsB;tzsoeDbpfy_>f&8TM<&SvxsIKKcGV`zDS1}xS!Rz4&}NYREmSa&WYmdZaG#q zKj*VLs^7ZR%MFk(9#o3E2~&P0RGGVSn(x^dZTUB6YhuOWhW2ztYo-(0RljwuW=DAx zf2Up__@h8YeB(c96?u=ucizuDt$am^XI}8v1(k^R#?!Q$P1|(E;*Y;oW*uv@I$(?h zmEw!P1D#1uEhVkC?W=tKbndrh>%nRLsk>L5+L^k0K(o#yjYavSIOzXk5}`V2Bg|b6 zQoJHgFN+3$eNd_1yCgkYLVCH=T!k#Xk2u}xC8)Z^C;|pA6*P zM5``YD@8AEcWnjrOyrXVD%p!RYVbK)t+qIpwL+cGvo*KSNIN2(q!&+v8MM1|SH_aawdJkT88}-CyBYlL zK_!1ED!qLtp@h)atgT0s{!4;|MtYk)KVPH6)IKcf{aA+^H!0(XC<~4B7NiT+`_tVj zE}{I4%lDnq@A0~~yjh%~)mqxzdig^*^`miqm+ejyp8g0p-dC zmF;Z*0qQR${CB5VNbjQ@oVU}Go+({8>je3PKbIYElU?WY-Lg`=q7?4quG8^@mGqKe#`&L( z`cu(;{^|H)@9*}7d~bk;;KN3{ZOaAAxg1YaUH~XzQR!y1zq_6Pc9}FtZPk1Jz{6c7*JNk?mc8v`k z=05O02r9)N|G8?V0pHR4dz{UvqO87)X8pl`zdc>TE6b_9HLg6`&4TBgxcBz~c+Uf% zl3t1e>z7bJlKZ=)XX3p0_A(Ii<%3H4EZ@%mLqKC+`!;mhr|gQUZ9^j!^U?e@)IOMK z5tqK-`UuKZU@srvb)H~+Pg74va$oO{BA-E^vOPVt?p0m$8M{y~_GQ==Bx8?3 zzM-I!{~hR?HJ0YjjL)U}toeA(mc$+h|I?uMdVibHGrv{rC6WyR{}Z5+ofR#7Z4IG| z7@zlkR{D`{>p^2rBA=%~B|i&(K4~8L`=vl7v7?bX?e|FXQ;EXaGbq<{_VSh9*pd1@ z!>29%qsn&WyG0~>7W_U?DK3QtOShtZzx4C^&qKZ!?Q$l3G>>+(jX!gsT%XlS|Ex9} z2L9oHlkWMCcF=bcT6~fAjbdkR`>h�r`vomF#*++Wd{s=cV7BIs(0vxUPq?{@}LV3}Y{&T(8*cuVm?Ew2GV- zUCtS}-)3j-^clupMLva~lK*iOTJyd-zvMO!x*h+8S!krMLr$sQOP(D|r-I}f?byXe zbGEON9|!r~w(HXu{U(i94p*MpZd4`fdpl>VZK07)Kst%ATdrLh&`uhtl$#a%3}bJB zaXhHxFMj|DeQvv zlix!=?}JMI;CZW%b~&uM6lfT^%J-F^?uUF|fJ*(k+|~nj1&YJ&s@rpNQrYnl?b4hG z{!c(9eU7Yq|0>ewyO|G@r$rWq*g z-zt9OHqJYbgHpK-$z0B3I!{-&9rLhHp^xc*qnD0@=(~*n?5o|5omTYe{8WjuG5A>cMS)$!Yzm-=`)>^Rj?DF*YF}HKFKEtY zfPW^akZ-PCPTzM6 z2%Wz4QnY{edYBLS7J^E4&(^;|DC}BST3_&?qL*;?HTV~RhV)tdQ}cZ^uVG#)s;E=D zR^@aaCnWhv0;lmz?H6c_3T|HCf=YJgdvyt|yLfH>mh)b9em9I2gMSgIZT{M4oGSR1 z5+^Qp`JC!SJvA|?FGjh30+sYqnA3{p!HQG9sPC_AYp1^l{}NEC|57-ql>B|u-TMkM zYbgDt2=)W`e*_KLnKs!xeWw3^gOcSIT|`aiRG)S``x)h02`brd+E>Li-!t-|3WLUN zQsP-OTMGW=pi(^)AHH)Yp)56^3A@?Kc+6{|k^X{oa{G{VaFyln(tYA|``yr~U90`b zFl(K23FMRrA9rZuFTrVA_Ih6h!B&Gx?dHf{FVg%HGv@g&_9;1P{0!=AA)i2>lIpkk zBSO#6D$ZT`$I&Qur=)0&-EE)Uwp_G~@ga~f3g+u-!^ zdv)f$`O$tmt1~a2bJEsABi)Vrl0RraeY`<0ZXVaE!g3F*SteZ$+lb%0K&5)vGJVQw z-FIMdodM;qRQfOR{|SxM_sR4hb*=Nrl&8<1wCx_>jC_6t4e2H9&@(<-XPjUxFjwc@ zyle~jw}Q&`@O_WfbP5Sa!Ib=&INkc6^Y&Jf!;s8jf8Or5rABJHe&z8Y656X4IUJsttw;#~8 zE}g!bu;Yw^`qz~01^+?NkUwY~J-X=L8`r(OQ~6GkXhS2F{r!>2g#HFJXX$;EgL5=z z*^Z2L7Y88UAD~iPdcH>wLJ|I#d~f^{@*M@0`b)vd*KVPC23p?p>pG=h;AKJZ9|D#1 zW}+-<5d=z7x=iU8xQ#CwJB)me*z@zh^vWXgTi#BWt%rX)E~($~g8DJYcN|pGr}p)` z>jRq4@Y@S@8lltpX>X@bLcUXWIX5JHP4i3UrG9sEKTdTUC(b~=v!GI(Kk#r&X+XQ< z*mYMPJgu~w&i6Y>@1q>T*g51QHpWSI%})`1Csn^9^0+S7tARds9_ju9m7Yg59Xumo z&NI;byc7qB)44yCwQINa5Y#V2;423z$vLR$*MypyRxS9;r@t%XaQE{|0*zFli%R(g zj}(7OcJ}W$tyZ9s3UpApeOUC!I$c|E;Qg$)Fl&DyujVKw&`1Tks8mm$E&-ZPE;Z)M ze^JKaZtKr!JX2AbLujM|ZB^>GdSbjZ&roQrAKYrIcY$6i&{n1LmCi`sN9#(A@Ael8 z#oK8-vyYFQ#TPYQ7!zou0-Z@JU&)w92{mrd11&##x;kqLzcz`lGZW~g$uJZtP87~f z-=ybt?X#zDcaOE-h$p|93AE{W;fJC3ny8e;3AZ$TV#^h*R_H#h=gnpU-CCUPA?4@a ze2Vrreta;$UeEK^K02Pf853xv0$o&!Kc3T#|Kf4J_=xfy!RxSJuC^;06X>M^{Z!H? zN5Q<&SWl~-R_i{#sA!~8`HDbB-&?V!m4anPTPoKH=w{# zpi=$$+U%iq0=FBuIXe|J%Sa~BNCo<4sC*~ePrQNpyC$l`HpR{&EHu(c%1p znqT7MROvoxD4co0Uk6lbS8@+EB-G8t7jiwH(|I?$KRAm^c6)J}4#kJn1oe8jA<#&r z`tw&@eOwoMk?vDkr|rsxlhbMWB)c``6zHV_{Zz6GbG<27#1f^S<-EOhs~5E%;&4Nt zkxI`wx}@>l>B${Rd+WSED7}x0?A$)f>eFLGBMtd2N2~Ul=r|tRe7TB7D*0dGl)c9> zeh6Nmevi|BfqVZet51yy^k9L$DaYNXt5Do+`Qe-Ge*8m;gVC%hUX%tZ>BZmi45hn{ z;#pd$Qtuw7qLE7Viqlr^NK#5`>k3&Xa1*tM{sIq_S4=nAb?o-D*2iByWv#6 z4OcHezEnl~ugwG+sX!N%^jUJ-)wJ%yJjMQE_dnJ7$e=FJQgxJ5ic5Lpy3%)hb75|= zt=^s0gKF0VSB8ADK_z=(SyvDWwAt^u^z#e?EwvNml;R7YCn5zryR=-{eSC!WD9}g+ z`X-Va;XQZx!Na=t%BnvaetJSVWhKKxBNb?$lHalgRSyL6Ocs7QoEg7ZS$=HEwvreN%|}vbG6aW zI$d(dO+UMyf062ysy2+>h8yicrRN+~o0a~M6f@fvcirj5X*|<3DejP*Q7jjNbp)04 znfKAb%b8aA11Tn;^h2Dl3zFVP`MDh*1@+F5?{-kB940!pHvJR2zE$LmU|qo9)t;`X zb}WrI%}bphblXlluLp?3v;QypJq0E7ra=WO>92%dyNZ4q7+R}|b}Cpye>sL0N3UIL zJSFtnxwP1#;tzLi+?|`sCdYrJFDcC8XkZE%KvuHyXpT_d}?$CMx3upvflV zy)2ufYbF3CwpKPrlS{#S=(+LrGC5gAkp&uWH01X+V|7gUTcF3byZL`awbhKPID?tg zDsMV|i~B%fZQatkZ=&?g|No=Y&NtEh2qkmQ-rBjt(%9@T={hRjo5ay*Gcq|!=2w{< zeeYJFbcQ!$HH>cmnr1xTLQq1-27SaR1-xTP(3E&H%-&Wb@zh)oR|48!!%IhwH_A01AkA?jZ3M;om zk#B~DuFCy1lMN`n_OfPoG-In*(M55|Sp9Qsq=;*b-SPne`hA(rXp!UojzhAUiPC!m z{ClH_M}j{Ga_6v#*O0&i@LbE`dL{oCD7!p=#(Kw{`u?>KGFa)A&(J^ECC!hT&yQp> zKV^TkEzoZ_DyX!UJq!QJV(W}Jw_enzu>TO{aV-O=n$5U88%3PddA_rnL(VKVa|T_B z>C97=u9X>l9<_HCP*pR5)(dp=S*fhURfpg3c7UB7Nd>BA$o}3jrsWA;*#MVq*)k3F z6GF-5_d_VS+%D4Dm>tvqykbZKGeMfmC9^t31^vekOk$@ecQ`${aWdP?rd&N}QxmrL zg z3O|ZxcmHwyx^K26aJ@_j@$vG;vr&d$EfI1ia+KP!0?js*FSU~72~B~vn~eA(^bL7f zDo}t^pnu_isTLaV;ItPXO}nxYdv4Na6;@Pj%u(iFYs8v!JvM?K;~;nFH&2gz31znI?^vW0&jl6ofZrF3bb`jg zKcH_5ZMHGqC-`EJE?P;Szy|zQbo}c5u$Kc#C`Slgna2^-!>mL$)Br>77DDIc{x0HZ z$o|ao5!$b5SFws7g`5$wEOSP6`q#jc&#Z^8b@4k2G!itH9nD&CBx^+j)Tbz49BXXC z+J}B?<`v6~W;LpXcLo*wMt@B-+*0~ar-E(tcWA+O`fH%! zRv|Rpdn7d6-|4>b_8lhgPJ@fkaPJ{B++D^KLc@({9~xb6;OdqCnyWt(PWk_wapE>> zHLJ-Wq2XpC1-(*S94+=l!H>u9(b*tz*P#CUtXT&!ik4=H^8YNqJCH}=dD8V?JhUXI$Jp$`3b+EpR9QyeSJ4C^=ppTLhq`MbRl_8er}wxsR6x5 z(id^Mt%rYpR->$(;p|$Jt0t(V7vELqe$%zevu~<6ur3qz#o1C_*SqkmM0XM{-zmD}-sLq_Nsf9ix;(%mlp3@cRt8YTJ zjg^|5Qoa^Pv+I#hZBP+!=x5=qzJx-c`7hvVeYdkxnuUg2$1bODZ0|$5=B0i}b#)h* z*NXdIq?77Bzr#vG(e)YnoTJP_JD*jQ;vD7RJf4+J=hTmU3(KYp>UB}BI8e#%fr{FB zP}KTrR(rtNqF5C8>w!x4;@>uy>}A6b&pkEm55->G>LsX0BcJ-9vR${FOsgPD-=xDv zifyx|?q;Di>kQh4_VSgc8)xom#-UhaZC{TXfIk*g@`sZfCT>Uk%xfm;nK+%+U#Ne? zU+>-@oax2>Rjm=ql>jRDm)6D6>a*|_FSRZgVfCvxTNsN6e`8R|k9^_VX?1y|@fG%R zR#q?nbe!)mK7K+fxB7INZivnQl96)?sN|oe-*2LR&z;>K%Aey^Ryo#YO~Bt2RI)RU z+8gBP3}yA{*3R75Ln`FU0F~q^9oEO_FBz-Z|FZc}8u-&eB|GD&ucgK){wF2wx|h?L zKe)A*JjKp5mW6V?11iNcb9a^YX{XV79U8N)cy1E^-4+_|9k?&qi(fC@AMnMuuR1fk zE)({|*}Adj;O`77=`-e<6~F7gqcNW)b+1}>cepQyAz*1Okxq*9!JX^KJ|n`H4_hCm z^e37z2L2ZIbXrap#n18`zS{NT6-u0lWZB@)0hQv!Cv`vDMB*4<@jg)M-EF(#{wtm{ zdr{-HW})G>L-{1XE&S}m-)T3VaZ1w>Wffo(3k~;HyIz7%6n(2}Tj*%xT04~XHrhhN zZG&`@|M^;0+Clzj=yQeAZo1W{W<$f3@-tBg`09|wioZKwWhK3jO60b`h0aU8@{D#wZ!Oh&GJxOv<4$k9zS$&4Fj*zbt zs1zrH2O`#zoW^Nj7itxY+j`Jg7s%HQRMMx`aPnW!XHXf3d#!kSJJLz<#s9})+I437 zLqMrNxBlR~e3G6?GWT(*JIeJMs1&dLvwv9>@C`_;y6A^%SzSCgiSJfx_wUQNFUeEd zX)mo_3g6P}m3>vMaTHJ2#zMpGgLINT`NnN0w5MTbqVB5XvBrs(cLP?aKwxhJ(ubd~pcX-+e<~diS8mn*ZQz*%lh^V5F1mEZ_e&)x%*r95uR%HJ`-U z(kwLG0Z1q7`{77JaY;Y1@rss}l=;Cp3k~;vq?7D3_xNqgpwC@Oy?fYw;O`GA^|MNv zzelST&Fj+FgWLYZ11MKMs8kQWJzvnS!8w&5nLhfY5(lH$gW!J{RMLyNTSm*DK6-Qi zprX%kHW2&|f!gMGFX(Pc=kZgrTSGF3{;rO1HTDR~RRAjaEgN%uIoV4W^E4t!&&27x z|DwwIDDn~CB_zA%sITU8cFE@p9)q0Efl6{-H}UZj-M9Gs%%=`lu+0-a4*q9AC4G7y z`gT>o82;V(f~KGkdMz~Er;tvvPrmE(5n3d0xyB?ph||NK0RNMqQoo?^{a02XPN=Kk zo!X1qA9QPS}i$zJxfcxckhsm9}=pUHcct zMkAjwpprh>>efrij||kUuP(VCy#o1O1(o8UuS6phtSn>Tf9?Y5C8!r7pRu5l-+Jop zp!st1TB7LXVvnc8*z1t*O;AZM{*7Zd2DC_Hcj{G&KSZ!Mz&{RDvNQhu9lK2B{^kE> zTwKTcEh=GfS4ws&9RNGueD?*n8lg4=U-cG`j(fI|{e=K6g!I+3|`mhrJK} zFF+-KD7>cYZe3fo@BQ-Au2#O^Hf0}xf08|2(e6!e>l$J5e_KyIMKgx^!9NjHvg=}R z{(7JV9Z>wwZN0ni7kmi$rh`iQ%w5=HUqCBfHTdk;hZJ;;NH!V#pMpyM$5Cy^w`bMw z{#}_z31=UH{}WKT-d8l=AJEKG>ecUf9t#b3nms?i`Tfs#>oYTUOi|)z7@GqAsi0E% z3cs&U{Q|A%67;j|=!)*zKc{g?Jq^=ox_srkg&hs|D(ICHTHoU}{&(ryl_D;XHUm_O zyWNAngSD;ed%{RY`8mDO1-m3V6m(2qIm!Q&n z{a-w1oVqjDv`@)yiPP=8R2Z9$eCB{kdhsr~mi*nkF4XsFr*X;d4|5^kJW!jRX_HAW zD(bS+{M2^ZsXwUm1ws95$hR0&iu1W~jQVw*Xn6andb(NyTLAt=pmM$6^*DW(DH^fz zna&3ldx>QW!Cwq2<>yJ=K>lZ53zRtMW#51w6|70|n#WJpXwSAPla=Abfc#l>Ab zbKn2`7Ula6R4Sk6^;O46FSYk?PnoZj&+WX8TYK@a?;+n0|D&A7cBBh+`jJzAP`^(H z^(Bz+Cs3RJC4Uk9ehqaUXN<#nH@pA+jC@vuO7V`P3$L8=$f5n3GQVU;!`FMmHMq7^E9HOTlST2 zvPkiF_jbJ!`K$t!;u1#%XNG;Mal)sHD#}ar03Tk#hkm?^=|8Dxw99|Lc@(f#YuXJS(#p{`^Htws=lrf6YEDz zHF)zZG+coeCDpsHw8Ku_YlfxRvfmB0Hf%HWxE)kV=YOR8dx7G1q#dyV!J4!zv=-EbH9_S(}Gu2}GMK-;!=-PxjZ*7|(T zmc(|0e~&%ghKA3q3HZ$I+m|Wp4&BC2r}0d+&oB!O_fN zbYt0m@E-(~{Jp44kL9}NCo>D5ugvdyY-qSr{duD*kw5r2db#8$l!JSJaOSsd7E1CP zC34-L2tpr+K&A4r3RS)cXg|mI`fI^9+q{M|Io0|L>W7if8Bp2ZwMDcpHp3M%Wn*LyG0IN-^bFF&E47U{HKuF4t4jv=4ZppstvVVz279kua2?kk(U90&g? zyPUoU8KH6dQ>jDvk<#9Vu@m4w2`cHOc=UE!2jROEr%bBfkDT`BRed^5XCL1>v$K0` z{epAQqlQ2&=`*eWGuw3SxkekFZ&XfcHzRClxKck^(`vTkr|uB?*@f~yXXQ&+D7QDp zJj!LbQ4Un{2ha6m_Uc-gp@2(2zvQfZs=a7ToTebqZ6$pN8!n~w8pgHdoD$~~T*pCy zhFcN(l>EIgIg7rp468iuhL4Xc>rLaCK+pXf^j%-!1GG-nygW*~={{b&(};w=zJfa^ghy51iJ=u z3ba|N9`Z*;uB3I;ygyhrUATpYE6{DF^5y29`w8`Mp-xZzr`vbcAAEvPoUdM_2(OW?E8Svkdt+}yLeR*8|6nD*hgAq2bGSM-LANggDM)Xq?f!A z=Yoi57kggO9(M&Au0T_T8JPZ8F6*rBs~DM^y8V>3|D3yFG85>z@kk(*&-Yb1S|@&2 zv&`}jowfO&+xERN@)78*A^QXlfw8=2eNY+4MKKi(SCX@2T-ZTg52d>me|PJD8cTwl zsh}Y_;YS$;Z0~wy9y)?0gTD!=Bxmj$Z_#%P^b5-Rt@HT_Db5*HXrbW>bXzIEqWn8( zfB*k6ly0bvo9F)meXwjgjR`bdfo>bBKW&M%PTcpSVrS0nMXf)9o+}1;a=bqE6yZ7m zEmo=@Dx>qbq}IDz|I?u;X1CAM_>I(V-e9cH+NStXjN^8!Z22NsHuA{1niytYm5*$v7( zigSO5+AMz%=(z%YSJGSF7pb)FNgF{cu%A)J{Z93wj^CZyr+pq;py3L1RH+a z!1!*}SG=U2h8e>I8g6?jfhhbp34hROAxkq~y?&h%cO#iV&lTvl(tK-hLI?W(UTn;N zUZ~Txo%UZ;eFk-b4lK}`r8qM3i{Z3>&}-}$ov+wSgbfW>Qcv!lQRKJUNUHZkvM-`QIfGJF%_1V(`LRIpx$F@?UvoLD2njifcibM8EngVx zjT`+yrE)~fA9ES=QLpazv_ndqk70S>zZ(?95Qn2?w=__*)p;rB^GlK(^vW>S2O0DQ zmFkzHiJOX8ptRG@`!AB+(wp3Ve{ecquGV`{FW5~58&t4|{z~Z3d+DcvDYuVkr-J?T zmt)Ftbm#-dQ$mN1sibLhs_tLa_k1er{^mX1-`ttSQ7Y>KMY(GdGu0!|D77SJZcF+! zo4wRIu=~xEKzCl&ob$0P@HYd^0Gh7OfBS%vIsv~0x^uA(^h4#og^JABhI-?w{C*zj z((PIUeKDIIuF?BYjSsR}9TT23o1>4G&*9H2=Rl4ej*h#Ov2V6F{AT-p1(mv3ltX7G z%s^}odx1bUGp6D_gl27`Wv|Zx$|lgHkBj%WKt3UAqBCyHfjmHyZmr}i%I_2Tv|XY=s%aO@y_8hdbRn1KBXP~?ps0Z;o z)4H#jR~9pN#n=83cJVi;wj6a*X(r=`|E2;BR=iKh6QV|Mree1g=o{#_KZtw< zpU{s$j~4O@^yQ}94^}sU+ydQI@Tu<+D8Ayos7F8es5~5vSNs+9C`qqrgs*lk7=H0$Ae{qxMEMa+zAA@~#Rz2;x>S>D@N3U%l z;+u#!4DW5u-e|t}_2$#Ec^tR}@uqeN{oTyZ3xAFdp~ai!>#m?jYdQSAUQqIL&Af70 zUZpvCl~Ne$9q8%3829Tq+$U6NfhPU8^oU3=$iI?{A&S<6gr|j?#Ot@KZsv zSgi3GKBgJ$E98$nU!C7?C-kKQMOgS%bC&&nwH*zzGkAQc2Gs6o-k;ZmEilpig};jDLLU4klxyy9f-jl3 zKZ}!aKLPRzwCF_syIA;@pyK_|^9Jx~K$8v={wVl_-z6~7wCB zas0Pm+>hsSuZ`vQes3)J1v<6(jdYs$-3WY;(=X(UNBmUf7v&Q9iua563L0wESRZ-pq=(z#6&z?e$D0guKyhq#*y{F(0>NF23 zI7olXqEY`zcZL=O>91on>SK>Qmf;?a`VeJh^z9E5?No5Y$e5#1A2lA7L8CrKcLo(4 zr@tl|^$Ger)*V0o-Tk+*pXJAYgGOC0^xUU?ejwoOn>g{?=b430!XMvbtv*cyzckz9 zAKIcE^W8kB-nilE%o}1Ue_DYV*jLBIHF+tgLmZf6U^tX06(ke_5{{#O_O5zx%j zIRY1G7Sn0{sjK-k>#V%%A*W=&`L`}5l=YAM|FY?tXp4`t(b+@bzYbKgPtWcbPwCpG zyZ05GiBReRO%Z`~lD&9ue~`X9{Y%iAoy{uR z>%m#NLE@tuv=G#5Q{`SA&TeAD?m1fsHUCDW3&mY6;)y3{HRkFC zzlYxt&Llq}PPhIS)NevQUQnt2O0|CE@BKPVuXk^GC0@H-#iFq~$R`?9DhEd`^cEbP zRViqj^^OF8UAvq`1BTI8F3lMKOjBmPo$qRu{L9GUKcP{3q9z!-yp69NZohJc`T@K+ zPTQk=o1Hnd&xKN)qb!4Z49{3=04mi(?rk3Wig&I?jmZzzP*BriUCw$3^;qQ7*q&eM zf}XUBh4%ivJp3AEH(m^D2>v*Gy5P_vS_MDSm@eO<#3kqTUREy}YlM8_K}ElWe&+7j zeMslGFa7Gs1jyGER4RwxL=83KeCD-Qe~hz5ute}T0hQy@7YVdFq%C!{4pz1LjhxNH zlE9w~D#fLQjb}E++x~7)Z-IPTf=cZiM^DChMY4C|bRR#R*|nxg^-B49EHr8w zBAb_O+!*#FUghCh5gndC<0iulVJAa$~(pKQh{eMlHs<{53RwHxEa%?*?j*d^&(i{=m@{ z&HHCAP+W4Wm;Z=H-6OR7;nJg7b%7qc+V#m%W)B#<>MAMiwDb88)y{55KHWeiyJuB* z6N-{~sd{nlM`iPK+iq&CJLG#1RI;<&ic59|v}KDv57e(&c3wkkZJ|;3w5RiLK6N6% zUKn+v?v$!b%$snw6bp^I2hvG;DZHnDsdWmKbe}k#$4|*GDV=+L_JVx(gG%jRQM10{ zl$aCBs*(iO8~lCj>59wmTo=#=pZR%T&%??pk64xm{<}eK@!Gtv+KbzIckAy#y)Wdu z7gTC*OV7-v)qIC%KlxbL0i}J2w$P~WK|0CK_^K!4YxUfNN<4Gxe{S^>X3h8Zx0f%d zeSK8ttA3X$ayqxq3*)yQHURQHV3)Ia%UBwBpdV7!kDRx+W&OylK7;x|$X5U=^^5Yl zuBBb`Pc{DFL_uX+oOlTQ4}(g2^PA{P#(m#jWt{5P--CKS@_7VQvg?Fuzb(`MEvMr> z3i+M{mFlT*L;9M4W*jQ?&K1f$Ly~o><`eev<&U|O#{I^Xe?sXGdf8y`4*`|xfuqgr zF;>^DQtBasJqG^AK_!3p_PBjfKx2l#f3EnETYq}90TKg+Ld@WU>|Cz}*b8|Di?|+^V!QVVQ zJa*~{!WHOmgCeiypZNgdFyHo$7+O<{A5Ut5*>i(>B~{1iy3-Z{;& z%ve`>;c5OKK)(+mWxw=z>ehf(ej#?>RO{WXKRf^NW}qCugp|fT5tqbiOdGMi@?9rR zDgAT;`xxP8LrV6-sjnl3^u8(kFJ(R?j(vjgpF&E0$>;rz-lsl$aB%f;2Nk=HWit`J z7*g`{1$m?A(EO5NpT8>OEVtt&r}dDpwA&Dk`U~hO_2c|K0$Xs^lyBAdu+cUewNwvf zMf3oSzZ#L%;jCZuvRD?&vjpLhmSR7hoQ*3!8^v6 zeZNT`T&awE>@;dAe+5;h(Ku3jlg8JRmGF7|j!Q676CCA-dlxBiBJ zHu%i~{YH&lhu=-%>u9a#{RP*h{-I#pH>U#HtNXW3oP1cXFUQlaXFuS)6jEvrY*+OY zx;B8*$fR>f(*#;BHF2rZkGWq*_7n8`8B!`2PP+&aOtsxtO1pKw zj!Y^qO2Omuxx;C_tIuN*Yz6YQ7E!fZPJH}uP_KpGP2po~CC*ntO7$@G zu^M7m*-~ZP>UKOI)K?>&HITBs9Dd{?ru|F4)?NqwHrw?q`s6-(AFycpEoF_j>oxE@ z7cDIsbs4TpE%E4e4xx zl1qqWClC_9E4*k%D7?7VZb#j*}zUF63)Bq-+;iQ~$zv>1)^dlkaED3;%(1_M9cX ziN~lO%wvgdJmG9y?%qDb^^9Qqpx=H-$6P4n^nmUQ)J?m%{Xxa9-OgVJ^#e%fIHa8aF(Z%YzPZ1h_FNpaty?>Y@Q3VrdTy9` zQ1_W%4<1$8kz4x=>W7ieF}t3=)O*Q)<{0mf)ZLGwEE@GuyPjI|B#LJq_T9kT+Sy-7 zryMfmCqR??mr%Fd=I;dZbrMn+6sO5?1l zC%>ZShZ1A{Q{64Zx&I9JyH5KtuWdd=!;LP2l=9(i-sY5EW)^rgWqp?O@ou=D8moW{ zVs`|o9!gJ@(R+&poW?2XK_%#R-Kg90jIwCdg7z%+SDw^{e+F3G;qjyAUd@`Jeoax* zi3xhOpiA4{2Ncote6LN)bE8{5oz}a(UlH_bLHm;W2Vb+IBYMer|L*w*qpa@;%>1!V zOwh6g4OgnaqHSyGefVPsyEgkdGJIV#%V&Z{Eog#Lc`nKMqfGZ5U-{N=Pgh~la(Qa) zEgH3;ajNfuv`u++s;xS0d)^fE>a)-|y{jtHI`B}6Q8k1YG-}!I>s5Lhd)UVl6DU;skR%G zd8q^@XyAe_E!6|d`heC)Vq7lOD-}(g<8hswZ(}?kg$rW$97#_t<%xB=R>q&FCI3k2 zIrlG8{ZKrQOFiATBaMmOgz6%nQae6;jf02>fzR@r#1$(v>L%5 zKiaMM3Fps8xUFf{&gaj(ws~4Xqi$%=Us<=&zXi07ar+nF{HHRmOSEXz4G>SN_g!s& zqun&l>G#F%>(2xI1f5u_hw`>dR_NMK&0ag%Z?n>FCx}jSkDiV9`u{@d6e*elfM5$0)j>@wHH3mXQq7N=aU7UThPm; z{QGt;9I9)P#zceqe$#om$mQ&OoOE}m5{()xn97UO;xsZ!+aG-|2dg9nV= zz=nQB+`{ja=V|BT^6+{O(Wq1KL#RDOjGdE7{iez78mrX9KW%6B`T6G1Ptd)ka^brJ z8Pjf^)c2H;Owg;-5nr;ip*4ps3~1Wh^xmSMlD~htUs1=O|FnJHsXXUIuq>1ZgOtWM z#qSJSPUS+!BUP2}Og&7cQA_nuysZW8_G01!k1O`+^!=?`El|G_*{d2nOhx_qv;b~HESm7D^E74+&&ngY((?ujZ7gnIZocY9Qu@@V^ z5-s*wdiZ{0#Y1m>F(r*t{yJx~;Unnyma*vmGjAUelgo@s(|m#=n8nYvmXIw#!(=#z zr1y&^t!*;sg*{q^Sm#+9J2evpUzv|_`j`B%SwX)eFd7KHC1=&N=b ztVtPMAEK@%?O)qy{L73}J0C+nXjh$DgXYseaV{vVAsVDf+p8+*t_a6OJ_L<1k9BVH z1^v@OH_Ky@)#>P@^YXYShv$RJO*4)%oLh9*9A?1(=G6rqas~s{EJUp}X=+4^G~@g7 zcshqbmE0l9ANTcSARMHY&gy+Nw(eKeTd+aKu^jYJqNkeoC0b-_z|%iT=h zD!+72{T!Iasjyu@#jF$3i&HE^G*_;FIy-#2*GGdgTC%0)A=-H4y%&pbv}t<#IZ8dWgPi>O<|#^xHdIuu46PEA{kdL$54u zXS32-ck{hYHm57khTVA}eV~;RrF6M*big^;eVCnE_M44-X5;>#oZcy}w`69uJR52c zf@*5&Yqje$b3z^LQMB8Le$^Hve$2uWuBrnGlHgLhwZ zB4h$H_5|9RA+;csV|@RzfwRo^JogHtSDDdbZ6n5;+yx~A?_0cJrh6ykH)#U z9?b?fec?fUPBN&_A-XTuFOzMG&fN3(lgZ4p@sqg^FG*(2Pu}-@r&cNK#_iwF>9aPO z#gAV5ab9^c%PB7#RV^n4^(p*qb56&NNmj0d&Rb7}6H@qFVW*(z&J({2N^UY^A6`Ce z1NnOs3o%{zKOsT!-I2oS(bI5WChiaEQ_eNed26Pk98=JK(JvLG@_ejT`YE3{PhsZr zn(E1%2LB1#Q%VYNr-P6W>X!sH)hy@OB=ie*x~f_2ny7D-OEGBTJJ1h_^nIc~7X4y6 z%17igq^IGn`rhZY^y1?yVFx1LqTG{VKf->6KH^-oA5d|-iS`(3UxgJb7~|MV^f#Qw zTA8j4FT8~QI;OEsj{QBsJ&iSjk}}55RY-O&ywpgT(^xMveh8znR;4S$3NNR>CXMw9 z`cLP=YV>z_VI=)EXslHSvYWa|G}h{L-MD)VGi*&G6wz3_5sfv<_=RY!6K)JWjg;`} zmH&Dg9N!#RSO1~Wt2^eih4L>FjaA3>&{G?KiuYIgzW8U_bKzb&o+m_Ojm335^cZLU zEH-KD@IrYb3|>wP)ffOr#^t68bN{WqF|F-7%Bj*cNTkA9?haj-LW0Jt%6> znti_C>ZhKjXgE zSL0QYimc})1L^BX^RTZf5^qB#(nzJi-2DIvs7ekUL zsafl2z_;<`NjpBOZqZly&uP|qB*Kew;-_WY+t9g8G;F(K)j zm01zDv+d4jDZ=X^L}R@gdJ2C*r+n37>VXm4QvX!mZpT`*oH~dn+Alw)djFTab*u~h z8bC^ZF!*TkcW}r1E&s)Xd00J!7pv>#dSCkht)BUp%`TleEueV}3dK*# zYAd(1<{=tuG}4pGGynHNp?a762ZeM#8y#++?)^jz^b`GJ6`XSczeKZ=;psWoQ?duT zrStX|9#3P9p;t1b^t=C~o;w2C>~{HGuBo9=e_OCPgl`Hd)dPF-L#p??FMcbnw2Cs@ zo@jk#5`UKTW)Kk#7AXO$)Wji@#ntMt3S{|w5Xxwq^##Sc2S&+z(l z`*tR%C!#!(ASFM@S0kC%%anHHu~wyd5l_zF;wrl>KM~#@ocsB6lRvlZNMk9;R|ce{ zPw`WghzdwMEhmhsq1aih^;KYV#FP9|X~x|3y7mdJ+K9SBu`}oOE|s&90!u?W>5!71 z!6rYDT`x1<`tMcj?4NJ%k{+g>nb0pAQnEAtRmmc*r&L}PvNmgh@L7=3@A*e>T8@5f ziQ>=Pw+DCQtO$$7nq$i!_MkSeU-)q{gMR;kl-g(h&}KUW1&P{ged3r!88w6XdRa8q zVTdRB-QY)m9MZLES-oz!E6MWfJlIVv58=i0omB6fc9QXXX2n0Q4&NO^Yr|S0US~+j z?)^h9pcYCl?8ahJ1n;|7TD_gjMo>#V2OYZtm@SOS2 ze5BI}QnE8|e0`!HXvG(Ro^3CeF3|5bNU8ozDz#Rn(Y3eriL{=dd9Y;G72$7zle{JslcSP}L|8)I@<}JBeLA?O_^@Wt|vupALv})KlbxKF} zo-*EbKR)Y+boxU|<+83(bz}a_*z5eMbLL;1`D;7H;11|_kG))i?^Gd*0jpBJWA!Sf zTxzpB5&kYn$xm=O-gYY487>)x$t# zHGEJXgnZp+&!4Z$P?{G$`R=DVsg;%SOM=UJMU4$cIzu2O`(!gml6{)5wJTZk)jU|7 z%k=CtR;m7qd$yj6mVcfO02pN3hRmnq{qw{!>R zeqQP~NV9qtjnxM|<#I80?O_d##keWfJU$QRwP>s(5leu?h5jtGZe>nmvN>k3vfJQno6S#@F{7d#_ek`ah@b$nLM5wIh4H z$D!X7kWzVSFW-G6pgm&fsjkj*JKq!3ha;U4kW#<0tM?dMwWxhe_}+O+|L1%@M6z2W z1()s5>2vWTw(1E?Z~96vf2YC)}TF08{&5^I#@K;B3zgBG3m>`o}SzT{i`c} zH-Ed`6KEIM>(O4%Up4|RgPoa4!^Jt)aUG8D8Bm4wN+w+lmJ*d>Xdw=GxA9L@|-bB9M zhLrupOIsG|+OYEHw2vDq{w0M?Lio2JrS|7HDfIOX3SlM1&fJ!Z)BZ@EpU~Jl(C-7g zo&_I%MY|8Qx?%B$GcQuUwuxtcgnt)O>c@N)dr`UU>ZiZAc(?ML<97V1{Vy8pgsGW_ zX&&tOsh2CQQu@tk8;w<}zsR&nzmr{0U%K_Daf*Gq9ltpBXX;mEPM_ljDE+3>^oA;a zP-9b3Z!;k!`!wInXw7z9{@R+F%Dhwxn}+b8*yBacn?%&uL92J()8wd9?@??z!hZ}Y z`KA0{788vpfhIN{+^^JMB>M>AXFy7J7Oc?YDAk|w`R@7NCC@%icITIz)}Klh59-Az zkFOx5{-G$Z&7y#|r_O+h<1SPDd;A*J?L z(ko?6K%26%a*O-a-RIo;L5+QZbY??Jb`}{dqxK#&a-veVo%&CEy?=>x=GgNWnZAz3 zJ*CF`xaEpnJMWLAc4?&G@_8kw&xL;9KuYb%JMV)ny4J42!><(|Qrc}ji^lpj;z{)v zcSUFV8ro;94|!YhpYF@kot;J4XsnW+`PmYq*b)yeSsO=-;aHVcuOIr_CB;?{tn$!x~O*NuWKkYm(J{a zgkJ!`A!oaQk#yo=(T}YWvgJV(7QT zuBZ0X9GZ8FG@d(FDfRBwzqqw)&7!gHgPzj(Iz)HKxs=7?cP{cR8tXP(m+IYHt>S5& zy>>^B*Y3E8)d`E&#-g$QY>!u*`X=pW)a~2Pvf7sG)x+Xtu^(~%6QtxPiY9!2Q3)<9 z0I&1BEmc81W#=GY8gG%$P%~m7)8hbp}>3NzzGafts#yXbp_U_aV zs_oWodylYatQ(L&$uE^w=uY#dL;BZw_0p}%_{I5iM|l1s*sn;Z3{vu+kslnRd3NLQ zsk=aUEE?Z_w#HTx7Oq9Dy8cb(&=-6TAmu)h;%kVO8&+3VGOx*)zS_0#5YuGVL{_t(3j-(E<`4@T_!lKR{KLbv?`;rBpF_Bk*(n7*6%oAoF8 ze@el*f062k;yG`B;q54j?MJ@OKuUfhe}DUf0bkjoXe^ZrltK0FXb3G+{Ak8A!3FvncQu0d?>x}PE%%fa+zICtXDWr26QmQ}i zvS?}#{}MWf+kR8fTLtY#@`HRmSnm-%?)%ikyvRQnT`U@_pleEgH#lR$Ze4qO>d0$f zt)Z+N?Z^bZRnX9+cEoo#$#3-0!#7oB9yvYQ#jzp`LC`BD`^;Z*WMq`!i%>PHL5*oj>?*I7yjS6Mo?YJ(I30kb6 zt4igvZpnC}&iMDe-nY#H<^7*?KOvPDl~ANbV->Vhsa(qR+%>v3^u(yD`-h;e(paT>$RDcBh9A7}-`NNntDrMV zda}ls5S^;`n&8)qD=72j&6%LL3VNj!ujpw0d|jK}_CVoPr)=v71&vkEN+o-m^TrFG z1hfOWKi|2!Txkz6Owd~etyD^{xM8P{16l@uPL=GBOsO6dbXq~vmD*p~8&{UX&+ky| z)2*Km(O3mtRq}(O`H=Izu33Gqa%$IVya*;}to7~fmJNy9MC<2`-Sy@v<>_|36x0R1 zwV~bb4(-*8-uIh_x20r9#ubP2m}>sqmP=3SOqOp@=IFB?XLv1CPT&)(Dx+a@39h?ptlNo zs8pW3zg;%2Pr|Y7ivNsef);xg8hK>y&doaC{aD=v!uhyBwm-u@1&!5D?!!LCH1dTNpb`4?lahgF7)h;n`V?kv+Uz_O&C}^`%{`}9sMB_7$ z@&4#@#m?N8r|pZj*y26_s*s^oVyRz~ZuSJQgaKd!N@ zzjjwH8WZ$ZL4TF}g#W9tpV=*TRS0w)E@Y{`?AOAg9P=xuiNJpr|sSTT-*ivb+zX&zg`J_50r0U zslQkJi(5V2j>{uh;g#e8h85PLzY=ZsDmpcoR<%iXF04a;In#>MX0JAWCEDy%T1=Xq zJSZ}~S_aczUQ%P(v6hS&WBclM&tz48X!&AsuPkOZ5TbFK)X2}WKvT=X^_ExL-EzBhHZ@O`MB#(|LHJdS-oEll}>MYdUDHX}BLKbax^=QC~Il5c$YN zdg8v~x;Ssa%yPO4G)khx^7t)4;}hvL$8|xAOXcTGTvx)Kg_<|#SfTF@qTTLn`t-1k z6+p{P%4HAbU-Dr7myBI$bf2&0vZQW zEwv8g^%#$Q6BU@#0Yy15P!#ic`Wo`9h0ZyR7y4;BFTYs)?i1laS-!3{Gg#>V`6xtP zHq$$VeA9h-xuac`h;nbmHvUe>TZp$lbbmAam^SP#qvAej%j0*ro@wUM7W%a1`I^;+ zbtbd8q)j%bC3b>c`qMy1h28l;x1HFWeQ&t`JhT&{s+#)F%7C39K2eIzdaolWmg)R= zqP*T8NSyY>tu5K-ub1}DI{|+~^}+Sa80rg{1o^x4u&zR5qSIXk`axeT>Wl*`R3VY2~>{q0x zv&mQd;lCoj1v8pgi>b7J$Hd|yzM$h0E!WJS@N4AfOvr9G^?Ek@c1x3Qw|o>TU*4XC z|Hwf3+v&A&m6pD9OOGU0^YG_sEpnT(_ir|^w@FCHi}VvA1-(|#FjH_nnalhH__ui0 z?A>ohAFYvq-{T;~IViH@#d!kSOH(Tx&u3HIPlOYC#3NiHYil~pCOF6Sk|rom5l>KO z#r?&7#P9LQuedIxm($Lpp}(&Y(uswPfxo^E@kKs`exY;TZ#6?alq>VXK9cx#qR(o^ zK~z{1dOf!p%0-E%;k-c94Wu**%Ld9X<9a=%IB|*gH$uV%edC zfS*apV4P|$#y7(62r50sHwmGBgZH1XpGC1eJT{8CYnT#=dIE}U>M5Fa0-o>F5^ZO_43$XbqgHM&Eu$H0g z^p4_Ii*nM~mLB%7`KI%0*DQ*&sEa&UYwN3}s}V0kzAw@He6%JfcH@=GTWn^1<$W2# zt%8z(kq`rlTwCIY}5l>#VGCPC5J^<}g zvIh$3ydJ{q&;9J2yK)KYQOMU-kdi)S8xGOxQseOLQC4GlEIM>8#FO$rbo&`vHH}$I zd6v+i)w$EtdAUe>kYbxa4bqd^Sy}%gTJ33mm9aqagHhJk{T{@V+EM<{ zT0}=Mj|*Q9PVG~wAJRO6U5k9hKuY~)oViNdyngOhSu{dAv5-=E4s9}R$G@gLt{T6i8U_f!D4JQTIs%gTvtvSjohvDM;@2s zf}oxa{ls&HR8J)p=TZFyjrv=p^ha*}i^g)09vrMDrB^yBNaH1DtP1!G~0>r9U&z<>zcD|SwM@p=)JD5sLz}A z*o_F^9#U$zoFeV1o|gTMx|g$a`wX`;dK-;&Zh{Q=uk@DpthCmDx<69C&US0p8p}t% zx{-qbvxdSrP-h-!lcBgTOF@0P|v-Q)rBYba2X}st=ltQ~N z7>mhE?KE$98IV!7Xfm*D63Qn{Sd{JHhJLH%x&{~$=ozZBQ+MU;a?W0TT@ zioMih_aOYekdj?<3f#YB)#iQBZ!n}(58ijGQu{Lx)t|X9Pj~hbqS3x%*E7G;xSauZ zThG2fWu`IlTxtemUD*8y|1_jj51e-W{X17TdpyRPpX0$=vqFS_;4JYvMbNzB;Z8HF z-V>vY>ylji&tXXCK}gBYd{s`-{BHNOr)z#xUwLj!beUdIe+cP33>os*nn}adHgvtZ zFfr1a|L4Kn(u;%oBS_~zkdmF{_l_d!_=3;ZKiu{rr9X;ik0Sh2_IO1Nl#BcP zjYB%GKuYbsXz((czcyb$U-++P$3wpfkkb5%Hlmp9desY!0=KFZ;s}dI`#R!DgZ$nD;mw!j6 z?bP2+Fn8UM>W4x)ZAWT(I;}so{RMSD^m`vt(x+fRzdZr==XWdK>Cq^Bmn&Z$dl%s+ zLrUdY(((9l-Q2{aW{g5TcHeH_LpoC+<#8RSET79=H=NqF`t_a0K7f9oLQ4L{q)(U7 zd_kSxJ>m1M8g0#v@KYhB@?3IJ1sV??=)Jqe>1NjY8Xhd#^*DJN()k2Zu6Ki8>@zy@ z^cdy6p~ps}mGtEF;{3Be_kVQuwd(KEQ2zcWR%io*MfMihK_#jkDM-&(ZwE(M4PPet1BkEv2(r2tONA z8ZSL^u*V!-d$#%JF&Wzw8bcEM9O1u!l_Y1V*n6vT(r4M8$DECm?e#Yo>CA(a>d!wUxGkXh zk{fLt`+;rV#$9?5>}#a+4W#6EBVSo@MAu4;Wx}5-{ifS?>)fs-e?^)_FzUd~<2y*n z?`p4&`GkHhpy%8Eik?xd1mWjHO7%DNU?k%Ghn)IiPS^D6_6?%TV z!0`HWZaQb1>sjgO656p_TrrZpZ~E%i5shhk6X1o8;w@7&tOKo^*aCjt?GF$7uC-P_0`DN zI!LMCEdFNPs(`Og+_D$vS7cH6-4yiRehtpoLQ4KD|B*BFd}~tR)c1yN+q=_xSJz!c zS~S}I&{N8vNjviy>jdUhVAb(E7g=lr&UZpe_3o|w*1~}He78~FFHh)^Vev988tq10 zm+Xx1GX62E!b{k7zG=uYnIVH5JT4N|^uk9JS# z+Wz&G77(po$~T3q$I1|XGo(}xe0+xYIr9CSQ)yJY*4P%LvlUX(htsRh>H9JF{q1(> zw*yjYN8X2;61~G`e4aZ+>BpS62g&bH3QqO(3J3|b3hKM?zdew0JynevqifBL?|Kd? z?-63yZiN2>Qffz>8facWcT@$Z<4>tSB@H6jUg)aHH8l zgg<0Yui(0V>xm|8_}%@AUArBhIc*Q>dZGw+1o|C?lTsG(`mVt1lVBOhioC|uR)IXT(Vtw;o zE2?%dLfN&UH9LcNf}Se1qoN7rM0M7edhBQF z-_4^~X@5@rncDu`wxggf=(U1=8)^^uezWB7QMo01ryRQ-e}-tZg7zBHQ{%L=R{e($ zobjhJzD{6~D1Sjqmh35iYBe$ca^dOyf<`OovhsNFx%X*TA7gjqIXljoT?-m*ZM$9f zuRfFJY0ceM*4gY@rO`_Dn;)~~FI_7#>}96%yyASlzU1f3_U^RZhR2I!f?g|VyVCER zqG`52^?ktkZ-0VDD`==vd3t}!*-!N8=U>`(@M7h?49!=d-UMA%%3sOCUMp#yeIa2q z4=DBEzWp^sdeM+ldb|2OOZ{K*t9Lxx|3}+6M9`H5T~_j+Z$~lmgC=+9b;S?59cMYM zKXo0o(|GprnV{DS`ZS8iur9u9gE??k?d+e%DXGhbUK=(T5|wU(^Ww(A^|aj~*~ zFpmiuzM#EI>2WH)shWLP13{w|bXlo?;JeVA)A5qq{?@6Tsr474(F$6qR4ygAt^7+b zG3K+%FS5St<~7Kepx27s38Z#geBWIU>wl2=m$Iu?qD7+>bYE%w!grH-|JPf( z|G7mOx5hI;uN8D(NzeS)_&xNzV)PF`EB%W5{z0YDO6e7ym~N~)G!AwC%z68h?nn1= z`+OACRT`~ipZKol|MomX793w5r0fSD+DqSu_uFyLpAQhD*{l!oCy5Dqt(bU{%Eg?o z^BJ%IHvgscV;c`KC+;bwRHc^jo?8ReOPU z*DV=Mfh+saKhQskdTHK&256m?^AHZy%&OuX>68e) za@eHfEx%lFT{_Dx*j^g_CQ-?Z<6s7-M$S&deMCOfaW3);D&|ut4=OLsJhDOA6X%)8 zzc?4=m&vJeRYMe1PMynPdmfz9`}#l9ST%x5{^3dERKZ__KAEh+s@(dko=oF1H=P-) z^=Ip*r!S-^PeJKT;lFD_B40!?HRBQ0kjpgI z<5-pZyXP?WlR@d+mdmCl!_@g5CPSr>KOyP)F?dVa}$yT-QN zd2D6l;VT+{lgEn8iU6H;VjfS=2P*DSh1#mMf<7V1siv(!O>J%cZc+t%-l~dri*`);G%3ST;yMF0FhtoE_xo(Hw@uETY;L!C zg0`E-{@iaIqMhe}!q}1}8xebEvr5M10bU*T1bc}T{sr+YKPUX4xS#Mhc|4yQ@=JQ} z8Mo}2`}HjL!TZLM#SF;q@4siG-3pp@HX|l$lW+TFv0kJ`G0|ep_IhU)d)J`9{sFrr zx+^c|7Wh4M-C&HjycGV}^1GpPGhUr+o_>AACu*!o-~CS5ySQ&A`+6Q7uOz|mHfQlh z#ZCovc6lnNATL2a$==NJpOwR2YxTmQo%2#z-^*qfT=q~3{CqQ%OA=%}`}v*iCwu%P zei!XW_=`05$iv2w!dBkYFY?yR6!rzJbK3QJGLK&(?t^opaq@m31?3{zX$snZ=v*@o zl`<-5#3Fr2CiD{iu{pnAyttnTk8`4vn*Q^m3}#MyX0+h-HBnG|MZF6@6QW@9`pz_| zAq^^}a+>Vq5Ea!_oBR#0#}wA3^2Een^+aa8-H+Pn1(n*%%O@@g`A+2L7Uk8;spM3z z{C=Q>?hxfEB+8YE@`dyzbIR&IC7dq_{SwmiB_LfP6Hza)0}5}ZPjp%n4tt-_Q`m{P z5As7aR31KwnbX&AgDN~r^dCvgT!zyC{Y($F+{C%4H>5B0@OfED-0E%j-_?Y@Sn-KN z_iSmx`_JVS3tT4HPF^)~4zu`32RJt;}usQv8Ok-X7Q~SR`V@;!^jInb%$BEc-!SALh8DOo_tc~lTr!xLl&ev|uR|jd-)JTq}wYOGd)Wr3Ou;0sc&FF6KtEKFP zm}-56A;L>fLuI3GGQNtXvnf%~?CTncXc@c?f}zA9Eb<-sDYS^HXu7qXY~PwpD<3ueRARkhCZ7haz3 z^XIhwBtJko3hH%`uLN8EKux%%ZF*d0d^qiyM&nl_d=p5i-b-4xqFKo%^M)*6(b#II zJXk!di|`E~rTqKa|3LNdDUH^@sG)p)9imj%x5xWeQ6w8ezgS4=t*U2w8GXHb&)36V zsU4xL>Wg6>guez-vQPhiB59Sugt@<+_5@wG+wgkVSTxeP7E=1XY~cp#A4+Hx{K+h3 zcG3N;T@2C@{i2j!anF}%b-L!KuVVY1XFp+oYup%m#@WlI`1NB%^(dvM!smCLvvRo( z>BK`y^e_H)B^cCP|MW01Kt*#P@wP>u(5iiuQXhSz^^j2<|K`*RmjW>C)dMpLuQz0ci z%T{Gl|E@iA0p41vUs*Zt|0F*^If`KE$X5oW^n2O*F4P_#F{bUdp0oCsiF8^(O7-C9 zUzZziyUus}v-_oN=+_cb@)Mj^)BT|dbL&;No)>s9=Wm0ga;B(3JqPLJLQ3Vr?Xzp8 z_r|rjTp2G#F&*KVJsvMle1#<0EroPzFHXlxDz$|628DjDASHc*PfR9CnEAjJRQe;Q z>4lz4`R(1VN^u%*sN#1cEE?m-Qh#I|_Elk>`43tbNU7en8OKNJVwVf~`aka{)ciSZ zfA)CYk+0h!rS`zTW{69hK6+uKGOv-yZbA6l?D6in$0~M_K9Ud&s`dYaM;>mV> z>C9=g>r1s4kGy-4Z9L&@Txb7^(`mf$ekFqSgnqqj`NOLAe+lKgH}vZRDLuz=%J*+y zzwtGs;jr1*L%2Ma;s-hzaM%QLP~Z$$M{-bTVy;xoV2Y%bLT%b_5jiu1}XKo zKK=4t0gb%;r#b50-_BR@hL=kOdl2b70x8+GHYEC2wD&UG^VmZO|FB(8Hmd`Tug&Lx z<;wWlefx7;p6=oW^~aE}#~~&E$yX7Y*Uwcua$hdPq2IHRQvH<-`wx93_t9H-dp^BH z@$+dGjrBi>C$+z!V{W5)%n_e%yQ=*$giBrTbAxx6ii`>?x!(3NloGnAiW8yti;?pBj4_`Fh5dKh6LAOY^Bb zjsEsqrN4DPzZ+f;PVLkF9R3{iD}t2#52sok?Xva#H!CRPlnlf*%|AQd)Zp}vvbvM-S#UH>?P>;GNjc0%w1Tt3C29wCdGfA|Nd_* z^c!a@Pc0Z2L%T;zGW1;Q+Rh|bS?Py#)0M$k)4&QhV?(T1~q^+|%Uf>w~=3`!^n}HJga=Z$pOKgZAt< zH;|u*$!a+&;Syy$Uyr?k@NYs&_2h3KL)7M}#xkn?%DBM!cwV}nkpi29bl!qg$H|(X zf0ZEhZxqt0UpiOyps{zLpC3}HhqB+77_`~xR4}8@bGscVKH`B^L47j*_XVU>ZYIsF zWZ$nnXO2|quZ+Ei@Sj0S!qedR=74YM%URQ2x4-wDf`A`EO7-jSKZC}DJ?m}$ZE$79 z&&RU&5q>J9RGuZpm(p%Hb7`Gg^;0(g@&Uqs2r1>S?8is91vK9jTHUFB-TF`aPkaA2 z4f;)ol>B^9n@8&>%tPIE@SoPx-X3N^znPFyJrq?OzcHXqH|CerubS(zj}iV8NXfsj zm$od_wQOVI(^jQDI3I^dc0?(-^`8-}82Wt*DdlhIt7qt|dp}M0q<*L9>DIqEtv~xN zm9wDV=aAC#=75{q(AVDP`qgcUo=(%V*SoXvr~3XcsLzIeU)uF7%jj_=;Oltkr7o$F zw)e2k(o^+}uxPCF?dj#`pIS=qeQz%J-=OYVm&Cq8_^%-)KjA%nh@Oug?w(pBc)8O5 z)n;=Mex5x&PEULGLX6Msl*MnLUkRj?KhLp`*XjIy>aR*a9m&2$cnpX&$uC9je~89) z9%G&K=Zc;E)9pd6cem|5sDFq2Ewz^mulM4GW&UgJ@9n=w_yv%m=SHlTy6m}_XL?pt z?8W)ln5sWph;)`fN`6UO5NsRJo~6gQm+W8RE<*UlkW#(#_iAN*Od6|vzrRB>bJlM2 zzmfDH&79hcI`8c?o@y_eMPn7T45>dVc(gN(LrSmvwsc}+R)BKjqCZ=Xb3x;g^5Oq> z)+wF6|M1oWWi_qcU3u_Z*pG;J98$6u^F0t-J^!wey)I>9{f`-pbz(mu{1Hg0o;cm1 z%J%thKVGhT@VhB|H(2YOOYQL{bb4>CuKnQeIw9kzUQdpvwRO4PMq|I=K6@dha`C0! zdsz3iHt0Wx^}1o{wXtZd+i_j$$9zX$py!nazJ|xw9nquYcs|Bf;(P<7l%7c!(~Qrl z`XA7*kmG5oY!%K|LrUctIX&T^u4NkEmjso0TDS8{L46I$G zYZP0H@arHYzw0$=L+16VHh=A`{i*H2x&M^PnKW?Q{(}0i$X6MpR1e-h>9k(zC1d`2 zuZr-e&%OR@$xe{Drq8=g&Fe@gmqC&~FciY{cAAwtLNQ3Oy~F?ML_nkW&2(9hXP-cbM-! z9;zQBU_JIH!Uyf~JQ0h@??xK$5#Ckm&w05>dQb{(=d+yq-SGAo)DIzFhwb?*`Ml-< z%oh|Z73#4;#o28qaa(n`Yh4HXkWytb(p8*L&e28lU;P{f%8Jy|(p{&iY%Gx~;K`p_rg^ zO5?NO#G8$I#btjLHT+fSS7MojgZ>@}YQhL5g zarE6pq)~sXl=kk{U%U4cDvedDzXFpo<-hs(l$)n3-A-Y0W-qEAbXuOOeQHe5jITllqLnU6MD%db>g!+ zTx45ECTOgJb}GdyeW31fth-pM^eeTQptlNIw-m3anUBV2SU(|Mr|dcROXsFs+}3*p z6ZBR=N0r7ee0`6(e(5)xzix=~7j#w0Uvqj|ZNpzLQ2e0#@q|;q6keWg?K6^Hi~I@t zsMKyVE_r`Vz&E63%g$q?S!2VRt)n9oG*&@7mEy4>ahn1f?MW2-wz@t!f(d%7pvgrkgVmBuRN zuXd5YB%qZSx2yBW24&pp_PvG11f5pURi%31ySJ3mG*QE4ivM&zk0RZVN;s%z;DVs( zO8rh`-7&lW_HHrK{U|-Rb{*9J2aVM?!M|PC8W{5v$87cR|D&<;`4IK_!F_qEG*-#K z_+A^hh2E1G-&d*Y2c6HOgx8GTHKGyIK=rlE4)289Z#t9C?Oha zSKLslU;f_r)Jrcve)19)zHTyw33_WM#FN@z>A1V;z2PUcS?`-ClyR&3_TCxkbb$=D z2d(JlmuYu}NQ0~T>3J?s_4zM?b%TDrASJsm7}1>8n=Y)gHab^rxACky!ruZZmFKR~ zM?MW`PZ%H`bsfC>^1K!4^njG={gIl(7Sj04cBy;;oct}`HgE%~`7WDciTKG=fG)d@m&5g&9{B?n88*)aAh95%fwv@$}-X=3N6oXEB^Zq+;2=P zPF4IQM8D+})I3fzZ7Je0X25BO4$tM~^9%AFo6G5pvBjbktLG9-nBRJbpT)dX8|ko`Z*j{d5y{A!G~up3U{Hp2gF-rv)1q za|8W@y=fwxpgN2AkUr3ir;Fb~k=>EQE^T!6oHi_t9W`LiM}$5Z$e&`Dnz(OBe-p;~ zaB6t|OT>MI6y+kyL)=%CTMF`-40^MOC$2Z=cGgX#E6P)xBfLr_B`R~~jN#vJ_%fZ_ z%?C)g0F?37O8E%dvnWrWC|5ya75WoB-Jm!xPv?~8iD{7dor(O3^2*@hI|#jn{RnES z$VVFP3kq#j_4nquPb#M#Z_8$R^$E+}742m??44-JCLKFIkC&@u*RW@@cTS5H6lBJl zM17fe|3_JD(z@r~T3029wQRJc%Tr%xb9yhece7c>!cTNi{gG(@!r$p!uT`Mij=_CW zguS)|?O0H71zi{v9)_}K6M0zI7Cm@jDuyO zenfi}^%A0iH!~peiJ73Gf}T$GW#)TLCTPe)Phl6xUk6d&8I0KO(>A^0W%~@e^T?*` z@-OyIdu4MXYik}&+3mxKum4t4X6mKI^LD(nDQo=ZpwE`ZCi3z=l!$)9%fk_k)~v6I z&G>mqBH{~)>l98>L^#~fqW&f`gUVHJvCt<0eno^A(#sYa^zpq3XrE1xegb4X zB=oSTyonZFmeX#Vz%E5RAw~MQkEO3jznPV8H}eqbiTL8&%S?atWfG@m6Bov;KcX0O zdlz)zBu0ZsGN=?@-YFqE^rJTxeOU3Bm*vx2zT+{19-V}6$;f9C`VmldDLhX{ly4Fb zM|54YzfAG6rxONTb6Jn;_;uC@zcGwhhpwCEu{w$G zrjRD?3##!w;vCYJuJ}C_@xAaj!VX1#a4z~A%8zCq$?TYS|Jp|5(H|AS-pIa${e9Oi ztGkE%x=EcM9HLZDG!CLu^L|B8sZ-gERX2XTYFTsCH||TcZ$6F_yC3M<3gCw7LY?59!c;gkXwCiB4iZ*|iXv`@HkB2Vf z%s=E3qAvdV&AO$nm_>y!gO%K2(QG0SFEon~abSe+7oENQ^o!Sg)RKj-c5Y))%fwrN zixHoM@B2pd7Q{G$k;*KI*ILytW=|r_fZ`9$1`Iths_OVt%3Fd&i`G*GK|^|Koa)on zXn)(4S-fbAdL`14W~&NTY}usq+o^BK-9FVjpZ$~S$56rXTWhJDDO!|8L%D)yME=U8 zXxL@6>c{M5ciY}RS4H^CA*I=sIb&;V(Y3OF$Je0Fp3YUelGE9MP#FJ)^*x}VQD;hzwYRC7T zqggf0+S~kUq$jmAPUX!vHiJ2$%sM$O7rVVUvrqfieZrqMhMtmNDmuKFD62yr9Nc%# zmC9<9cxx}x2KMsgRD(f}Jof&eT9&`$!D1Zy7pc6AsH`Ea#RCp4QzuZ)1Y7iE1t*#hw-JIi0u zlIq<&mbmV3C4WVCa^K#a)w^ofLA@pNl?N&5Ebo*HPY8kiJ#K*n0Z|IezPs~ zy8%)vH{QP=X?wIzwaQG4r_EsWwn{wqw?jN>oHca$yvmGUE>rpyxAow3)q!f)nnjVm z8G6d?{jL>60lx3i)bzR)S#|u*MGm7W1M}zrDV0n9ExWb_G-KBH_QT3*s94A2LCHT- z3bk!CX7L=)lP7yIzou}%I#<%4Zt1@L<)b`qhm`8wd*DZ+bWSavk@49nWpDTti^kj? z@#K1#RYY{ixF>QxZt|x>?MtxwnJ$PY^|z6UBi5iDeXaOikK=lf^q>@?SXZRe4N~$i zoCa(9mkUpayaoF8f|T;%U)zhmQvbSuc4ge7%-htqXv{qkFVt^p=Bi%J`$Od7x$A8G zUk`-8?JVhi)RX80%=n>LsR!qF7H*$z{jS@1Zv9J8?~U^411Xg!UyX0Rl~7lYJAEEg z{aH{iKstRPCHw4U(qzo*YQN&V9wa+5?&Pu^X%>z7S?DR3%av=k>%Mn=kso)d#l(C9 z57w3qK={WYWk318=jVX-%6p^6PQJq0{mKmH%VT#S{9s5aJ(D)Ay&rh}yHS;uc_Mmy zi17E?e}VBI_Q*rcL%q6K8kc6v!~~I=h#+y?l7oY=X)N- z{b`IM$$m>;uAX8iu%<+3>%5? zPeDrlv;4D>MDaSh{jJ59tK*kw=0o@=A*KFd?~d(X1UUU`fnwKg?ab-8z+Mldpx@Jw zvY!|dr00i8!}2~`xl(Dj_1I{H{|}^O*O4p7(CSr_Zl-<}@7B*deI9fB)v=xW=C1t( z_2*C?V<4q^k9@r6PXXU)c2WEpb-uiwMPq&e@uYt9k%K+vT%h-H>O8x~UW9%x+4Wra zO%Z*4Gnzg&f4jOekLliDzl?N>Af^5xfBP2~GcDivdU5x8Zbxdl1od&yZx*E7j+*3e z4wUq)dPNJ`&9feU=b|lp1?QhYO6|yVXWxT*$@pL1%iH3y-Y@cCx(>>L}yL3^pF&Cqdf!=?zacUALvG@;)byy@v1;Atis!cQb3WwRLjGipsoq zEPEZ{CqPQ|*WH|V+iR?HKcUp0)AnwE?r_#_)p>o*Mq`%zeEzZ5%E(_E8Bi%#9@qVm zGdd=+FyJ5F9FSaY~i?ox=Tu&MPr_fc#?f;!Lr|V&3Jsj?6fi; z63zSw|1P9$UeVYE^wM9IdjF^UKearA`g_oCI;2=%!cS>F>($|Zb}u-j%%9a`QxJX{ zq-57a*Cf#H4&}zOW_8^~q>aWb`-y5_(fpG3#G!k(ELHm32=)Qe`OuzT`NW{Hn@ce* zEF5s2%hT=$o!Pb8{+y0q>=f>gP#!ZNCHrKJKPP&d&!7%ZR?6j{_AjcPIkjtb-9-eO ziF|zqDYe_kzME;6hNq3M9*@|bG*}^-$}^-ZRR&wOIBg z!q0(}{lv`CwENGx1+ylPU1gj9bXuO0|DY6t`d3J2E~L~RB29nI3<}iuioLk6hj~cn zYe=acfL*k?i?C?S^X=v08&Y|XuDxPxuUSDEzeF)|$mUT3 zDUEv~Us-X4{I2m;p!%HSw7si-!g>DGdjAgkegEI|>|l(OkDX^fs6LNrY$5a$v>nM_ zO1rk%q5Gy5kjyC$$GYf8EOX zyziub6@KR;&!RE^jO$YU4c>Igs(|(~ExO-Ye$M=0Dbo4Ho?dX|QW`JeJ*8w16w~P$3zipk>CbPUWZ5yOie_HW++Fg1K?TYmKO6B=4 zhLs`wW=Ppjn3Q8?ym0*aoQ(^%Af2s{QoHuAPp0`Z-$Z&2cw{o?0PTs+XpGN7hl|&ZMs(QO2>8&ZBX=d|9)&g()sf& z>6z3bZ35Y6KgB-XK94!AKlOcp)ACg7J(3+nz79c3^em%VpFt}C#7-!8={I1h_Q2o5d z#O^(Ut}K;{Kd_H>AJP6DyMRWbT&hFL?R~`-qJEp-CI6s|d)$8~rP7$CdhmW_?7nOs zUn=$BaX2ow*Mp!_3%asY53JMk^xY>j=6BycN8<^%{j}5mNc}#}seSsC=bWG}Xv~7f zCY4KM-MdfgtZ|Jyb8oL^eIH|1i!a}zF$+4c6tCd=`?l*Pv)>whZ|6!ZmRBVIOS?r0 zdb6M%OYzKIbu=1XuN}2b=~p~V(4yOs(= z1#Mcgvx50aSp#@rS^NbPUvk;5l-ZQAv-8ZJGe z%tz`r8naX`MaO3x4fw7+FtzE`2lZOW85b>G`s<)BXwhe(BS)sJr1|7Jds_7$zE{68 zEWK=t#w_T_QvM5~Ce!y^hMT{icGU=rN8kS;U=pNcXOR>2zfkX6l>Wi}IK*xJxs4}i z%z}{R3_-ng5E9Vuc-TqBji5~dzqn(L!6IWrE!g6ajx5gN@JGnH+bg6Azi!s z#)K<^oAs(;cAexnJ?VaQhbSg!%z_3i`A^OdG1Dni-rvSC9rhyV!&3fBN@vsizct1> zmbJF|PeEfAba~vyNTuM}&POpGEVYdbauF~OQqq&J^Y{I|-QgrXNEN5!Gfn)k%y74&97f0oL{ z|Ld{80=~V41SmS9>@JqbR2sAFcfWXv{Iz*p_<24-V;1ybY24#IVe}7`n_oHk@=c0A z3(=Sb9a)O!TX7e(Vd1B_N2cOJ-8R08jP^pNp>#mO@BEfjMIbr7{3xdcpWX;Ev!6xTvnTOc3Xw0 z>5Y8Z%z)i49+AsTGxOwt+9oKzE%|j{4wsscI?h{y<_D^7H-_tw7WG$z&tPSjj3~S0 zbRMTuM(1&=+9CV(6HX%PFX7A?mOBxbi4y$IC(YB-(HLj|n>$ zmB)-th~FzkezaEnzN2$FeRLJ#jlu6ep_kBG2bC}n`Dn$ZFOO3i{|ZrjO?_v8;=3N< zDcqX|6>ohTmSfU;+w$}~T+gY5ZQFom*qY1Owp@OY$ExR)myH_Ig2fWVG<$potGVsE z+_#fku&Ye`Ca8vYw&41dK+^6ont6!xOn&Y|y@~pwb52(k^#>{HmF$4uN5liYcdWQy zI_{f+aOrH(xIPKT7UFkF4^CSY_Y<-uySVR^`b{D;S&ONo=pW*hiTerKuQ(SnlT%l3 zZ^4Y>Y1dV;VCdt8>$EpEOW?#eId$fZe1boRH1gTQ#U68)Se6D)biRiSrUj%72kUl)_#iC~)ADRQ8C8sYU%R7wxMByQxQ)HLo^L zWkYi+@9aM`mG>VJsc0w3jO!!pD+%Y~dJ-!jFEXxAD(g9I{B6^SLi+X72d`eXCzaJO zsPJQ9w-3QCOCT8}QANf5xkNje2&(9vY0PvRw}3jjJ_X@Zm}yqgA!;d)FR0+5_G?}z znkz5IRM6h>J6-4Xp31)6(&XDMABCu?+>Su$CAz7&KbI-YV3)`B5`G{J{a~nmOnamD z&BHf?^g<@``s|d%u00T6V`g*`%etjO(ToR@m&ZZu|rZ`uw6CL=c%$<`S_^Andr|qr#?;hO*;bJ+BcQ)wJ(-Ge%>Jj;| z@)^&JJy$kA)&zb!UP%w}6k@{YGQt?^?(h$Y@SkekhKg`x>KPjm7Um z;&)BRcve_Y!5A0!rN7}c;C^&vcwv9~>zD>y{l4PM+|z&uP*TQN{0@?x3-2@%<}~2D zj32^izys;Zu)@3PuSo;GhyK&K@Lu{myl@cxHE6(B5DmDCL<7E$t{ZnBY=#|Tgd!Sn z7oq_VHGUx)aNLcdr<4^MKk)GU|H%6i=qQTq{bo_ZqJ-6eAj2NRHrYr>0$pK~O$msA z3K|s^0X0NGK+r)@P*9_SfD1-cKtu>4izv(>iXaGK2SEw@4#U3d|900`J(X(SJN@g& z^4|IP$(ft(zSVWB?yXzs$A(Yq6r*e1lErP<^H13#FVm13cj@!*}URr8{EM@bM@WcFm*U1py3 zdGmXDqE{XX>4dzrveKNj36y^3z|xrwEwne2jXl7^z+cW5PUEYdzuugf(V&Kc_K|9# zx)nn>5kK7qOT^ReIrH*Z-{<%4XQ7Mp4``)9h1~p>R_U5oS!Gwf$3kr_g>X`Db;}P` z3o)&;f!=UI8SRQ-w}Jn5&_bX@JcIVoti}YRePW-Lay#l@65kI8EgFiC{uAkQKbs}l zEq%}VsJK+VD4g@r1T|b4q^B&XWG~rsM`85P7s>L=dHqK{R5{B-zAB)S-qQwW5<2MN zT@5P+?y&5Gvo*5NfbT*$DIGp-CZU`e*ZI8)ijCJggSCP^oL8?yb`~rd(`mpKWi-9M z>rvy1i04jwd=q-LBJ|quqP?P;uT;u|^W9}qx+#VTYj;Lv#3$uz!qc`m3v@ zov%jCAD`3J6`}fvi{-vNc#y8Dpu!*WTPn8$dcWNDixLWIvGY}Q`O{a{LIbXe_@sJl zRHv}D@Pnt7(Mmd-8T>UsL-m7v7VXU+#jOSTYJ*CCBJIfzgu-B6H($=XAs;nm%uBLs z^HhSsm6~6*>+5C0E;v_f76tx#ppt$AJ@(Ql^@-jCFFhEmpduu&I^eGhD&>pzM*l0c z3fX9#Z%}5v-P^UZdQ9CVt^GSRV9n#%N8Q#@#Mt0^k+fci~P6;RPxt3 zy@r#2*?rePkJP!FiTahZ#jlsUq`UU2-gHu^7HAPs+^|J8RdP1Qr@q( z-tGExs&`4Rl%jB!igdLEmHkH>tWY}@7+hqUWOd_Dp2=!#m^_RcHn>5p1y$zyQqCux^ejF=9+>g zM5D&we+X16*V#Y(LTKEhI!6Az{)DosCYs#`{tlp$ee%;%R?(np$)GX|?Pcx3p9U)V zC2eA?0)cf1-13x1Gnbn ztqmxCx0VeJSSo*=VqVB4KiK5cP2)x@{?om`?hN_5fXaH0{g}|{wLtkkO9m+Z zaymQTQ_-JOd$F%Rcjo6mR^kil-H?xuf=cBf_uCjk6Wa3p#kM8Y`nDSD4*o|#CA|lS z=1@5Ey7~QpbjbG@s5HLR?d-j)NY0kDtLYuZUfkNJ#vVsJPuSy|W}q9;B0NGtc|!3M zPVFU4(VtU4p|%U0`uVKJQu(431@)(puFpUvd*S}``^M`gEcG(cjx*VOoh>xreh4S| zPtWk32mOJ0_qD4w#*@E4=4;D(g8x}ixt(I72;WyF_fm2(WgN4<4Gq}V@5gBkk{lF+ zTR)+(-jJ^ksBCBdO{mk)LB77AQhOrs=g19yt?0JY_(`TXXWcQLQ< z0_2qJGoA1LuXkW)N%fQf=jC0tKj)|jYCk-T^@n_uKqWiud0%j?t}UijkYmePr;2g5 z=4=4?CxS|LmV3U@Fj z|0qz&Ph=arsLaQKi%Pp7oV^bIk)V>j9OyE|2=!Sj7uH<@M|7J51%Xc z>9ifG=BHCVsJrJh3k`T2-KyEpfTemY<7jcJH**cN zfu9sPo#%_%PIlHGQ`-gq77f_b>zBQL%{V-PP&f0JKj-b2{Bnk|kD<3uKqWu#i|t3d zq0CD~A9kxhxBe{5LIci*oKiX_w7recwf5Z%G-tKG)!1anH{UL2wu#0)Hn(<*_OwKx~bMQ|ARsF8HY_n)B>(ph==C#m(zeG66F7B(*YrS8~Gx9}6J9cZ=PU{tQSA9^Q z3i+nn($k8M_Kg+~Dy~RqsLlYsfbP zRI<5 z)31Fu?7lk>oL0v9-1m!f5YHTYeBM>v=rpuZ#wykw%J^V7n+^VN?cs8}zOt13(yW^> zzoPof`+uFT$bu3>> z8J~}3--CZ4s8k-<=CObJHQ&uR4MrV53+g{Yz7?R7|Mc`cu*k3Nzfk-x@2$4}?IQ3m z29?T@XL3PWPt@(mt}|;6E9;4zuPc%A%ZP#b5l;YAk~8pn3+iwB40I;Ht-L$ayWO8H zK|ISqL+v_^&m*t{J_`4d(tdGU9|iTF5zjB6l6|s; z9~h^rPQM9$!k(YMLcZmolD&jqthfSxf;E=pCr-Ed;Fc%y10|p*X8UyIBuQN?{M0WQ}yRm?<)FY7+Vj)#BO4>yk}4T@xxLlz1HcN zCcE!33k_JHp-A@P8&~s`?tAU7&-!+#$;5n}8IC<>p#fh+yt2RR`vsli^b4z(**ij6 z58cH=1Kx~qQhD)>+eP`=xaNg9wTda@pQ$d_qi7Zy@Lt3h%9r4khYi%!F)71xV+ynK zcyAKgwYnAe+d(BetD*fv;r4akbl#)epX2KlXdye){iW z@E-$}#+TAfwDGRSzRL|txeaGWz<(4}(i1b$`|>zyj`W;3Z+yGJnZ2m!-%iJS9#`hI zgZc^N$9Ygme;hs2e7;&K?;aZ(uoNz5^sYZ>9j>vSeU?&g-Hx9H_0y2=45(Bdv=xnq z__g$MZxtT$xh}~;oX*=5s@~5co^zm*KgcLnllJxem!OS1vln%o)~UVN+dY?%9|9dT zRBm}a&8ANJqj6+7s{%ew?zPZ>uY$J9;xozbetmnN)_fIvY}$5A{k{cbobfOrHt zujF@q5i`X49{YZ$f?yQrzEb*n2A`w#-sbhcG9F^LGiP?Kh70Nf4OpQ2O8VnymN*qe zvLnhV=k>d!9}4HZ9Od^f;Y^?v7sm&s@A}RkJFII3t2BOi(0*loq+4_}+W&_L1iG)3 z{stjHut3k0!#S<_z7X5?lzy98p2SZA6KKGd5s_qPzJh=5_G=?v zk9a%fq|)w*VP(KC(0wI2eXV|^am?wfYTmX*UFYw-y(@jsv`>K^EYRB}IXPP3S>qH# z^>lc*{w%290Rbw4N_L+cet_oxCVY_4(z`^drzHWwHZ))<97kJSvi_S3kEy3$xUE+-CeVrn+OFgWdk%Pl{NM<_ zpINF;$v!JFfsQQDeWiTKp55r2PE2&!+q=%}MIAqLYM-jTxNX-tk5AGMr8kTTG+=@5 zEBWg{k75M^{4~Owzurxt6$`XoNxvLDv(toudZyaWYRFVHVA(IV*+72DW1J$o`WpE` z=ktD7Q^M9L_agDM}MFW=XBKNm}gfjnMf*S75&udJa1|raXkxgV1K;zCb z@@2l#?r~m@r0>xuoz@R(d){d{wLa2VW?%AD{W3G@S3;A0fo=_qseVK|X7;CFjxoj2 zWCs{;2~BoFF-_anf75%BPbIM9ZR<8@`Em-|k#qL8-bI*#{ujfH4AZn&cI&5!>w33f z%)pTBayf;WkF_MwCZLTtwV`1q^XCFB(+UTEEdk*`EmYDtpp)VI3v|X&?{x4pRyKKd zndI5H*BIM2?^*g2_kuF;H)iHAUth?hHO6xxw@8nm;PWMNK26X@%$SXcAavT!O~zd6 zzoIEe6Fk)dD0)DPC6rjxPSSur+pZ=1lCV@;Rs{O&T*8YYtjPAQn{rgnOF+wgJr(gG z9HHcL6hoj_E(@XAerA9IP8at;&)h2R5zoY?NGGV)jH8TZ03~xP@+qLAWQzO)^&y?H zK*61YcnBreL`{5-u@Z}Ni!aJztdDUW!S^rVyM3Ssiie}h0kt?Xm5uWdY-ZV1j&j!! zXrC2QIqF<;D(A0-d?A!j6CH0WzNaCb6&N$!>#ss?*o{xWu z>@mecNj=hm=B<8+XE{Yvw_d8)kjwcTq1qZ(65_iGnr5#rJNNo>laQw&*Si)E8V4$# z3pqu(YXm*wdHTOb_cgP}2ei_eB77p`PhhnNJWhY{98GzVh&P6#lopQ%%4NKTR%?Dw zYY06HexP@@i({kAOT-gG!+p*y@PZ%d3dACvg2n+gG}?O3(LcRx%DSu zhp;nRAI$lhGSB&8Rn89s8uN5vcY-!$-Az|pu}p}t;tbJqDc zX9>Rs^w?EN$p6qi*J}usmdho=2|Eo@^ZmR;7H4GCDS_e&{a7f%!rqga(VG0}Od|JZ zgkJlk`GH2P_SbvgDs{xm{re|`Co`_<{S{(jnBPEWtt0fC$WAONQe{XmmfdAuv8b=a zd!g@m)^BYK0^k<)S3L4r+)V$&F~c`Na za{Iu`J2gU$z5C0t9osa3AN2x-vp%hP0MLdGmX9ZUz5zcK4PtUp-R}5*5;`w0pK**98`3zIxCeUgQ?cxphjVUu*c-#`syk3^D?qP=a%-R*KCn@I zKa?(B-$vv6vE051rI+hb@ChpXt(VO;mT`X<#U4tSQ0>$HcLN=}F7!}`nc0&l@+FGR zH<~NkaBrd2iu@FOf=1=nr=_3zY)pLv@4PnTt&aS!23muyUuRsAXdl(a^ID*h(C^*2 zugmtB`VjX~`T0_S`nyrsQ#AM6Pc`83MG3o6?W;cI3+1<2{Pzj|W-Rl?f=0V`ApPb? zgB?UqhGq_?U&m;$?Y=Bs&OI9JOB9vSmL5X1W9CpJVvYv;vhgAx8tg0dq+h0weoZvk zVf0VO%vb4mXy$PGHPB#hBQ)6V5*q9XdTxCEHIw&sgNx8$yAvAhNaGEm!FFvIYW3%8 z{E~Vd*?pV7@6U?*{@w>KwX#-$np_eZY+r<EQ zjjn{p6fVfL>9ptSGj&$Jl7$*5X0N1htVtG)ih2wbD0R2F^HFpuzeqB-qv6hbclqPf z7a^{rL*Vpdbi z&+O=!t-3a=#j76{D`49tsVU-5piutQ_CZsJM8fV z>#U?vr~i_(lAYS8|mT0i$|cr;JX!AH}PLcq)TR<-s?*;u*iD z8Ty;4j8-|f>-_0+J}Z$woMx@!ddMzkT1JEYe&5!oxAq(sWubDKY`zZ61O8-C>ANN> zsILgkepRB`X1wR5l{NcT4bLUJHc>%+QwIHdcaq2QC!8(Lp)IP z51!6_Xx2pwPUZq&(x#tScke|-e`Q$%@W+7K z{8E;ImU>w6OLR6Y_@hCkdNcckc0lK=X>RmrxLdST6}`=QJ1f8bG!~EiNCK70QCk1A z$91h$k<}GC9J1-5A^01C%J$jj4)PP4G0O3sqK9yn0RBW!N$=tBuREh_nz5SZRmHBI z+F7W-z(4OkU!2vOZdY;G^_PPDXkpJ6zUpquH;u+TSk`KfakdnzAJQD*)b^Rr=w42V zu=*LCtp;lX{$`+({?b1^LTH9#jPZyoirym_DagDSs1z>u{3zNLpKY9eutL$h+j?4K zsfed3sAMmE7SfzfoNG;lR-33ukSs09u2;4XET_IEq3E+V%KNP^sTNuH|ftcxdRryrlSY z=08q$%_7;}SGFs5?RJ(tsNait(mTlc#UyxwOtosLxYvVWpD0A ztIoC8DL-FU%8^sMw(nMU)-G`C=T&qpjXj3^cnVaqm+&u2(5l|8w2EUwNu^)qwa{Rn zL^#P`hfjLrw64)w%kIy4Y^Mr50sbDKYI{Os{~hQVZuRgq($x!8wwF7v?4w;!@0I&F zcvSIAQ5G8PGYBWyy=QrOD(|e|;z99i6+3g=ZgtuYv9~{aL%s}9ss79U@S}gIJ>TTO z))~7Lzf^LFdJ$DHcH9xfB<`WjU7gJyd^z255I79R5|C8*QirS{p?S7kf(FVgo&GN*Q?X;MB@xNtTE=^6?umD^IkpW8+Cm~rJO{>7<% zs^!6LdoZZK!UeI=StYynzO|CZX^mCOYyMGotup3AxM84@eTG&3XCIY!@{}}On3M%=t+?54RqJGFz{8>2r z1pJdg<#H6(g2rFWRs5?IJ9BF<&ht~!t09@|@vP5~t|_2WIm&so*fzg*nQF*Ki&*PH zIGe{pgZ&cWqDn`$(Aop+adYuBaMB9c&3Af$`RJFn9mC`DW8oeuI2}+?g!$lKU=Nr5#~MOsy|o)Pl+WAxaqjF|v(R7z_V_&Szf0qa%a>N6 z83ARyrxIHTemF|Gzn1ZEX=U+~tgLA8Bdmi>TmKY~j3sb%+BMg1dVnf#B}%)cx` zJc~gkdr7~)HuXEStF^Chynk_~zaGl?OHf~ebp2${&w+KmqJCr0IF5CN(jL6t=~LTv zAvD-Ec0FXA+%m$Z5X7{^P`Am)c=&b3Fv2_S{0aR`m87Qm1AI8=1Q>wgmDzwSw>u90D zo<=ySy?eg&&R=w2b?>KT4;IajdP=+bHh}-=RpK+z8sCW+e_6kz=WoC078>jxdwf~t z$}jM1Q|~`EE%m%!67M-lu+U(4;<;qke7%OT{3Y_F4V7Xu`2PTv>^^JFkH7h~j~@8+ z>u*jd^BXJ(>E`<}T-RiXU{_A9G*+wn4t_pt9bV^rdwI2X-~A7}%za zYdDuvO1BY%4GmVZ7w^(XX?&NpeR=ktsY-q8zW=ua>B<9@{B`(eFB+$g=FoUn4@D17 z%ez|soc1?Ww48N2X*QN}eq78>kfd-}rf9CJ|D zA`RG^C5l};?^or|7w6?qF3-+){i}AZv13TrDSP@xdCLDp`&Wz?t8Mvm9Q-FirShKl zVL6%y@?1S%g5W;^DwW$XbAAQmMEUdO#@ma#dfL65XOJIfL8Wr!JDD>_*FJc%&5zZu z)u~V6>>T1b4=UMHu)vbvb!|qiN#)+!qxes^>2vBo?e=*Q@(J`l$uF7Z*4MII!&lps zROUsSvP%dj&`V`IJ32q;_tiJ{!xv_y!N*Ax3k~)Po=f?{dOUwZ_iZv@UBi@d6u0g9 zp#C@F`3F?8d-h@H?QO)b9=9f&QpU4^jLwGD#=;tu9v^@YhBH4#7eua z8WZTo0&O)^j)rt8wtTN&OEe8z@$;2zXt0vK1YcRP-m2fF=adxZenPT$BMWZuc&l5x zb}y$ugB572QhV?~*fR_L+Um`RwpPuvwX*~otUz~_!sX6A`7734sHpVL(W>(6!MQ)n zA5LQeJyxK*O7G7UL%dYZe-875EED52NaB*ys0s(*EKXYlOLEto)$6=XPYM%g(KR8b zr1vnR-J|`T`ucCT?^e*e>pS+lQh6p(!FJU%5N<8Q^zqHJiek{-4kZ)~jBH!gMG zyj#78&|n3+t7KCH!1Ct>-hAd1R>jz})IjV*>qGpu0+b zV)CN*Hqg8UZkwzPe1H!3uO& z$seROUvU}j)@!wX!hQc%pw;RSP)c9kkdoxD!_HqBpRz|ONA6G2;xK@kCeT(T{d$&; zp!LaxKMcEbk{xALpvN|aoKm>#Z`K{d=~Um{;PC>re%F{lj}_>yQhs_n2aeOJT?Z@l znE0(yuQ+e-N_Ir$A*c)VSb^RxmD{{~Z=-sJ9elsZLHDQssPPFj*w%JEWYk@Bj_RXI z=6*FvKP0DfKOy-?3g@&v*h!h^3ZcP11Uc3AOJH)&6Qz^FSUANJx)LljSb=scr9bVV zCTDf+(5A~dt*$8j=@@n|7zO&Q6pooF&hTgX)92iuN#8TXb=?jTXt4L=gOZ-ujMTq% z&Daj~N}l4+>N9~JD^6#W?2J7+{``OJuk)wRxj)OFpBn3g4|M^R%ipDSRF9eCS(}u3 zwMg~=_&bA2`I6IMZ~>-8Tzx#*X}brXg{iqsUs=`_A9@f}PXELUmk5oS*PBv(N^!a$ zuXCC{DZePbaP~0d>jo;9zt1YudKBZZ#0AHc_O4q$;k+El`DK)&%u)2DU*;S1E1?I! zNw)?j*=V92Gsn;`$0XzE!EYIF2|f5gF-^;S_{i(~t0%C`u_OPud^(w>ygTgl-`kt8 z_iD6$ug2ZUtR|7x?*W}MR%a9^U4k-Z-fE56;}Nev7ICXUpG;&XXlU(3ycZ~x2|(Qw z&p|De;YJF7L)<3-9a7v2nt=C>`TKH>ai0QIO5FRz^TsUFK&PzB*q|5bI>$JAZV>38 zb6T*x7utS&aZxHWuv~{fl*+mh=wQw*O_>Q^xj2DJ)fyz8ipymqn+EmVOq3MeJ)mb@X+0zDm_v5DQ4HG@pjs|QFcWwo$@0@0=D}g%? zA(Us$xB^W$n%|)melO*RG1~dSMv*^Fl=n&ep5&rYnf4cd7W!_=GL7q7#!*pAL4J*~ z(FQnaqPTC$jBI}Kj#Or1msby=0h?%ngaXXvW!F{0LO%->)-lirp#Xnv)B{nXd?s@}S!mn%u8Pu4<;+Y+ZIqj< zpkcSonp$|!n++Lh`-}ET4SD&F+t5_O zr=k)Qx~pbh!Y{?LE(Uz_-ehi9Z^J(4h%V zVg{z};>S~f!VJCp;Qv+$6l!5-A-m+LsEv7kzK{(4i0>vd!ZIfm??!Bhfj&Gnk)vBj zCc>^8vAd0RLDPi)O@v=h;Qp~%$iMS)BT#~24^Ig@PG%*Kr`~z-xR*WiXZo8%%Ez+E zS)cv*dS)Ek`s-^$yKRYO-)+omRIr7}-*{%MM(Vak*j?zkW?nJ8{3V9$#*BYXh|f&- zm^jFb=cGTA?-at39h?5?sfKJ&8>2u7I|_Y=#|JrX#rr5>SAvRoU^m$Ur8Y*fOTjPf zFm%5$wep74%AtHV(bmQJ}DEO~g~*dT!PO57fhb zUC{b$@cNJbIz1(t4W6`r(4_s*{J9V5cpwJxi1gsS_5BdPW?mv)ajd%u>l~8TeC-qA zAtw`Zf>ONvJM~fD$FYv4!;OVM#rtf59vlZ0ba4+fVL}@=^-F%~_VQ!<4Y^pCJz{`- zmqUILdM`(74&?(!p{|4Y#q%iMPHHXgMgEC=70(5YLj8ewnD8^g?+ASfJ=KSvMR;sezZ3f2<=5vv-}NPd?iu&4b45me)Tnjyf@-6f2f<`;}9s13WMw~@YhGxD?zmCy}D^~0DuzNJ(_b4i( zZT>#dj+tYPh&dYZIO9b=G~y5FNx#hT^lPFKPoRG~W=^Evp_w1juYpEflF*1BlhBAi zqUXlfKQ?(kF}Mhg_%T8wo@BfsG~&d2L!*QXc(&#H9WwZ1-TQv6@wuB?vo-P?35~cn zo=d$VbG2yp6EAcM|AK0XeBqv8g>WASN}`A>=ha(ic5CC7QBx1svCzECm%c96s*T#< z4ilkFnx|{uui10q_NvSyKlin^R+p5G3speyOZllaA4ao` zW_`9o8EtcmJ`l#J!)IQ_L8V@HPLCu)>(z`|oKKZrt^3hEcfIcj3zah*a?17+U7yf! zULkDuxWblQakdC+mrhB9ll518I;HRQ_&?ttc}5v!b>3^2zDF@Q9|g%D&grONsGRcT zxQ#Dptrjn9&zHQag--aj>KRW|7_07bYUp~Dt{md21sbwzK5MH*9Ut++uv;uWbGCSE zHGBnx6Mlnky?@5hY=u#6*HTdn;;eEUVGozF_a7QH1B$q0@5Jf0962Aol;o%QJk~6A zO}m^q@8#|DYf(nCTJ;k(*qz|71S*vWuU_Z0Uo#)j8QFNxiSyMf`R$WdBj7uCflB%I zv5q}IbLV%ZRSf26a8aec zjbwL&KMGW`C(nyI`FV4;;)vqsosY7ra=J^O#_B@82B6Y+^V;7*ewWb^iRBO4%56RH z*9Vo#LqGzA@H~G7S^RJe->I2T!+(IL6j&PD+@_n+^IQ3!Cz?UAqor(INvo&Ff;7>PuwLc3Mee=_jRy&om)nJXlp8_iBJ+I7eYPUWywC9YHw^{9J&Q^&ffj=2k(mO}7 zGN0f4)j*9Q9|M)jZFaNcgf3+Ceg~_oY|2{w7gQjclrI^FPSa@$=5_Pa=hUtx{gC8g ztSR!N8K{)LU`i=k1#Rxq9(#@au2a9%)i!(H0`j#4mC8fT6Vcmrt>4^om+BN&&^zNC z`$5Sbj2PHGh^HN>oNvz?t9A>1{P((MnsurRXNzI2z~2^BYG<)>ovGh=d3cF&l`kr* zJ|kFb@V5b#{7c%n`<7X=sInaYm(@r4)91Eb;8cHVKPQaQ5QTYl1eNT}MDx?aXguoO zV@iKI(uPJX`qlh1l%Ltgw9@xVembu=)qF{Vd>ud~{WbVu$}YHpX-au;+y8Ulez_m= zJp?M}XX2Y=p9lIrUG#^o$~Z$M)(QL%f=cCxw|9NNPhYcfnbIyV%N_uKXHY3$vUl%V zLwOuyEc+K$ll*)bEv9U|ODRY0_4g>`O9z$g3~16uefzUgj;^=< zRJ4Pj{y5}&0#wQu&zQgR{J#0=#pk6Lvc@eroBMuh55)7dJ-&>zF6*hEW9&jWWYfcw z;C~8K();O=F9-Zux{;qMTH*E1Pu0&mEe~F$e%IJDNLMd=zGQW)MQ9_~1uLbSIGy{? zYvm{UK)z2wC3*6W8@oDgPi`BCi)W%AY_id=hiAc`0V>IpUiUugSMB{Nx?k}~r617J zhDI!vqfr}wJfmyvQ|eSK8o{LRQ4G%WMXmpwwj=Y0(^y}ms~@OTKX~G*&??i677O;Z zxRZ%-K$FeaoMnRl1yCt{r{dcEq5DiUzpB?LeNM}R-B0v~e6NE_>04f@;yk}L{@}Qe z%7k0vmYl7b4UJgJx14**Q9U-KLg(gv&nc@L>$+^W2K9lE?`m~$ zWe*oP``lkN&b}~pMOsklS4FeY;2#5843rb61TTSVH>h~@I|d=aXTf|Z-R`s_NTyu05;@-F220Myn`)yBNN=j1y| zzp4g%5B%dmC3~5c@PvUr;HA@AdMM?#5_=!~W9{K`qGM@1(!A1?{*lx6yow6#v>e%Y zi8?E{ZsSw^gi|@ya6x?{^6^7Z$s(4mr&-Xo#v-KzK;;k$Doq`NgrC1<`EK0 z2Y>(ipi=(arq5~lv&-pBe`+|V@qMWD1A=-s^5aWTsePT>&9}|(ThnOYnO93Iem9Fd_g=eG)utn!S)fum;^?^twm*GG_+iEGR$^a+e+Fp2`XRW7+Jm$y{C*Xk z&27IwsDFcaX4>Us3qSaa?5qo&Dl=TMvm0OEx-0KNeKykdEvRH?Ve{uxJF*R}mwN89 zQvTeQBRd+gq(ATRTL^8-XDlmTujHpwzho~*Zu4ax@?*X|Uor~UEX?RUc^Y_Is>tay zU(|l8Q~#o(a0d17A>UQdRJ;csJLb<=+v?L7U!+yt;4?|y6BZir6+D;fO%shO`=c&j zwHR00nqM^80uNYd#Agvs@-M+L&uYwPtOkuQm>-2x>&Sit|4w^+CMsW`Rq@=F-3#PL zo$#fxMc@yBO7W%N^DM1LDZQc7sD_vIig<4lUo*BC_oxWubu7M88>pT(ub`s88*gVz zAmUfQF_D7OB`*hS5QIKNMuXFzX4S8 zyE)Hp|3}yEnDATj&LjHmc+W{Z`x*D^?cqF6e@eU1vy5`PLqU~_v(Si_Bb;Ps+1oCh z^J~uy=$pP^yRr*5_TQlq=Z(m@2>q$!8cxff>L=XlU9-@L*CBn9{=yfnrg4pamuTYf zPi35_KKl*)zk^EkZTk41$Ub{^8(lblqiwurCHPl?O5+;Yjb1)$<%{IUiPL%gC)opq zbLy8=G>$N~8uE#C%Tm4s|G9KZ*Nk0_t<`><`}M84h;J>ZlrJ0=1t^Yg^F=CO6od12 zos@10cfH#Ms$DymQ%&C{q!JFWH5@74qeQO7`n{W^N&-eN=4i>uZiH z<0w(=5AbgTmCB!1^+76sNS|a!#2M*$d^f+HRbtx_&kj&o&dckmofXdK)uenT&ayT% zV#$Acrq&QBGpZkS>(AWVi@SD~bN`~+=Pu;qZcr)T!jHBlbjzYgYkoIgQ&1U_9qUi} z9>q|J?Lj=pK_&h2Q=pAQVedL>tN-?b{}`xbXSw4G)B3uXznN6I;C{tELukZDuM%IU zC<-^TRfT~IH!9<2)!2UUAG%6>jlZDv*T&^rs*Im`*a7e#1eNSQ?L-|yWiT)G)M>Z% zt#dn*$_Ysj#tuWiBcPI;;S+UgPnefFuJ2Y(x8=xfIJfztu^{r}1gK=cS#Jc$Uso-E zccJ$C6}`J(mwpoQoUzBpUg#v&Z3mS8yN8_u|7m-;v>Ln4=~@n7Zz{=8oNn7MH(u}O zkgm(1lKt}bwfS5r zCD3Ihd*bL&>oamMpE;!$2OlSd9*BE^PAlnwpTgif)oa(*eTu)1WGWi5R6lrXlqA1v zY$rLeLn(hA$Mun4iRNn7c$Ne-W$@7zLWNWS>8uJ+)KU z*cUW&KmG>yi(568zv{`o-I>QMnE3#SxD{KbG<>?Z6x4=e-#nIjzUkd7z*!(4en^CY|;9 z6LjiWUYl!riiSWV7U;rqJF9s;I=#qT58Xqt7pLiS+pkjBOVR#6DC`kX$-kKMqMnGi zQwB}+GB5lPCmk&`Vu2^(Hs%X6) z3yoNy3nRD@+V^803daoC$ZVw?Id2z8-!s0+1bVSR7naIx*HN#mC;#H32K^(7y}0!+ zPTO^E$A#5!8WZTn)sb+iK01&)aJJt!a^(kXV?k>lq>(9_uPGB~&>nlZT;udb&ZnLN z=C&RS>H>|p8sd}eEW1n>nqLXfHs~t9DfO81aUw~thUkv#+x+3mT4==4b~!Wlv|sMm zUO4_->kgOoa%KjJpT$TLhKcX$BnAPf9z>xu1~I zO_~T}0u9=0*L$G)3#)NT!7qwm3S$E8TA&L{emA`LbAR%3q^bQ>=k^J4U^Pzti`#n4 z9xes~2y|L0eSyCg6Dr@yZZG_qdQ2G)A@mo76KJ@SeX<^!x>lgcrrROB4b34l)UleJk2Z5u$P63ojI>pWI2rf3c~||E*!E?;4I{E|0&hO z|0jFNuXm?HfxnF57IhRw-PiJTjBtdb)vgKPZ>W|75;Vpb-o7T}khO#5Lde zeTP%L`_k(u>z-;^Xv6~TSIW=0G4nV1eIIoxv*yi8%KE`DCeVuo`mt@@sCjzkCBfNcow%jEY?=+l!->yI}7U;lIerm?4n?B=E^f7l>_)a`R59cO7jnw}$ z%8{Bc*Sj3q(bWZ-cX!Aum6z~H51qPc;yrCu+I4m`Vkv!jvtwz!qGpVrsea;m>)qZy zbLKzQa2k6Q`H>DP`S}bJ_rN@5qA8P}lj_~h0K~pZ9~>7>D`e_o=jmi|9td(r}9axk9noA7ZOL( zUox9D)3_RQG`oYK4>o4p-kWe#=F+(LiRXQL$(EG%5LGj)~ zhi%Be=W7Cf9cY0mh%b~r1KYfBC7}0C)bUX1PiFqL3!xF4a?tlo zFv|%*$*vI3&b0pYbn6`n9DVWKhRBC_X7X#uA3_7>Xs!wDX#*eYbs?XK7x_y12@b8Tg=-Vw>O1Qt!i60ox zr+q?iKsP6J-e!Yt+Z%tHvH8a7P%ouIE}fSvf}=L`k2OWSpguY+(?r( z_G$m&c+ctrRkselUzd^fjoqA97yR`=#eIDXmG<%42EM*{Zs*g?OT3SQ-w^lpmG4I3 zUeH=7XM#^qFHrrX@Luo>)K!sgLB)F!ub?#$pZIPR*XvUa*c~P;u$S#I@!lG6zC2I{ zs)_s*&&55ch1!jLAyi?r`Or5MpJrYSlyr*k3qJAPySW@bP(qpI;njPZk2SAIpbp1y z``sMFpL;_n#k~HEWkz#$RSBR-6Dl#cvpD{|owx^D@l&9+V!#&*e;Exw8$$2p^+6~< z%=yMUySiiHT7d z>d2Uv6fS6@?DT4|dhn^cl+};A)mslkxI&;rf?r1*^=p-l_In|VkH3zz(Bs7Dh!l>a zx|)o+N^jZiESB?C(o#N?1Z6FBN-^s!yv9EH6Cm2o(xAgDSbX|CZTQKmO?O=1ucDXwrc+ljXB5MRc$hEQ%1u*j%Q1SJ@WXR zkN#nh0jY668c-TvxC2!BZqE1%v}^orV-=3Nd$9&91OBq0(kM`5uP130m2u_eDYHt> z^F@+_J`}WOhs&EE&WEncnq<*#5zKZ=<%>Ao&Pq7XPsxrbKIi2xfBG~FCFU-qPx`Kj zmg5^gr_bNFcr8B8*2Y?ea3{h^dPo~Qyb#lJn{Nr8zSZ)VoXxGALA?^ zn5G&1mv@!XTeqW>PDf$Y-F;!K3gq*E3ja&D-qJf(>Anu#fAM}=n+ba|*?jjnF1M=w zsv@2^P)QGg#r0^ke|zIWU8hxHOGt}rrX5OZtqIp>j@YeyA{Lh5V!*}Rf@V)O_6)vp!!Mdy__-onY%hP%g zn$x_Uuf_aOSgHTqqDzFa+K49#RH~=V)m~bP(I2>A^DmL$zZm7Qo!Yg!%FpenujBF{CV!E7r}1UjW}oZh3$dV5`m;K`M!RT+JpahOmrp2q zh-3}GA7c*}IGSs$DjfUb=&UakJ=C&R??oe=Xpit)Lw}vG;jVF~`J(F2Y5k!3CAal^ z2#vWV@Pw=1aH@jakZ< zEj#*?AM_dH(JPet$f^E9{TiMex8=`iIJNu*^(M$iGJNxr%HM=uttfrRA32!x_uY!$ zbvtWKt1%EyGf>H1a@b;u?^~)@#uicZ?qR9mZwe~One*`ls>ik)?Sd1E9-R75RS!7EbAuIVy2 zj>Y4>NqqNPXw2R4T++K|_)a=CDB{S=eZH=3wX1lzdsrLrw*{3*L|7m4FM9f2F?*{h z{pm(7+gU-q9U{0FRMKDG@O#NV<4?@!87Rw2N`h!K`{Q<2_da~*VNfYQ&2a|J*YL-* zDW$D`B4=yJ+JnCCjV$9- zt2IhH%Wb>Wd4A^CgHwNWM6gG}pAIUO2hWQ`R--z-`QurSL%t_KCHrM(?_EW^+l^BSXDjyU zR1d11In}#;b>NebFVik(#_+-ib!!@IMVI*^{q%@jZU6{FpX}Mif^3 zl5;;H`9~uL))Vpc1(ocD@Alb1Zt2iY#V>g*l%GEKa2$Po%fSjgCfZRqdV#+;sASh& zpX@*=JLYxs?d(~|mjNp2A${uiw5mR5+86h+rAoWJtPPD>Do1%Se@rL;X>8wr`5M`$ zTmR|QuGRA3G`>uwUmVn5Kt2ut&EN0J(*x!qx8;>~as=xK{{Em+dC%^(l6G;M*Uh(= z7a`w3P^p}GUwLV(Uo)D?T?#0x*{-)=Qv1_EeK6#k2rAiU@X*KK>e{k{kqwv_ALnezYzX*=flB>b_Q|KeQodCG{&JB9Hh(r0 z{4aw_a)z%gzu)gOSAEpDX5+N4ARZs6EaxAIYpC2BSJ(~KpS}FO$_3G01C{ik1@j2i zbxw)CGe(zD%28Q19Q-3dCHvGeo4!xGWQ}&gD#b5dZ$F`?Ph+n`zLB7|cHIPHe&ruU z&KuwUd;{`j+4D2IPTEetuk$yByUi)B)bG(28uMs`lkD1i@2^z9FYHmj^iFkN)OovA z)~hiOGzRg!V~;P3_1{cr@5UB#C+jQmo+VTFHr=cLl^3868+k8qMa!RI3lG}wBC#;lIhy49c4{A7zH zIY_cFHV*QAU{Bu!b6445V;9X8rTyZ*ypKmb6F?=u)T-|HG>-WQp;AO%xxwYuzDwal z$oDCzWY;-&e12BXX+aJ1m%WPr3}+vK|KqEK`>Po3_Q`zY-jq5guUUS6f_Nr@O8L2b z?n$yw(+}Qg^iq3%x*I17>YpK97eS@+m*aW(knU@e^veA`>RJ60lP&uR3ypcUJ>00# zL)ZCP_w6kUo%iG)uhTlQ&%r+pRI1-|;vYNUXFaAqo%LF6+c?n|;Q!JdE-#}ajoZwl z;qngW6}>wxxAyvP3gVe+k1tSV6pbqezo7x;8-6O1ZG7S@$TtI2vd=Du`_0y~JAP30 z?Q$MvUbF_A4*st}rT*rqXM5A>IOcU;@e^+6-`&;^VeA{omjf!LFGBm8P+?N;Tl;Re zyA(fBmdynJEKteL0)LL&;OD!Nj=HuN)z7;ve{REli*%gna_UU=-?m;=i0?-({0 z{0l&B^V$){g#XXB`h6bw=YvY=NiSJB@2yt3DPIE7g?JPScl|0 zte`e{EHviD2q&dK@7aafe(f$}!2F=Ht}DVqV_t-CQaQ>!-F%aupZ0vMPHlFcFH*Wm zvY-yfqXi(RlyB_er!M@9UHI+jvhA zRtfJpY2i3NH9vpBclLow<(BRHhtR)fkE^id%YSsS4$EYt)4rC0e>bRzEADeaB|FQAI!*2Jy-!!)eD4XpRK9SH*mB(e4l1R?*KZN6pBOXm za?v-`Q}3%;Xw1JMoFpfEHTN?@$J#V<*+mtV(0M;V`X0p)&Q>CxRiKi6hEHk#Gy3m0 z|McwDkZ%pB zm=Uc(Ja=8Bc5=G0J@rdv+{SIcBdG5{1bLvg_LBCIdCHrV&&27z{@aOoc7aOY&1m11 z>Id`kDyLI9umAGfi_>`vwLccr_dveApwf4P=}CX+T3W%ygW}b7I_~quZF$%a`3`|f z`5FB3FPc}YX2OEn&`1t|{~)O3Cp30PJLutBoo4M;4|X)>keugdKHXz2wLkX{88L0Q zQr_LJ>k4B>ksqf)rScvq^xOemJDo|#Eo`)v_haBc1uE$w{LV2n?>nLD+x`2lRLX5x zb{zaCL8baVea)9gbuD0wGuTnFgWx{_Dv{t~FNO0>ya}f>s_Q@9>iv3$Q_-V>`dMV) z1yD&3dE-;*bgBqrpXGL?{~p24f&VtDT|&A9 zdS9sgX}mpgs`lrXKMZHF;4=xkpIyeiKnIn|gI06mMco(CcIYgc@2Db&^R;GI#62=n zYG;MVu0QS9s{Os}fhPO({PT^vg~t33!b{~g{na%^7$1L`uasNo>n9|8pcvfxm!Mt% z=@RJ5lD+uSY5Y?guy1sc;(L{Gjd+*sm!Mt<5nKh0Sp9>F zTF+-*8OXW6i>?5ajt)sC{TwRy$cAPe- z3-o4zt}N+~eL3M@?Wc6x-gVoKbQ{ijJ(k~I+~=pec4Saj(U>K9vd^C?$jn3Y-npXq zr8o))X6&i+msqfDU7{izU=9np8(w_gN$b9E$4@)Oxl`DvWiL(OD5#Z}S|#pk{p z)j&J~?O6IQ9~U;V%CB0s^9NEGwZ&Q1+9J7Ji-Jf(3=ICucSZoG$o&b_A~K{ z(l4%Ip)m_IU@1QD`ii1H+N|_9JvKCEN$=?wE75vI6FvA^p}}fQphXL`V@Xa=jd4bM z!kFj!!d4yxy0}1Bmi&ZtDoc*y&#r&{C&@u7bnXWw`=fB~{fpCjGk<&<6X?wXJy_}= znfqRR?-nVvdO<;DJy?{5#;haZ(svVmkMGj8(PuuJO{a27dZqMLVgkKcpbv-Q0}3$h zQ~W&RPn+Ha8nze^m%f{q_Rz~{e+HEPZ8#I?+X7u#3im{*SzBm5w6T8hTFpQF_u83i zpDG%&q(64J9*w`4*M*y2j+#MmaXN?Omoge;)4cDLZWE`Ds3Q!+gFpkbznX#p`%K4pwAv8u4opGOz z?}+%CvX(9Ax}_;c?}~5Ax(@lJ%aGSnIm+E{A(Tcle9NXheqU3bpCv#E)$!o_O%A@l z829b&;pwa^-iN}OsB&|f@%M!O$mJ3!lHk*tuq~60Zk<$*P#Md#iOU$B$kO-bR@*j6 z*hdUAQ871&`zFi)tsL}b5>V5U7#-RBUX2xvcshCsKA<)36ZgVi#Jy@~@jzu0_6R#8 z`{Z&1_3Xih><9CTMgGKaN+@@ldBsAnA@nznwg=R{P6-&TgQ8aSdkisyA297X2xt#|My?8F(i~AUk z9z0fjH;OeWzJ88(Q7kjuWB;@`c6{oxwh3> zW18|s#Bq5Dwb4vxl;8vPDfb%q1 zd=q+z<^9`N@H|`OAMSn8%mg{zEy9IRC+{{3WGwd^r(!tzbE#0eOurioyPPP(EB>fm z0&k865;%%2p;Gg3!Y?%h`g2`&>7sE(vCR+l{$}o`y5Or1y$kAPC6;>WuP&YoI}rC# z+zu1#vWLtI&wU|uTvLCV;IC(WpWAC)UjCjE@1yWu@QLR_9zn%(!4EXr3X$w{!sI0Idc&ML2xVR~zpIMR+>BTQjdn_SqeSKf5DI z33-6a{4vUKyT~G?(HC?}lf^u{HL3N_O8&9M@9n#M=+OS{tyPC6n}i114B^yK0Pkz}*M9%mR3>&?n{2)( ztzDBf5Kih1n&>5ggzR?R4o2o*jqPi1t#&VN50~W&JLwO+`@q=NMXIqo@SexVEVLc! zP?%R3C?|Qk@4+e+4>v2N>=vkG-HTplD1BP!tm44m$|#5XQFkGiSp6jFfulQ`tG{O` zqa)6HgQRl#ayc66epIXkV!sVk>LsUN_>)j2{#^X+;LR0TDOpO*?WirC&5G|-u*Vmi zw0488tqlKl;et{&w40LPFK-W*UG0-)x;Dy~6)K{fu~XOjP8o!g@|&Z`d|J6+!UqK` zyW(uMtn`*fxWb@Bvagh;)x+lD5a*Op0Qa*BPDdFf`y)}ptiRYzOb2A6B_*@`x%e! z>?Nq*g?Osi;|qW2t+P6ReDg>7t3tkNpi=ppX6`n=rf5FS>xXM)pEZ%LC{W2>0#W7n z`n8x&114Oopr9u-vCc}ajc}6vW^eAc+pn3uzFkWF=X}+1{`7^jNW^nDsAQkH9p0w1 z>CEfq&sx@jd|pr~9T6q^(duZUd;Cf{1!XMJ+LhJ-;iU9wGv?E5i@6*Aj8eZxuzKLH z4=UMbz+4rGSvE-y;&ksn-IaIeb}iWv$r;q6k**|A$v#<$xYcxqbBo^s>q{!LS1~LG z{0X3o|nW$~PAs3dldn3wfKXA7DSUd1{2bJ^}csSyS zKQQsdk0>ry-sPKqWilsJc5I>DBx8qRQ$wI~u6X&dh$*3R}CtT{#M4_d~u; zpprdhA3k!_ulcU!Y6|!Lqt1};K~PEWX%qJl`n`c#I=8SjF2vdBY*z4h1(o&i&MW%~ z1>G=Gq0m%;-F<5AzV*FN) zulX0J^uWIQxA>!D6n|EYJq`JKf=cb(^rNd!=)S|={@-7zr_`HH?aW^Oo#Ya-s-zc?t`VS; zUGvjQE-v-_*`Sm%9@5xC107@!$I)lDwEZFK!vajqGjO(O)*t)>K_$PGJ7O@6L-(W2 zoa4&a%EJKgzi1B^`E2gbx|VJ%qd24J;dZi0kxN-Y+Bv-xS~I|<;Z<~Gz{{+3M!>Pd)6>Q8Pleja!P)OINi2G zoc23Cea${le6n7r?ji#j?Z6g@c2PgM_2{k*-tbywcQ*e6KWBv8rD zx_0+0qWacYg+E_O-}SaLHD8?Or#)XjL%Jq|N_x+W`QZ=0Mj+uM`_Zm)yywJyd*X9^ zX9}p~U)kodG#}9B>!Uq0|Iwv#LY&pu7vTRARMJCUcKR@b;!ey=;Rs2#VHUs?MfJ*to zPbV7nbc^Z*b}D|!X}+lCA*jzpJhMS1yY9O9=dFG%(EhFQ&rMeBtSp-a{v1$APif2l zSwjBI*p>3CQr_L>r&E8X_Tx16E##X6Dwmg&#`w}r@w;7Z-KW~H4d-T9B%UYNJ zD$+V_$z*1avj7jKEd`azL!d{}5x?)zVV>EOE3o=_ZxUKpxdit=flBdtKI%sGN|w=% z+@X|rr}eGfFF7j@_HaK#zAK=T{`kDpxbN!r*2`JzEKD}vee4(T{{brbL2bx)KkL5j z^B<}`v!pU#)!IS>-H32fJJLJ_OFRAN@;Q@kQQGs-HZ)MFe%Dq^*`jOfN7dJco>0(d zqAWDfHHgpF-W_3VgW0Z(hj^@YxvTBz+j4SQfKKt8zGC<4pKSHfZ{YtORMLCUe}Q(@ zn)UQ|w)$u#_*a2S<(*C5LG5{jlfFlsPRoN`@6PN+ZPz)q&sK|Md$|5`+S9id`M3d8 zvTKfR^?|Wp@Sv@pUI+g5ppt#&{b~8x4e2@pD%r2M z&f`0E-`9tdhZHWtBJkcMG(NE%_d7wQdr+ow~z_A2$Qd%NC+bR7l_m0O@7bi8%a zbHATc&^@ZL-QeE?Dy1XvOE(&4Fs?j13cAyBBz@2L65DJ1(shUvP0~Zgrn$GMXnngE%y|B~t$@%qvK@(BK z9Yuaz29^B$mZSInple%mXDsP)T0zf?VaLFK4pj0J;nh|gr+o~cFWGVBu+k2Rw$MO> z2p6*J;FX6vQ~xied(0hgY*6gFuH*SsNe+s^!%iTcvvxTH#WoQ-;M-U47oP9xBi;CBKwDxYkC$)`RxL*HYI}dze52 z6=<7MzVv*h+xX!9bj60O;{}1}q#{o|J$$B~l5R0>LmXg0(z(P~w{9={sb_wXZmm$jc!BnOaavl6XVsek$DeJ&KTasS&_$lcWk z#uR;_sG%UymnFKV(ywE2x8Zwq0UM&B>ZUmEPbhlE{AyTepf&9F^ItxX^L#I^UUYEC zZ(9F_&=ZtOc!~ZO`er_&YX2E8)q|Rp&#gq2^7%gK|A$pRCC*{G`XJFtYunT1eOd}p zqs+s;FGNQJRr34)0Ik+}e~Hv4)P&<4#dPMs|H*#A>HLO7E4>1mWWmw}7$^9Vb6V>s z$AUxym1vtvy&cZKCg(MB-~Dvc32nYE5+r)4ME6wu*H^R<=gZBn3-8w2Kez3e^Z2RA zfdvkQNK%wUA64|`8Pf&#Z<;VL+qM3+^Y>N3`7w~_?h@To@#`@m=lxV4uGZHeoVM?J zyW%$_8fX(zh+_8@E#8;$%syWy(LfthI;DL12i`bK<-7L#8=I1R65UgYTmGu0uw5Y> zf?)f()u;P<2bH6-*~2@Xgja( z!E*Wyi3TdsJ(Ye#LE)NGAm?e7`i13l9tV}@nR=1vp|S(5*su7lMTkak9@oD9Ni|;t+yedqk*dR_U6ji zU;3c-TUpIYY3nhgZD^oMy8QC5Anw6G#C|#&sN%n3o@nkz8{V3tuUm@*9Su~mUvY;U zv0X8bYv2C0Bme41RI!6+*2Nw89%0?6$4jl(`UT<8p7=WuRqCJT=}1Ji_VTX_>+9s) z#!sjIX&;AoBKfk3Dt5@be#rscCp>ph{o=)1J#rp*>9N9`j{B|pS8)(sbuC8dVY%z@ zS3y_(2~RoZQxVcGx$E&)U_J?S)eZbEqN|RreCEh=DR(m2C6V-$K;@7$kj^sF8?Zm)hYv)#6e`hTP5EL{2_=sF$U+U4`b!1Ao2GY< zOgR2}M5l7`5`ETyyQZGJbL!_=(3-=_Eo()nc7%GnmGptAwWgc{TZwYc%>@39n$F4e z97L-X<;xOsdWkYZdC2oj5a))V zK6y?Q%Xz-^{SNctJ*xfL5O639ZfV(J< zztVtEAr~YH^xPboe{<5Slmpjmnf^`r7R8Yqg!cLnp{p*C*NG40IZ;HF6y=N+6x)Z! zTb^sY<-0f-%#TBHkUH!6)LAWM`Ql**x9j`yV4AfDUB~B$cq-2&TChwf<2&W!llc*4 zQjVr1PZMaz(XH=lPJV;->~wBgr*pEMNfCBi)ExRAtBQX~gbFS1lfMoO__09SOoWHl z4msX%Sqwy+dA81(XB&|nW&Tp$IA}Qi^)7ccYy`tou5UWCxDniry^EERjf8yJjYPkr zeq)k1#*$mafoM99hAr8BT0VIrrDO6s@mpx2_UAD3kk6IrBE@q(jS00ihT?*}-^9vS z#7TKhdIp(~r1HMhySy&*Z9?s{v{S%t_uc+D{zZ`+<#*jZZwB%*x zp`S;=NFF|C5*q42DW{aDDVWv!dg<>HRaMsK1SrQF#<9fj)63h0{40*+kv%u*XZ#IDW8H*TM&)kCU&m;yd6U0r>>iEv7tD(Howp$ElDm~>EYMhg z z_JFl3Fr3n%DDvFhca(^yIZThZX|9czwGiW_7wW2t#0?z)OxmE z)RHfR(kY{%E&cP36?!?U+(T8h(SMZnmRyd;ZJ1aHmhdQJcz@OjPj;6Fr-Kzj4m=Ep>xeZQw45TZz98QN>QhwRU3Mo!v2_ z)g!lB^+vFzxqhn}LHRVZ=a>KSy?YDU-D8@MycA~DZ^4!db%{TQs8YV{FCN8N-Z>Av zK9B`WqoPPcK1K{Vylh^X@1SkFCj zHH7|l#%=rVbaptx9LX0?REeL-m49D@?Vs3dZ{Dj@q)f-MtLiN7UL z#SXrO$8a|-pRNwOQH$5fkVgDjM3wsB@3bG$ctXeHMsSSWYI#)&w~BhxgC^p^PF6_o9^n7 zTfcUjjzKHZX9uDIJ7D3fw>Q|VU3GfDeNy}8eVm2H+Md!W{#ktf3;br~?;-zeM~uG}c&ib*1@D++VL++`W_JyNjq&zJj0UB03K3 zJ`46Ux8o}3_6zn;x9z6e{K9N#tV%yipkA2zT5*;7<<9G^A_q#~H#(Eux)4?TtRSO5 zqO_Zz9MxC#IY$Etwga=!Si4hxYCr4bU9|cT=QY&&#dpngBmTRIDt_kMJ`q!PgZx6VK_+KZg*w5Q)^eMyp zTGhhVuQv@IA3`Bzdsc!2ZgMU#zeTXW4k=JR$5sWYVhTc#9tJ@=e_jLe`^?tjY0@dp2i{W#Z)waf^ zCY!e%^dtTOL=}IE`ua^=UGl(Cgs)(lKEvQX;_pvX&M%5noVVG}S8eFye)n<0S$)uV z{W`USJ>5Vm*DFL7y9-pEZCehtJypf}I*eeu(?Vk%L+O-wm;X`ZZv2Mw>9RHF+@yWG zJ_`mB|AR!8dQ?#U@;8O-^nyp59%k0piv(My%YIJ?JVg0CPgJQ#MSCV<`yR1xcBRT^ z4b#1ehv7GOAEy7Gv!{!lJY}81zS_~C(ha8!IZrLvQeiOhKSk6w&)0VG`X5L7wOy4d z78>gaN~h{`@$!R(EUL%h1MT-}y9=7YBgFr2qKf?lDoa7{(feNe#n$f`O8hxQmHOaM zZq3KV@lQ0aJN2rq7JroT$t9}9!J;a=_$s>*IFT~(Z*HfD$wiwamERaf|2;-j)u)N( zQiO7r)xSX>;nF|-#^aRF6GRpN44u(w8LnO%b+o(ZW6ch3=U*5Mr+l6ysD*{gYgJU%NF&IhZdX}gXU$UQV^Q*zU#glKIzDMhq*N0KW z|1?p>4#h>oKPzNVzxcf#3p6{p-Q^ex&rm*IqKcetKS{)|p0RL51sw4=+aYI(5_eEC zr*`nVOlL>^eS!4xl3gzXz1REkCtLb%*6a{wp|QS5>6Ccpsq)HUj4wI-qs5v&o%*Lf zU+1)axA$M1weKS}zxEqrsa!AH^#Y4`&MRcS#Jq-5ZqDgCE;*A^?@#!RaU|aaqDq`E zxVIgyHm<_wZK`PRVPjxC@xMw`sSlyg6yPp#^Z2{_pSs=sMjpxcnqAKQ$rW)NSIobL ze9lnhN6shGQ|tt0|1*leZ``THCFk?rik>kCxAEF(eGi)F!u)DjXsmBj`4o9_ z7RIC9uW!@fvFpM$RJr;V8tYs3bZo+d_4y6 z`%7|8(~DYM3Ws-z|2?8gyMk+bO93-?mv7d}=hS|Bd~vE5J?=V<6CN$jGnhi^=eux&+am_~l+SFU%KiLC*|oyG}WpMK+0%4a@Nr9KqhHV^&fLtGTxqm=gEHxvqp|1+Y>_`z#_ z4X5}@sLf98XP47iytdnY0m=8dT~4Tb66bA9RGn#>U;ou|+RL|)qJN>(`V{skfo8ZNPcjZ?ZmlaK}ztegBI17ZFwLe&LaN+pxX87Q2x2 zdgMF~D*ECja@gM;pv4IWOGqDQh$_$Z<~_X2D4uk4^uh_a8kz2!#OHyfbp8iX#SQ{J zG<>MP!#8!c`Q5t!2PEdPfv6I%q2vAE8?1iK>2IAb2e;6DLGAz_ov$XU*w0&K*z!W} zkZ1aZ;gTPi2r+{ie7Sl{CXatxNg(@ zGs>YI^!mW8^{312a>hR182b}>gZG`E{jKKL&fk+L@?#Dm78>i1_WXQ1mLf`fetd%+ z6K7~~!tMNv)BgNGt)JyLR+4){uNZ5mow2dGXQP z3z-R@aoqOaX)W=uBdYjk-u!vEJMtgW&nhDM*4yQTd$#iaF5eBkPP2pCcG|7|LSQ4w zx1FdGCyIxBonPpkJNALr_m;M;yZD*-HxX6rC(t|_%sksG0T| zuSovAkWCirVih@%vz`r&Rf(T0VIF0 z<8Zfr<~M#L`AUc?@dbYTXqv(1mn}7P%SrA1Lp1Cl{@;lzb}D*i;{HOGGh%v7%Wt%J z?N-hZD5iXN5>@@uw{g z?k4^NL=}A&e>HbyA#2rt)S$UXwe~jLLSx-e=>q)_TE7&^{mlNg*S*BQ&z9~?#}8^_ z`&Z1zw{tap{`KQq#s9cuF8dRIx14_C5b5z0QKcNdmS28tu-(2TKW}cT?JEd}!^D4* zs4`FFX^87SSw_e86MI*-jsK1i|52ifpLrVIw-vwof}5u2*~f9t##Q!yfuHg@X3q~c zwpoqc+N>8>-Ly-q@9ynzobowARB0c+T9LS?kooww@V|Q;=XShe|BA!A8-3tRY)X0lR!5(N9PjlOYzUV z4<0&i_*VKhescB(YyGoe?*iv3-4)R9Lf`&nU!kw@yu30Wmku6Rv378Q(v_x)r{tGY zCVQ{J=9P=NJNuFmPJDvg0T<=DJ)L)5GekeenX*R@bS)rl(gFE97~GX^tZ40Z*hm9k`zXt5H_Ghhemhm4-qvqDaZwr(cDLSvO^ zpi2289+-N;VBz~ef41W`ZM|?43yoExqbhpInY>O6L8;4Hpk=9=Oe>xXsk+{C?3}h=fO-g>#H@ca$X;Fz5LbfQE+|%G}bGi zm1gfccdF29T1;Ob84nV@Rid3L^%G7GF9j0aRR$-QT{h z+1|f)Y6nGr6g>naTC7A@RrD>;bSvM0J6|@~+A+8JN%U5UcB;zr&e`*Z7_WS(wSV!*pRF(OV^2rc&RFPNbF;dOwYv zQgwWoHtw$n5-nDub1LaP^ZR2QOy2y`59f+CeTIWXr* z6zpfQ`Tqzxo%ywWU7oXadR$_VyBllPu-rZPtDr&d#Z!(svkz&P-2M0~FlPiBoWOxgt471T@Txc;7BW{l1~ zDTH!Fd@K#j+lU$|XcF||$FD8u`34MI-@5w0h8cu@Xg~uFLs=P!pD2#wM0(24%0Ek7 z_ofT#AvwG)#JQA%k?p?5YT z^tVKDKO&LJl|bp}I-_$hJ%`EXrU-lW!hOCR)w4>nNQbDQCR%8H$(Ky%SyC=Z<$YN` zDlZWAN-ELrGJlMOnNg2-6{FeF?f`0I8b^^UP4~A-w9UYC1ge%y4`9MxjF2dvQqD|qJvES@Kw%^~ zW)QmNJ6Qr1vl9rExQ723EzQYy;T#zN;5@l~R;HiPcZ?+XbVk}6Qk z7Nt{t*5ii(-{Wrd3ExpY1fpJ9FDY)Uk$#dw{vuHxQy>~spPEJW1W_f;VqrZn?X^JG z4~b?eQ5gfMhbBMHzf|KeeUGM+zox>`BX~R#K)*E0yI0B;K-vA`V#R($2L!j zicEyZ@7(kKSA7#i+iC*sLYl3!9nZH$)uk|u)TFKzgrkAoH*MsrCl z~pChR}|ilKhRR{Lw_42nunQUYL2r!_qzX;$I95=f{~wU^dt5DZRHb@y8Ht0&RJ> z^bYy_NO9fU2s(4{#yyRwTrtq;(6Ww)5IvId!$MPxq4r5Wm*isd`I1VxHH!8#pU0XK zrSmJG6`Fh=$)8B=a#Lz2nvkC4b0n4gQZDHa4JjR!mo=dL<#~NNj{>vU9i`k7b+RGZ zvmx=x`%%_8ujWUN#0#|F<#909gsF{#MD7?H$&YKs3pvIGP#76M&@WB@IU(hbBNSTc z@3NjCD)qtZct7$F{0&B9JcL(9N}H7L1Vm)(&@8U-U}Z$xUO_M zWYT?;czZ!qnC`%3BW_l#@+Rq4JUEv>g*G9O9tzKM?L9W!HD39GKH zW{z__`bL!~N2rD7Qh~09D0lJWwFav_eOr(2WwlXsv~@1|mFLddR}E+7O|+ODw%I+W zqax*bC{dVIUL4?DvtOGSAm(wwO@@_k>sjGRGIC_A6gc7`SMAE@UoVF2(}s) z3ffKfbX(G<;5U;ZuI4H?x3kFZX9;ema@8ZM)Q7}n-L@FsM!(g{jttYjS>4P+9j#93 zl-U|z=_fWB<|gKTWwq6}iPkRoYLrg#r-I_{__nEp?;1O<&C1t+Fyfc>Qkmr`8r^gi z&er@hzP;kK9x48ZB@3W2)}(SO_w%bC!CmiWy=AuDf==^O^o%)#TC1t+P=1O&^SjK) zRW{3bcl@+A+g9H~Kai^ilyuqmciv;Lxg1`$M2j!Z-@@r~)+YIGC91?1fm&c*zxKN! zBS^lwb~)dE`4!ZQdFXPwpG|aXcg2sm1diLI;B5FK zkj~J6&LfE`{t|1V-CaNaxjsi4YrE7kT*?^&w^KeqREbMxK0RLsyv;ppx~ANwt@cfY zDB^EOREdMWp-;Dsao%gb z!Rj9gHn(U144P6tu|$>nK5J|ISNKi!n64$Y&uZ<1+g%8LBaZTkC#v|Te@8#QI+cH2 z=SOW;-g!Jz>IvrX_t*DkRIX&AieIxob{yxcTEBmB;9>3U2)>OW{v@J`UUCjsK)uA? zQtr&&i<(~C_FtU8Z3@;WgA|f4{XfacLb|@SZGz@6H7qp7G)kxR=fy5VR&a&49DlX_ z^j*wu<28d8R4!_Gm}2+*(V_S)zGOZ>x?8iK+x(o`&yH@ANpfZpRpU#{qzb@t%&%Kr zb2(d)eD@Mn^ch=p)8RsIe($qmOX`B`7ny9h8m~3+wtZ4YqFTp!cs6EHuVD zDV?I1g5pisKQoV?wSHFUe?wyw-^Mf375vTm42<)I+Z`EaC~bX*Iv#J zBv((Oiv0vCSdAN2#g#v!ttx0@Lt|9@CHu8iIBqPSd#*Qr175K!=HPbs9)oO>uQO34 zKX2pXIKK6j1UiTm{w)d z`=MID)op)}L0^(@08xcR+w}%r+)3R?HU_M<$8dq;=cmLYSYS5yO)P*^Gne# zdn zzdua*47TSNT5aJDw7ZB)iu}mwHZD20yJ8653ldgQ)*k5WFlM3s89V*JDfw5s)h7U!M%wO${b>eIez zX&A}(7*WN(o~LHw?nHB(I#bh&`*{60B-Qg+X z|B$F+hx{+rep?t()IH~4Ki+12^~7ZJW?N{C&rmvr)Cd`j*vV{L6{ zj7mL=%KvaZp#iM~(YqJbglcN}ylpJIjHBzSpVhjE zt3K0fFMps`b!+}#u(gKgi2o&`@_m;$#qk6GxuRs@ShMb;f3VpToDQ z>0dXf0WT2$XrfA7@|mdf5qvzoOsjux`&mxoM9}+El+1m7A4BDOg{Tq-i;}UIXI0kdi-=6Uv%`OFbj<_kIJX` zb>5e`IPU0n`Q`E(m^M$F3a=9X1fohg3cB@PXNX-7*S_9PB>CPZs@N~@p0%3_*$ZP9 z@9%fXkneW|TM|qn{@3j3JSFAO?sJk4yfEN^*1pHM?4O0e>y*zMMAbM^_63X+lSj;K zHbehvoLe*wzwsvJ^A=I1ePF%2e~W&7*TFK0{cQEYX}?a(IjPC%et!Nv%4afBB@TwNkM|j@_``0m{kT@E?@r67w=1FWKIJoo zs8WxH|5OdXV&miekk9|-_D`Ru^&9yl-v>k$JNO2_O!HaZ(b_oNX*|>Q;xwM=>HNk= zB;S0Zia!0Hq~Lq|(4%k6>t9hDSH;6L;-5)WX&>0bGshLOp~lnayq9ddOQ#e645CUs z^0$1Jqn-0Z-yQ6}9dla$lyYPKAu!97gRzf^D)lquuACVL8@BJ+xU%Q9coqq>iGL1J z+dSr~f5xu&xg_6b_VNwt=wELzb6Md=Elxz(&=?iHY&rge5Bmk*;^%7@YW3ai`>_BT zW5IvYr+GbAt4D78S#Il*`+B>8%Jn%>C4LH&HTd)zjH~Q%Vj;=5iD+>9Uu?ifgZA|C zG_lqJ3APjqjd2yFQ{sgAwFr3n(PKluy-h>GO@gn8e=$*|ewrwp-aoolzx-;XHvbY0 zi-`Ygdpdz;YhJGj%JcXYm;Dgu{c@#$g4y|vZ%jED`Cya5|r-!5}qs3^yxOf_>JY1&ksZueR}#f z-;KN8Ia>WjO`mS<=hm+otRVST5>*J?RSoAEJl6!x);2G^nglB%s>Byowk`HQzpQ$G z^^r=}I#|J0AJ!26Pec{Fvu{QZC}e#1$e7aF`p-~UOZ@AID)mpG{1))ttonO&_w9qT z{);|NbsCrS@q^!3Pv!dAu9y5$rDo$-DKl_C$62jkPy;p)|3;!p{S&CW=6uNKT0L^B z7pLXRUg9p!>-uymXO7$~OIlzS8eY=NTj*S(sVL>h z@4ElE;VoEPre{_yXs4!QePAn{OSBoquk%BuV7gZ^zO1SQ4TI8U!>@Gy2ho6>{)_kW z@onG29(SC)PMgPU58H@;FHxmF6rF5^^Jn>E3w9njWkb=~PW(HGs&d{JieIBSQsT== z*=Iww`HlFCi7N3k=R%#ug{+`r`fu<4WGHeVXFVGlqY@_sstuvV1j@}baNlorR&NwALB=YD;`Zpvp5QN?~a_)zLu>#$Fl&9jU9M2*6bbu$B6$pQKfzsSYMZ9*M1$+Ns{lBT~6=5ieH$91;@6&^rsG$j+1uA(9H;w>-;ijG675j6!)Au- z%VT$Mf1tWgtGD5B9VtShTPkr^taH33U*Cw;`h!mUt@?XB{F*zJPogU-dWoGqk+1*c z>)k%n>bvuHMfD@+Xg_VW@`Zpzi!4tMRQzn*=~r-_Km?!vyjtj9&h;5wKBw)bS1X_2 zkZ6oI(E|g1Mre%Zix4iYlC@t`gazmCI~2QO(ohSHQKBm<`V^>jy!(=TTI)|Zjn}%L zIn|4O{-rYML!vze^uo-3kFVUyjz2|IfO_8LCEjqg%1_ zkm!_GK-0|b{QgdZaZuXv`nsTSkZ70^O;gcl-iZ^qug5&D)>qNp`loaI1^aafNOV|< zMyB|ar|Z;9hIf2q@8Rr{QB}1AqW$P-j7qwK#P<#w%!Cy=YTT@*L$n>IgobV`Yqt)vs^vRBo9ZtdXQ?u!4RK0|G2 zjEWtKTD*_@`1bdzKWny6o7Zr^zEz?{O0-Eb2d~|p#}DCpVcx8~x}; zjZrCIke>yoa~lVp+d=PNOEgA_=B~&Ccb{h9GvkZ?)qpUN=#3KnQSr~O!s2j$)jtI7 z+-bbl^`fIOD)uw`*IquJ_MEnjk0csnGC7!{PtUO9Ck=+*yls(qTpJ%bUl*jynL_zU z^hYH>s9*A@!E!jR!;dz<*3lT1=Xw(#Mmf!+SnFTA^-uTlMRrIf8lxg-#Mk3W0W02o zp`h(M+W5$MyjJvuC5~|2z604I({A_uCc0&mSRbj#&o%5iKWBdJemq9SFuj0}k8;nW zTKUIbt?-9Na>nh21N!6NMIn&nvGRgyv)rsus|5h+3$Q>4d&S z=x7xQMRJZr!%C&+61C7IGf0kPdM@!VNFsiDov1_`w9=;#Uvo-N>6ko^hfz=AQ6UrB zJwD{a0dEoN9HI$M*)sP1Ee*3oxwaAd-nf>~?YZ;@D;5xn-sVi`cevK(rTsEtjd^5J zJ}seh*~hZWJ|@qB(7ohyk|@yqbbV!s za_?4;ORuY9zL)9CY0<+)fg@4kYvjqCykrqOK zHAz1Vgx^P#Uh%q#zLfyLt)5-B1$?uZAL%5gOrK7CX>?uc*AS>)?G1Q<7Z~Md=0S2S zXaRW}Gkl+oNf3THHVOLPaqzKeeVRk)&3HVSbY;{!ME#u61lRQ!CBcK^HxC+LEm`RE z#Z?7^&8U1yuyAP4^Dj0FoSVzQ%F1&>53Jb?cANb}iI&(5Hf7fSIkUE` z_sIe^@|`3?X(Lp|1XS@?7IB&kez^Rt)l!39ht{mQr@ zpG)#>O%Ujx^)$3Z7RXQNNuDQ=y(KzZtjHJ9?UFxV@%YlIsgN=5{9||SNdXQf>Z?S0 z$9gQDL-iW{e|N*oDV2ApQ2deQPNujl(J7_g&~Ff2@>tb0svi>7GM(avJSS91M42@G zdO^TH%=(D+#6;`tNBYliPAHX9F98%xQ7=d@;{qs%;yJQjN>pBH&rEnE>4UxtN5?|V zc29q{yGN|37nkB-YGlpCOAp4IXiK+_jw95;I52xzj}nSwbijT>Ux9OxZyf27^zM`A zl1lVRy3b^KJ4)bM9{0l&;9`T-edk|@hg>em9b{*T7MU;oOZqkWkwoK#M2e3I!Vd2w zg6VdT#e*4^XUEg^IN>+jDpBEd$!4Z<#VNeB$fIh tRM1`e^`^p}?Fk)nK>!s}n$~AG@!~{{d7)^b-I8 literal 0 HcmV?d00001 From 26efb15ce8fefa2d4af3fe53a5df8ff6fdb628ba Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Mon, 7 Dec 2020 01:01:00 +0530 Subject: [PATCH 3/9] Update Readme.md --- intern-basics/MPG_Prediction_Model/Readme.md | 20 +++++++++++++++++++- 1 file changed, 19 insertions(+), 1 deletion(-) diff --git a/intern-basics/MPG_Prediction_Model/Readme.md b/intern-basics/MPG_Prediction_Model/Readme.md index e17628d..5d0a981 100644 --- a/intern-basics/MPG_Prediction_Model/Readme.md +++ b/intern-basics/MPG_Prediction_Model/Readme.md @@ -1 +1,19 @@ -Readme file created +# MPG Prediction Model + +This prediction model shows the different factors affects the vehicle mileage. By considering those factors we can predict the miles per Gallon of a vehicle. + +To make a prediction model first we have to collect the data. This data set is found in [UCI Machine Learning Repository](http://archive.ics.uci.edu/ml/datasets/Auto+MPG). +The attributes given in the dataset are +1. mpg: continuous +2. cylinders: multi-valued discrete +3. displacement: continuous +4. horsepower: continuous +5. weight: continuous +6. acceleration: continuous +7. model year: multi-valued discrete +8. origin: multi-valued discrete +9. car name: string (unique for each instance) + +By considering all other attributes we have to predict the mpg value. + +In the notebook you can see that we have compare diffenet models and pick the best model as our prediction model and store the model values in the model.bin folder. From 9fff2add603e64a03e1889925c3025bda9d36245 Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Mon, 7 Dec 2020 01:09:51 +0530 Subject: [PATCH 4/9] Update Readme.md --- intern-basics/MPG_Prediction_Model/Readme.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/intern-basics/MPG_Prediction_Model/Readme.md b/intern-basics/MPG_Prediction_Model/Readme.md index 5d0a981..6422e34 100644 --- a/intern-basics/MPG_Prediction_Model/Readme.md +++ b/intern-basics/MPG_Prediction_Model/Readme.md @@ -1,8 +1,8 @@ # MPG Prediction Model -This prediction model shows the different factors affects the vehicle mileage. By considering those factors we can predict the miles per Gallon of a vehicle. +This prediction model shows the different factors that affect vehicle mileage. By considering those factors we can predict the miles per Gallon of a vehicle. -To make a prediction model first we have to collect the data. This data set is found in [UCI Machine Learning Repository](http://archive.ics.uci.edu/ml/datasets/Auto+MPG). +To make a prediction model first we have to collect the data. This data set is found in the [UCI Machine Learning Repository](http://archive.ics.uci.edu/ml/datasets/Auto+MPG). The attributes given in the dataset are 1. mpg: continuous 2. cylinders: multi-valued discrete @@ -16,4 +16,4 @@ The attributes given in the dataset are By considering all other attributes we have to predict the mpg value. -In the notebook you can see that we have compare diffenet models and pick the best model as our prediction model and store the model values in the model.bin folder. +In the notebook, you can see that we have compared different models and pick the best model as our prediction model and store the model values in the model.bin folder. From 658d2a583bfd16c11000b642c7fb4cd2fdc8bd50 Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Tue, 22 Dec 2020 11:54:01 +0530 Subject: [PATCH 5/9] Create Data.md --- .../Job Recommendation System/Data.md | 33 +++++++++++++++++++ 1 file changed, 33 insertions(+) create mode 100644 intern-basics/Job Recommendation System/Data.md diff --git a/intern-basics/Job Recommendation System/Data.md b/intern-basics/Job Recommendation System/Data.md new file mode 100644 index 0000000..73b612c --- /dev/null +++ b/intern-basics/Job Recommendation System/Data.md @@ -0,0 +1,33 @@ +# Data + +For the Job Recommendation System model we consider the data from the [Kaggle](https://www.kaggle.com/c/job-recommendation). + +The dataset consist of many files in different formats, but we only consider the following files +* apps.tsv +* jobs.tsv +* test_users.tsv +* user_history.tsv +* users.tsv + +In order to understand the content of the data files, you need to understand the structure of this contest. + +In outline, we give you data on users, job postings, and job applications that users have made to job postings. In total, the applications span 13 weeks. +We have split the applications into 7 groups, each group representing a 13-day window. Each 13-day window is split into two parts: +The first 9 days are the training period, and the last 4 days are the test period. All the other details on window split per user you can find in the +[Kaggle](https://www.kaggle.com/c/job-recommendation/data) site. + +## File Formats +Each of the files is in .tsv (tab-seperated value) format. This means that each line in a .tsv file consists of several fields, which are separated by tabs. +To accommodate this file format, fields composed of text have been changed in the following ways to escape tabs, newlines, and carriage returns. + +1. Tabs have been replaced by '\t' +2. Newlines have been replaced by '\n' +3. Carriage returns have been replaced by '\r' +4. Backslashes have been replaced by '\\\' + +## Files + +**users.tsv** contains information about the users. Each row of this file describes a user. The *UserID* column contains a user's unique id number, +the *WindowID* column contains which of the 7 windows the user is assigned to, and the *Split* column tells whether the user is in the Train group or +the Test group. The remaining columns contain *demographic and professional information* about the users. + From 3425580f9a6d1cfaed52c323c931fb19f49e7f2b Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Wed, 23 Dec 2020 00:56:35 +0530 Subject: [PATCH 6/9] Create Learn.md --- intern-basics/Job Recommendation System/Learn.md | 2 ++ 1 file changed, 2 insertions(+) create mode 100644 intern-basics/Job Recommendation System/Learn.md diff --git a/intern-basics/Job Recommendation System/Learn.md b/intern-basics/Job Recommendation System/Learn.md new file mode 100644 index 0000000..028877e --- /dev/null +++ b/intern-basics/Job Recommendation System/Learn.md @@ -0,0 +1,2 @@ +# TfidfTransformer and cosine_similarity + From 0c92e79942439504e08bf271f14be62046b51bd4 Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Wed, 23 Dec 2020 01:31:57 +0530 Subject: [PATCH 7/9] Update Learn.md --- intern-basics/Job Recommendation System/Learn.md | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) diff --git a/intern-basics/Job Recommendation System/Learn.md b/intern-basics/Job Recommendation System/Learn.md index 028877e..f02a6d5 100644 --- a/intern-basics/Job Recommendation System/Learn.md +++ b/intern-basics/Job Recommendation System/Learn.md @@ -1,2 +1,11 @@ -# TfidfTransformer and cosine_similarity +# TfidfTransformer + +*(sklearn.feature_extraction.text.TfidfVectorizer)* + +It Convert a collection of raw documents to a matrix of TF-IDF features. +It is Equivalent to *CountVectorizer* followed by *TfidfTransformer*. +* CountVectorizer implements both tokenization and occurrence counting in a single class. + + +# cosine_similarity From d310a549683f8eab222f3ccc1d489e77e283bcbc Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Wed, 23 Dec 2020 01:34:15 +0530 Subject: [PATCH 8/9] Jupyter Notebook Uploaded --- .../Job_recommendation_system.ipynb | 4506 +++++++++++++++++ 1 file changed, 4506 insertions(+) create mode 100644 intern-basics/Job Recommendation System/Job_recommendation_system.ipynb diff --git a/intern-basics/Job Recommendation System/Job_recommendation_system.ipynb b/intern-basics/Job Recommendation System/Job_recommendation_system.ipynb new file mode 100644 index 0000000..fbe88a8 --- /dev/null +++ b/intern-basics/Job Recommendation System/Job_recommendation_system.ipynb @@ -0,0 +1,4506 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Job recommendation engine" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Recommend similar jobs based on the jobs title, description\n", + "* Recommend jobs based on similar user profiles" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import pandas as pd\n", + "import numpy as np\n", + "import ast \n", + "from scipy import stats\n", + "from ast import literal_eval\n", + "from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer\n", + "from sklearn.metrics.pairwise import linear_kernel, cosine_similarity\n", + "\n", + "import warnings; warnings.simplefilter('ignore')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Invalid switch - \"input_data\".\n" + ] + } + ], + "source": [ + "!dir ./input_data/*.tsv" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "b'Skipping line 122433: expected 11 fields, saw 12\\n'\n", + "b'Skipping line 602576: expected 11 fields, saw 12\\n'\n", + "b'Skipping line 990950: expected 11 fields, saw 12\\n'\n" + ] + } + ], + "source": [ + "apps = pd.read_csv('./input_data/apps.tsv', delimiter='\\t',encoding='utf-8')\n", + "user_history = pd.read_csv('./input_data/user_history.tsv', delimiter='\\t',encoding='utf-8')\n", + "jobs = pd.read_csv('./input_data/jobs.tsv', delimiter='\\t',encoding='utf-8', error_bad_lines=False)\n", + "users = pd.read_csv('./input_data/users.tsv' ,delimiter='\\t',encoding='utf-8')\n", + "test_users = pd.read_csv('./input_data/test_users.tsv', delimiter='\\t',encoding='utf-8')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Filtering Window 1 data for all datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitApplicationDateJobID
0471Train2012-04-04 15:56:23.537169528
1471Train2012-04-06 01:03:00.003284009
2471Train2012-04-05 02:40:27.7532121
3471Train2012-04-05 02:37:02.673848187
4471Train2012-04-05 22:44:06.653733748
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split ApplicationDate JobID\n", + "0 47 1 Train 2012-04-04 15:56:23.537 169528\n", + "1 47 1 Train 2012-04-06 01:03:00.003 284009\n", + "2 47 1 Train 2012-04-05 02:40:27.753 2121\n", + "3 47 1 Train 2012-04-05 02:37:02.673 848187\n", + "4 47 1 Train 2012-04-05 22:44:06.653 733748" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "apps = apps[apps['WindowID']==1]\n", + "apps.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['UserID', 'WindowID', 'Split', 'ApplicationDate', 'JobID'], dtype='object')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "apps.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(353582, 5)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "apps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 353582 entries, 0 to 353581\n", + "Data columns (total 5 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 UserID 353582 non-null int64 \n", + " 1 WindowID 353582 non-null int64 \n", + " 2 Split 353582 non-null object\n", + " 3 ApplicationDate 353582 non-null object\n", + " 4 JobID 353582 non-null int64 \n", + "dtypes: int64(3), object(2)\n", + "memory usage: 16.2+ MB\n" + ] + } + ], + "source": [ + "# Information on apps file\n", + "apps.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitSequenceJobTitle
0471Train1National Space Communication Programs-Special ...
1471Train2Detention Officer
2471Train3Passenger Screener, TSA
3721Train1Lecturer, Department of Anthropology
4721Train2Student Assistant
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split Sequence \\\n", + "0 47 1 Train 1 \n", + "1 47 1 Train 2 \n", + "2 47 1 Train 3 \n", + "3 72 1 Train 1 \n", + "4 72 1 Train 2 \n", + "\n", + " JobTitle \n", + "0 National Space Communication Programs-Special ... \n", + "1 Detention Officer \n", + "2 Passenger Screener, TSA \n", + "3 Lecturer, Department of Anthropology \n", + "4 Student Assistant " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_history = user_history[user_history['WindowID']==1]\n", + "user_history.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# replace all the NaN with space\n", + "user_history['JobTitle'] = user_history['JobTitle'].fillna('')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# users[users['UserID']==1472089]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['UserID', 'WindowID', 'Split', 'Sequence', 'JobTitle'], dtype='object')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_history.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(348269, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_history.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 348269 entries, 0 to 348268\n", + "Data columns (total 5 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 UserID 348269 non-null int64 \n", + " 1 WindowID 348269 non-null int64 \n", + " 2 Split 348269 non-null object\n", + " 3 Sequence 348269 non-null int64 \n", + " 4 JobTitle 348269 non-null object\n", + "dtypes: int64(3), object(2)\n", + "memory usage: 15.9+ MB\n" + ] + } + ], + "source": [ + "# user_history information\n", + "user_history.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JobIDWindowIDTitleDescriptionRequirementsCityStateCountryZip5StartDateEndDate
011Security Engineer/Technical Lead<p>Security Clearance Required:&nbsp; Top Secr...<p>SKILL SET</p>\\r<p>&nbsp;</p>\\r<p>Network Se...WashingtonDCUS205312012-03-07 13:17:01.6432012-04-06 23:59:59
141SAP Business Analyst / WM<strong>NO Corp. to Corp resumes&nbsp;are bein...<p><b>WHAT YOU NEED: </b></p>\\r<p>Four year co...CharlotteNCUS282172012-03-21 02:03:44.1372012-04-20 23:59:59
271P/T HUMAN RESOURCES ASSISTANT<b> <b> P/T HUMAN RESOURCES ASSISTANT</b> <...Please refer to the Job Description to view th...Winter ParkFLUS327922012-03-02 16:36:55.4472012-04-01 23:59:59
381Route Delivery DriversCITY BEVERAGES Come to work for the best in th...Please refer to the Job Description to view th...OrlandoFLUSNaN2012-03-03 09:01:10.0772012-04-02 23:59:59
491HousekeepingI make sure every part of their day is magica...Please refer to the Job Description to view th...OrlandoFLUSNaN2012-03-03 09:01:11.882012-04-02 23:59:59
\n", + "
" + ], + "text/plain": [ + " JobID WindowID Title \\\n", + "0 1 1 Security Engineer/Technical Lead \n", + "1 4 1 SAP Business Analyst / WM \n", + "2 7 1 P/T HUMAN RESOURCES ASSISTANT \n", + "3 8 1 Route Delivery Drivers \n", + "4 9 1 Housekeeping \n", + "\n", + " Description \\\n", + "0

Security Clearance Required:  Top Secr... \n", + "1 NO Corp. to Corp resumes are bein... \n", + "2 P/T HUMAN RESOURCES ASSISTANT <... \n", + "3 CITY BEVERAGES Come to work for the best in th... \n", + "4 I make sure every part of their day is magica... \n", + "\n", + " Requirements City State \\\n", + "0

SKILL SET

\\r

 

\\r

Network Se... Washington DC \n", + "1

WHAT YOU NEED:

\\r

Four year co... Charlotte NC \n", + "2 Please refer to the Job Description to view th... Winter Park FL \n", + "3 Please refer to the Job Description to view th... Orlando FL \n", + "4 Please refer to the Job Description to view th... Orlando FL \n", + "\n", + " Country Zip5 StartDate EndDate \n", + "0 US 20531 2012-03-07 13:17:01.643 2012-04-06 23:59:59 \n", + "1 US 28217 2012-03-21 02:03:44.137 2012-04-20 23:59:59 \n", + "2 US 32792 2012-03-02 16:36:55.447 2012-04-01 23:59:59 \n", + "3 US NaN 2012-03-03 09:01:10.077 2012-04-02 23:59:59 \n", + "4 US NaN 2012-03-03 09:01:11.88 2012-04-02 23:59:59 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jobs = jobs[jobs['WindowID']==1]\n", + "jobs.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['JobID', 'WindowID', 'Title', 'Description', 'Requirements', 'City',\n", + " 'State', 'Country', 'Zip5', 'StartDate', 'EndDate'],\n", + " dtype='object')" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jobs.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(285091, 11)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jobs.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 285091 entries, 0 to 285090\n", + "Data columns (total 11 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 JobID 285091 non-null int64 \n", + " 1 WindowID 285091 non-null int64 \n", + " 2 Title 285091 non-null object\n", + " 3 Description 285090 non-null object\n", + " 4 Requirements 261659 non-null object\n", + " 5 City 285091 non-null object\n", + " 6 State 285091 non-null object\n", + " 7 Country 285088 non-null object\n", + " 8 Zip5 182469 non-null object\n", + " 9 StartDate 285091 non-null object\n", + " 10 EndDate 285087 non-null object\n", + "dtypes: int64(2), object(9)\n", + "memory usage: 26.1+ MB\n" + ] + } + ], + "source": [ + "# jobs information\n", + "jobs.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitCityStateCountryZipCodeDegreeTypeMajorGraduationDateWorkHistoryCountTotalYearsExperienceCurrentlyEmployedManagedOthersManagedHowMany
0471TrainParamountCAUS90723High SchoolNaN1999-06-01 00:00:00310.0YesNo0
1721TrainLa MesaCAUS91941Master'sAnthropology2011-01-01 00:00:00108.0YesNo0
2801TrainWilliamstownNJUS08094High SchoolNot Applicable1985-06-01 00:00:00511.0YesYes5
3981TrainAstoriaNYUS11105Master'sJournalism2007-05-01 00:00:0033.0YesNo0
41231TrainBaton RougeLAUS70808Bachelor'sAgricultural Business2011-05-01 00:00:0019.0YesNo0
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split City State Country ZipCode DegreeType \\\n", + "0 47 1 Train Paramount CA US 90723 High School \n", + "1 72 1 Train La Mesa CA US 91941 Master's \n", + "2 80 1 Train Williamstown NJ US 08094 High School \n", + "3 98 1 Train Astoria NY US 11105 Master's \n", + "4 123 1 Train Baton Rouge LA US 70808 Bachelor's \n", + "\n", + " Major GraduationDate WorkHistoryCount \\\n", + "0 NaN 1999-06-01 00:00:00 3 \n", + "1 Anthropology 2011-01-01 00:00:00 10 \n", + "2 Not Applicable 1985-06-01 00:00:00 5 \n", + "3 Journalism 2007-05-01 00:00:00 3 \n", + "4 Agricultural Business 2011-05-01 00:00:00 1 \n", + "\n", + " TotalYearsExperience CurrentlyEmployed ManagedOthers ManagedHowMany \n", + "0 10.0 Yes No 0 \n", + "1 8.0 Yes No 0 \n", + "2 11.0 Yes Yes 5 \n", + "3 3.0 Yes No 0 \n", + "4 9.0 Yes No 0 " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users = users[users['WindowID']==1]\n", + "users.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['UserID', 'WindowID', 'Split', 'City', 'State', 'Country', 'ZipCode',\n", + " 'DegreeType', 'Major', 'GraduationDate', 'WorkHistoryCount',\n", + " 'TotalYearsExperience', 'CurrentlyEmployed', 'ManagedOthers',\n", + " 'ManagedHowMany'],\n", + " dtype='object')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(77060, 15)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 77060 entries, 0 to 77059\n", + "Data columns (total 15 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 UserID 77060 non-null int64 \n", + " 1 WindowID 77060 non-null int64 \n", + " 2 Split 77060 non-null object \n", + " 3 City 77060 non-null object \n", + " 4 State 76952 non-null object \n", + " 5 Country 77060 non-null object \n", + " 6 ZipCode 76704 non-null object \n", + " 7 DegreeType 77060 non-null object \n", + " 8 Major 58219 non-null object \n", + " 9 GraduationDate 53852 non-null object \n", + " 10 WorkHistoryCount 77060 non-null int64 \n", + " 11 TotalYearsExperience 74212 non-null float64\n", + " 12 CurrentlyEmployed 67033 non-null object \n", + " 13 ManagedOthers 77060 non-null object \n", + " 14 ManagedHowMany 77060 non-null int64 \n", + "dtypes: float64(1), int64(4), object(10)\n", + "memory usage: 9.4+ MB\n" + ] + } + ], + "source": [ + "# users information\n", + "users.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowID
07671
17691
28611
310061
411921
\n", + "
" + ], + "text/plain": [ + " UserID WindowID\n", + "0 767 1\n", + "1 769 1\n", + "2 861 1\n", + "3 1006 1\n", + "4 1192 1" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_users = test_users[test_users['WindowID']==1]\n", + "test_users.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['UserID', 'WindowID'], dtype='object')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_users.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5419, 2)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_users.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 5419 entries, 0 to 5418\n", + "Data columns (total 2 columns):\n", + " # Column Non-Null Count Dtype\n", + "--- ------ -------------- -----\n", + " 0 UserID 5419 non-null int64\n", + " 1 WindowID 5419 non-null int64\n", + "dtypes: int64(2)\n", + "memory usage: 127.0 KB\n" + ] + } + ], + "source": [ + "# test_users information\n", + "test_users.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exploratory Data Analysis (EDA) and Pre-processing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Split training and testing data based on column `split`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Here, there are three datafiles/dataframes are having attribute split. \n", + " * apps\n", + " * user_history\n", + " * users\n", + "* This data attribute indicates that whether the data record can be used for training or testing so we need to filter out based on that. \n", + "* We are generating training and testing dataframes \n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# spliting apps data\n", + "apps_training = apps.loc[apps['Split'] == 'Train']" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(303833, 5)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "apps_training.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitApplicationDateJobID
35357714719761Train2012-04-02 13:53:18.88702563
35357814719761Train2012-04-02 13:52:16.3271020868
35357914719761Train2012-04-02 13:00:52.527891097
35358014719831Train2012-04-09 21:41:05.663553373
35358114719831Train2012-04-09 21:56:46.787553371
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split ApplicationDate JobID\n", + "353577 1471976 1 Train 2012-04-02 13:53:18.88 702563\n", + "353578 1471976 1 Train 2012-04-02 13:52:16.327 1020868\n", + "353579 1471976 1 Train 2012-04-02 13:00:52.527 891097\n", + "353580 1471983 1 Train 2012-04-09 21:41:05.663 553373\n", + "353581 1471983 1 Train 2012-04-09 21:56:46.787 553371" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "apps_training.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "apps_testing = apps.loc[apps['Split'] == 'Test']" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(49749, 5)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "apps_testing.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitApplicationDateJobID
1267671Test2012-04-01 14:37:20.02385377
1277691Test2012-04-16 22:36:52.48853328
1287691Test2012-04-09 18:59:28.19386106
1297691Test2012-04-09 18:59:31.127327571
1307691Test2012-04-08 21:29:11.993119161
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split ApplicationDate JobID\n", + "126 767 1 Test 2012-04-01 14:37:20.023 85377\n", + "127 769 1 Test 2012-04-16 22:36:52.48 853328\n", + "128 769 1 Test 2012-04-09 18:59:28.193 86106\n", + "129 769 1 Test 2012-04-09 18:59:31.127 327571\n", + "130 769 1 Test 2012-04-08 21:29:11.993 119161" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "apps_testing.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "# spliting user_history data\n", + "user_history_training = user_history.loc[user_history['Split'] =='Train']" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "user_history_training = user_history.loc[user_history['Split'] =='Train']\n", + "user_history_testing = user_history.loc[user_history['Split'] =='Test']\n", + "apps_training = apps.loc[apps['Split'] == 'Train']\n", + "apps_testing = apps.loc[apps['Split'] == 'Test']\n", + "users_training = users.loc[users['Split']=='Train']\n", + "users_testing = users.loc[users['Split']=='Test']" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(323851, 5)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_history_training.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitSequenceJobTitle
0471Train1National Space Communication Programs-Special ...
1471Train2Detention Officer
2471Train3Passenger Screener, TSA
3721Train1Lecturer, Department of Anthropology
4721Train2Student Assistant
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split Sequence \\\n", + "0 47 1 Train 1 \n", + "1 47 1 Train 2 \n", + "2 47 1 Train 3 \n", + "3 72 1 Train 1 \n", + "4 72 1 Train 2 \n", + "\n", + " JobTitle \n", + "0 National Space Communication Programs-Special ... \n", + "1 Detention Officer \n", + "2 Passenger Screener, TSA \n", + "3 Lecturer, Department of Anthropology \n", + "4 Student Assistant " + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_history_training.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "user_history_testing = user_history.loc[user_history['Split'] =='Test']" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(24418, 5)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_history_testing.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitSequenceJobTitle
1447671Test1Claims Adjuster
1457671Test2Professional Baseball Player
1467671Test3Professional Baseball Player
1477671Test4Professional Baseball Player
1487671Test5Professional Baseball Player
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split Sequence JobTitle\n", + "144 767 1 Test 1 Claims Adjuster\n", + "145 767 1 Test 2 Professional Baseball Player\n", + "146 767 1 Test 3 Professional Baseball Player\n", + "147 767 1 Test 4 Professional Baseball Player\n", + "148 767 1 Test 5 Professional Baseball Player" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_history_testing.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "# spliting user data\n", + "users_training = users.loc[users['Split']=='Train']" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(71641, 15)" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users_training.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitCityStateCountryZipCodeDegreeTypeMajorGraduationDateWorkHistoryCountTotalYearsExperienceCurrentlyEmployedManagedOthersManagedHowMany
0471TrainParamountCAUS90723High SchoolNaN1999-06-01 00:00:00310.0YesNo0
1721TrainLa MesaCAUS91941Master'sAnthropology2011-01-01 00:00:00108.0YesNo0
2801TrainWilliamstownNJUS08094High SchoolNot Applicable1985-06-01 00:00:00511.0YesYes5
3981TrainAstoriaNYUS11105Master'sJournalism2007-05-01 00:00:0033.0YesNo0
41231TrainBaton RougeLAUS70808Bachelor'sAgricultural Business2011-05-01 00:00:0019.0YesNo0
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split City State Country ZipCode DegreeType \\\n", + "0 47 1 Train Paramount CA US 90723 High School \n", + "1 72 1 Train La Mesa CA US 91941 Master's \n", + "2 80 1 Train Williamstown NJ US 08094 High School \n", + "3 98 1 Train Astoria NY US 11105 Master's \n", + "4 123 1 Train Baton Rouge LA US 70808 Bachelor's \n", + "\n", + " Major GraduationDate WorkHistoryCount \\\n", + "0 NaN 1999-06-01 00:00:00 3 \n", + "1 Anthropology 2011-01-01 00:00:00 10 \n", + "2 Not Applicable 1985-06-01 00:00:00 5 \n", + "3 Journalism 2007-05-01 00:00:00 3 \n", + "4 Agricultural Business 2011-05-01 00:00:00 1 \n", + "\n", + " TotalYearsExperience CurrentlyEmployed ManagedOthers ManagedHowMany \n", + "0 10.0 Yes No 0 \n", + "1 8.0 Yes No 0 \n", + "2 11.0 Yes Yes 5 \n", + "3 3.0 Yes No 0 \n", + "4 9.0 Yes No 0 " + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users_training.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "users_testing = users.loc[users['Split']=='Test']" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5419, 15)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users_testing.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitCityStateCountryZipCodeDegreeTypeMajorGraduationDateWorkHistoryCountTotalYearsExperienceCurrentlyEmployedManagedOthersManagedHowMany
317671TestMurrietaCAUS92562Bachelor'sUniversity Studies/Business2008-05-01 00:00:00516.0NoNo0
327691TestRoselleILUS60172Bachelor'sRadio-Television2011-05-01 00:00:0055.0YesNo0
338611TestMorrisILUS60450High SchoolGeneral Studies1989-05-01 00:00:00721.0NaNNo0
3810061TestWest ChesterPAUS19382High SchoolNot Applicable2008-06-01 00:00:0036.0YesNo0
4411921TestCincinnatiOHUS45255Bachelor'sMarketingNaN56.0YesNo0
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split City State Country ZipCode DegreeType \\\n", + "31 767 1 Test Murrieta CA US 92562 Bachelor's \n", + "32 769 1 Test Roselle IL US 60172 Bachelor's \n", + "33 861 1 Test Morris IL US 60450 High School \n", + "38 1006 1 Test West Chester PA US 19382 High School \n", + "44 1192 1 Test Cincinnati OH US 45255 Bachelor's \n", + "\n", + " Major GraduationDate WorkHistoryCount \\\n", + "31 University Studies/Business 2008-05-01 00:00:00 5 \n", + "32 Radio-Television 2011-05-01 00:00:00 5 \n", + "33 General Studies 1989-05-01 00:00:00 7 \n", + "38 Not Applicable 2008-06-01 00:00:00 3 \n", + "44 Marketing NaN 5 \n", + "\n", + " TotalYearsExperience CurrentlyEmployed ManagedOthers ManagedHowMany \n", + "31 16.0 No No 0 \n", + "32 5.0 Yes No 0 \n", + "33 21.0 NaN No 0 \n", + "38 6.0 Yes No 0 \n", + "44 6.0 Yes No 0 " + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users_testing.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### List down all training data records " + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitApplicationDateJobID
0471Train2012-04-04 15:56:23.537169528
1471Train2012-04-06 01:03:00.003284009
2471Train2012-04-05 02:40:27.7532121
3471Train2012-04-05 02:37:02.673848187
4471Train2012-04-05 22:44:06.653733748
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split ApplicationDate JobID\n", + "0 47 1 Train 2012-04-04 15:56:23.537 169528\n", + "1 47 1 Train 2012-04-06 01:03:00.003 284009\n", + "2 47 1 Train 2012-04-05 02:40:27.753 2121\n", + "3 47 1 Train 2012-04-05 02:37:02.673 848187\n", + "4 47 1 Train 2012-04-05 22:44:06.653 733748" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "apps_training.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitSequenceJobTitle
0471Train1National Space Communication Programs-Special ...
1471Train2Detention Officer
2471Train3Passenger Screener, TSA
3721Train1Lecturer, Department of Anthropology
4721Train2Student Assistant
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split Sequence \\\n", + "0 47 1 Train 1 \n", + "1 47 1 Train 2 \n", + "2 47 1 Train 3 \n", + "3 72 1 Train 1 \n", + "4 72 1 Train 2 \n", + "\n", + " JobTitle \n", + "0 National Space Communication Programs-Special ... \n", + "1 Detention Officer \n", + "2 Passenger Screener, TSA \n", + "3 Lecturer, Department of Anthropology \n", + "4 Student Assistant " + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_history_training.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
01234
UserID47728098123
WindowID11111
SplitTrainTrainTrainTrainTrain
CityParamountLa MesaWilliamstownAstoriaBaton Rouge
StateCACANJNYLA
CountryUSUSUSUSUS
ZipCode9072391941080941110570808
DegreeTypeHigh SchoolMaster'sHigh SchoolMaster'sBachelor's
MajorNaNAnthropologyNot ApplicableJournalismAgricultural Business
GraduationDate1999-06-01 00:00:002011-01-01 00:00:001985-06-01 00:00:002007-05-01 00:00:002011-05-01 00:00:00
WorkHistoryCount310531
TotalYearsExperience1081139
CurrentlyEmployedYesYesYesYesYes
ManagedOthersNoNoYesNoNo
ManagedHowMany00500
\n", + "
" + ], + "text/plain": [ + " 0 1 \\\n", + "UserID 47 72 \n", + "WindowID 1 1 \n", + "Split Train Train \n", + "City Paramount La Mesa \n", + "State CA CA \n", + "Country US US \n", + "ZipCode 90723 91941 \n", + "DegreeType High School Master's \n", + "Major NaN Anthropology \n", + "GraduationDate 1999-06-01 00:00:00 2011-01-01 00:00:00 \n", + "WorkHistoryCount 3 10 \n", + "TotalYearsExperience 10 8 \n", + "CurrentlyEmployed Yes Yes \n", + "ManagedOthers No No \n", + "ManagedHowMany 0 0 \n", + "\n", + " 2 3 \\\n", + "UserID 80 98 \n", + "WindowID 1 1 \n", + "Split Train Train \n", + "City Williamstown Astoria \n", + "State NJ NY \n", + "Country US US \n", + "ZipCode 08094 11105 \n", + "DegreeType High School Master's \n", + "Major Not Applicable Journalism \n", + "GraduationDate 1985-06-01 00:00:00 2007-05-01 00:00:00 \n", + "WorkHistoryCount 5 3 \n", + "TotalYearsExperience 11 3 \n", + "CurrentlyEmployed Yes Yes \n", + "ManagedOthers Yes No \n", + "ManagedHowMany 5 0 \n", + "\n", + " 4 \n", + "UserID 123 \n", + "WindowID 1 \n", + "Split Train \n", + "City Baton Rouge \n", + "State LA \n", + "Country US \n", + "ZipCode 70808 \n", + "DegreeType Bachelor's \n", + "Major Agricultural Business \n", + "GraduationDate 2011-05-01 00:00:00 \n", + "WorkHistoryCount 1 \n", + "TotalYearsExperience 9 \n", + "CurrentlyEmployed Yes \n", + "ManagedOthers No \n", + "ManagedHowMany 0 " + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users_training.head(5).transpose()" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JobIDWindowIDTitleDescriptionRequirementsCityStateCountryZip5StartDateEndDate
011Security Engineer/Technical Lead<p>Security Clearance Required:&nbsp; Top Secr...<p>SKILL SET</p>\\r<p>&nbsp;</p>\\r<p>Network Se...WashingtonDCUS205312012-03-07 13:17:01.6432012-04-06 23:59:59
141SAP Business Analyst / WM<strong>NO Corp. to Corp resumes&nbsp;are bein...<p><b>WHAT YOU NEED: </b></p>\\r<p>Four year co...CharlotteNCUS282172012-03-21 02:03:44.1372012-04-20 23:59:59
271P/T HUMAN RESOURCES ASSISTANT<b> <b> P/T HUMAN RESOURCES ASSISTANT</b> <...Please refer to the Job Description to view th...Winter ParkFLUS327922012-03-02 16:36:55.4472012-04-01 23:59:59
381Route Delivery DriversCITY BEVERAGES Come to work for the best in th...Please refer to the Job Description to view th...OrlandoFLUSNaN2012-03-03 09:01:10.0772012-04-02 23:59:59
491HousekeepingI make sure every part of their day is magica...Please refer to the Job Description to view th...OrlandoFLUSNaN2012-03-03 09:01:11.882012-04-02 23:59:59
\n", + "
" + ], + "text/plain": [ + " JobID WindowID Title \\\n", + "0 1 1 Security Engineer/Technical Lead \n", + "1 4 1 SAP Business Analyst / WM \n", + "2 7 1 P/T HUMAN RESOURCES ASSISTANT \n", + "3 8 1 Route Delivery Drivers \n", + "4 9 1 Housekeeping \n", + "\n", + " Description \\\n", + "0

Security Clearance Required:  Top Secr... \n", + "1 NO Corp. to Corp resumes are bein... \n", + "2 P/T HUMAN RESOURCES ASSISTANT <... \n", + "3 CITY BEVERAGES Come to work for the best in th... \n", + "4 I make sure every part of their day is magica... \n", + "\n", + " Requirements City State \\\n", + "0

SKILL SET

\\r

 

\\r

Network Se... Washington DC \n", + "1

WHAT YOU NEED:

\\r

Four year co... Charlotte NC \n", + "2 Please refer to the Job Description to view th... Winter Park FL \n", + "3 Please refer to the Job Description to view th... Orlando FL \n", + "4 Please refer to the Job Description to view th... Orlando FL \n", + "\n", + " Country Zip5 StartDate EndDate \n", + "0 US 20531 2012-03-07 13:17:01.643 2012-04-06 23:59:59 \n", + "1 US 28217 2012-03-21 02:03:44.137 2012-04-20 23:59:59 \n", + "2 US 32792 2012-03-02 16:36:55.447 2012-04-01 23:59:59 \n", + "3 US NaN 2012-03-03 09:01:10.077 2012-04-02 23:59:59 \n", + "4 US NaN 2012-03-03 09:01:11.88 2012-04-02 23:59:59 " + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jobs.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(77060, 15)" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## revised approach\n", + "\n", + "\n", + "### Let's find out Similar jobs" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['JobID', 'WindowID', 'Title', 'Description', 'Requirements', 'City',\n", + " 'State', 'Country', 'Zip5', 'StartDate', 'EndDate'],\n", + " dtype='object')" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jobs_base_line = jobs\n", + "jobs_base_line.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# jobs_US.head().transpose()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "jobs_base_line = jobs_base_line.iloc[0:10000,0:8]" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "# jobs_base_line.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "jobs_base_line['Title'] = jobs_base_line['Title'].fillna('')\n", + "jobs_base_line['Description'] = jobs_base_line['Description'].fillna('')\n", + "#jobs_base_line['Requirements'] = jobs_base_line['Requirements'].fillna('')\n", + "\n", + "jobs_base_line['Description'] = jobs_base_line['Title'] + jobs_base_line['Description']" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "tf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, stop_words='english')\n", + "tfidf_matrix = tf.fit_transform(jobs_base_line['Description'])" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10000, 515585)" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tfidf_matrix.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "# http://scikit-learn.org/stable/modules/metrics.html#linear-kernel\n", + "# cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)\n", + "cosine_sim = cosine_similarity(tfidf_matrix)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1. , 0.04301522, 0.00643905, ..., 0.03802139, 0.03802139,\n", + " 0.03802139])" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cosine_sim[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "jobs_base_line = jobs_base_line.reset_index()\n", + "titles = jobs_base_line['Title']\n", + "indices = pd.Series(jobs_base_line.index, index=jobs_base_line['Title'])\n", + "#indices.head(2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "def get_recommendations(title):\n", + " idx = indices[title]\n", + " #print (idx)\n", + " sim_scores = list(enumerate(cosine_sim[idx]))\n", + " #print (sim_scores)\n", + " sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)\n", + " job_indices = [i[0] for i in sim_scores]\n", + " return titles.iloc[job_indices]" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1 SAP Business Analyst / WM\n", + "6054 SAP FI/CO Business Consultant\n", + "5871 SAP FI/CO Business Analyst\n", + "5162 SAP Basis Administrator\n", + "5354 SAP Sales and Distribution Solution Architect\n", + "4799 Senior Specialist - SAP Configuration - SD\n", + "5120 SAP Integration Specialist\n", + "5412 Senior Business Systems Analyst - SAP\n", + "5247 Business Analyst\n", + "4731 SAP ABAP Developer with PRA experience\n", + "Name: Title, dtype: object" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_recommendations('SAP Business Analyst / WM').head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 Security Engineer/Technical Lead\n", + "5909 Senior Security Engineer\n", + "3774 Director of Admissions\n", + "6296 3 Network Architects needed - immediate\n", + "3560 Assistant Manager\n", + "401 National Sales & Marketing Manager\n", + "2608 Inventory Analyst/ Scheduler\n", + "3760 CLINICAL PHARMACIST\n", + "3481 Customer Service Representatives\n", + "3561 Store Manager\n", + "Name: Title, dtype: object" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_recommendations('Security Engineer/Technical Lead').head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "13 Immediate Opening\n", + "216 Accounting/Bookkeeper\n", + "2874 Cable TV/Internet/Telephone Installers\n", + "8426 no job\n", + "4031 Electricians\n", + "4032 Electricians\n", + "4033 Electricians\n", + "620 DENTAL\n", + "93 A/C HEATING REFRIG MECHANIC\n", + "125 Optician\n", + "Name: Title, dtype: object" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_recommendations('Immediate Opening').head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "26 EXPERIENCED ROOFERS\n", + "7952 Commercial Roofers EXPERIENCED in Hot Asphal...\n", + "51 Driver\n", + "8015 OFFICE MANAGER\n", + "53 DRIVERS\n", + "33 CNA OPENINGS AT TUSKAWILLA SNF\n", + "44 SALES REPRESENTATIVE\n", + "30 Automotive Retail Dealer\n", + "60 Associate Attorney\n", + "59 SECURITY GUARDS\n", + "Name: Title, dtype: object" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_recommendations('EXPERIENCED ROOFERS').head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Best approach\n", + "\n", + "#### Find out similar users -- Find out for which jobs they have applied -- suggest those job to the other users who shared similar user profile.\n", + "\n", + "We are finding put similar user profile based on their degree type, majors and total years of experience. \n", + "* We will get to 10 similar users.\n", + "* We will find our which are the jobs for which these users have applied\n", + "* We take an union of these jobs and recommend the jobs all these user base" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitCityStateCountryZipCodeDegreeTypeMajorGraduationDateWorkHistoryCountTotalYearsExperienceCurrentlyEmployedManagedOthersManagedHowMany
0471TrainParamountCAUS90723High SchoolNaN1999-06-01 00:00:00310.0YesNo0
1721TrainLa MesaCAUS91941Master'sAnthropology2011-01-01 00:00:00108.0YesNo0
2801TrainWilliamstownNJUS08094High SchoolNot Applicable1985-06-01 00:00:00511.0YesYes5
3981TrainAstoriaNYUS11105Master'sJournalism2007-05-01 00:00:0033.0YesNo0
41231TrainBaton RougeLAUS70808Bachelor'sAgricultural Business2011-05-01 00:00:0019.0YesNo0
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split City State Country ZipCode DegreeType \\\n", + "0 47 1 Train Paramount CA US 90723 High School \n", + "1 72 1 Train La Mesa CA US 91941 Master's \n", + "2 80 1 Train Williamstown NJ US 08094 High School \n", + "3 98 1 Train Astoria NY US 11105 Master's \n", + "4 123 1 Train Baton Rouge LA US 70808 Bachelor's \n", + "\n", + " Major GraduationDate WorkHistoryCount \\\n", + "0 NaN 1999-06-01 00:00:00 3 \n", + "1 Anthropology 2011-01-01 00:00:00 10 \n", + "2 Not Applicable 1985-06-01 00:00:00 5 \n", + "3 Journalism 2007-05-01 00:00:00 3 \n", + "4 Agricultural Business 2011-05-01 00:00:00 1 \n", + "\n", + " TotalYearsExperience CurrentlyEmployed ManagedOthers ManagedHowMany \n", + "0 10.0 Yes No 0 \n", + "1 8.0 Yes No 0 \n", + "2 11.0 Yes Yes 5 \n", + "3 3.0 Yes No 0 \n", + "4 9.0 Yes No 0 " + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users_training.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "user_based_approach = users_training" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "# for each in user_based_approach.index:\n", + "# userid = user_based_approach.iloc[each].UserID\n", + "# all_work = ''.join(list(user_history[user_history['UserID'] == userid]['JobTitle']))\n", + "# user_based_approach.iloc[each]['WorkHistory'].replace('',all_work)\n", + "# print(all_work)\n", + "# break" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "# function for adding user_history data to the user data\n", + "def create_work_history(userid):\n", + " return ''.join(list(user_history_training[user_history_training['UserID'] == userid]['JobTitle']))" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "# add user work history data\n", + "user_based_approach['WorkHistory'] = user_based_approach['UserID'].apply(lambda x: create_work_history(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(71641, 16)" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_based_approach.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "user_based_approach = user_based_approach.iloc[0:20000,:]" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitCityStateCountryZipCodeDegreeTypeMajorGraduationDateWorkHistoryCountTotalYearsExperienceCurrentlyEmployedManagedOthersManagedHowManyWorkHistory
0471TrainParamountCAUS90723High SchoolNaN1999-06-01 00:00:00310.0YesNo0National Space Communication Programs-Special ...
1721TrainLa MesaCAUS91941Master'sAnthropology2011-01-01 00:00:00108.0YesNo0Lecturer, Department of AnthropologyStudent As...
2801TrainWilliamstownNJUS08094High SchoolNot Applicable1985-06-01 00:00:00511.0YesYes5Auto Publishing/Electro Mechanical Technician,...
3981TrainAstoriaNYUS11105Master'sJournalism2007-05-01 00:00:0033.0YesNo0Editor-in-ChiefDeputy Sports & Website EditorA...
41231TrainBaton RougeLAUS70808Bachelor'sAgricultural Business2011-05-01 00:00:0019.0YesNo0Lead Hostess and Takeout Server
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split City State Country ZipCode DegreeType \\\n", + "0 47 1 Train Paramount CA US 90723 High School \n", + "1 72 1 Train La Mesa CA US 91941 Master's \n", + "2 80 1 Train Williamstown NJ US 08094 High School \n", + "3 98 1 Train Astoria NY US 11105 Master's \n", + "4 123 1 Train Baton Rouge LA US 70808 Bachelor's \n", + "\n", + " Major GraduationDate WorkHistoryCount \\\n", + "0 NaN 1999-06-01 00:00:00 3 \n", + "1 Anthropology 2011-01-01 00:00:00 10 \n", + "2 Not Applicable 1985-06-01 00:00:00 5 \n", + "3 Journalism 2007-05-01 00:00:00 3 \n", + "4 Agricultural Business 2011-05-01 00:00:00 1 \n", + "\n", + " TotalYearsExperience CurrentlyEmployed ManagedOthers ManagedHowMany \\\n", + "0 10.0 Yes No 0 \n", + "1 8.0 Yes No 0 \n", + "2 11.0 Yes Yes 5 \n", + "3 3.0 Yes No 0 \n", + "4 9.0 Yes No 0 \n", + "\n", + " WorkHistory \n", + "0 National Space Communication Programs-Special ... \n", + "1 Lecturer, Department of AnthropologyStudent As... \n", + "2 Auto Publishing/Electro Mechanical Technician,... \n", + "3 Editor-in-ChiefDeputy Sports & Website EditorA... \n", + "4 Lead Hostess and Takeout Server " + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_based_approach.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "user_based_approach = user_based_approach.reset_index()\n", + "userid = user_based_approach['UserID']\n", + "indices = pd.Series(user_based_approach.index, index=user_based_approach['UserID'])\n", + "#indices.head(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
indexUserIDWindowIDSplitCityStateCountryZipCodeDegreeTypeMajorGraduationDateWorkHistoryCountTotalYearsExperienceCurrentlyEmployedManagedOthersManagedHowManyWorkHistory
00471TrainParamountCAUS90723High SchoolNaN1999-06-01 00:00:00310.0YesNo0National Space Communication Programs-Special ...
11721TrainLa MesaCAUS91941Master'sAnthropology2011-01-01 00:00:00108.0YesNo0Lecturer, Department of AnthropologyStudent As...
22801TrainWilliamstownNJUS08094High SchoolNot Applicable1985-06-01 00:00:00511.0YesYes5Auto Publishing/Electro Mechanical Technician,...
33981TrainAstoriaNYUS11105Master'sJournalism2007-05-01 00:00:0033.0YesNo0Editor-in-ChiefDeputy Sports & Website EditorA...
441231TrainBaton RougeLAUS70808Bachelor'sAgricultural Business2011-05-01 00:00:0019.0YesNo0Lead Hostess and Takeout Server
\n", + "
" + ], + "text/plain": [ + " index UserID WindowID Split City State Country ZipCode \\\n", + "0 0 47 1 Train Paramount CA US 90723 \n", + "1 1 72 1 Train La Mesa CA US 91941 \n", + "2 2 80 1 Train Williamstown NJ US 08094 \n", + "3 3 98 1 Train Astoria NY US 11105 \n", + "4 4 123 1 Train Baton Rouge LA US 70808 \n", + "\n", + " DegreeType Major GraduationDate WorkHistoryCount \\\n", + "0 High School NaN 1999-06-01 00:00:00 3 \n", + "1 Master's Anthropology 2011-01-01 00:00:00 10 \n", + "2 High School Not Applicable 1985-06-01 00:00:00 5 \n", + "3 Master's Journalism 2007-05-01 00:00:00 3 \n", + "4 Bachelor's Agricultural Business 2011-05-01 00:00:00 1 \n", + "\n", + " TotalYearsExperience CurrentlyEmployed ManagedOthers ManagedHowMany \\\n", + "0 10.0 Yes No 0 \n", + "1 8.0 Yes No 0 \n", + "2 11.0 Yes Yes 5 \n", + "3 3.0 Yes No 0 \n", + "4 9.0 Yes No 0 \n", + "\n", + " WorkHistory \n", + "0 National Space Communication Programs-Special ... \n", + "1 Lecturer, Department of AnthropologyStudent As... \n", + "2 Auto Publishing/Electro Mechanical Technician,... \n", + "3 Editor-in-ChiefDeputy Sports & Website EditorA... \n", + "4 Lead Hostess and Takeout Server " + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_based_approach.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "user_based_approach['DegreeType'] = user_based_approach['DegreeType'].fillna('')\n", + "user_based_approach['Major'] = user_based_approach['Major'].fillna('')\n", + "user_based_approach['TotalYearsExperience'] = str(user_based_approach['TotalYearsExperience'].fillna(''))\n", + "\n", + "user_based_approach['DegreeType'] = user_based_approach['DegreeType'] + user_based_approach['Major'] + \\\n", + " user_based_approach['TotalYearsExperience'] + user_based_approach['WorkHistory']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "tf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, stop_words='english')\n", + "tfidf_matrix = tf.fit_transform(user_based_approach['DegreeType'])" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(20000, 173049)" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tfidf_matrix.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "# http://scikit-learn.org/stable/modules/metrics.html#linear-kernel\n", + "cosine_sim1 = linear_kernel(tfidf_matrix, tfidf_matrix)\n", + "# cosine_sim = cosine_similarity(tfidf_matrix)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10000, 10000)" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cosine_sim.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1. , 0.04301522, 0.00643905, ..., 0.03802139, 0.03802139,\n", + " 0.03802139])" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cosine_sim[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "47\n" + ] + } + ], + "source": [ + "# a = [i for i in test_users.UserID if i in indices]\n", + "# print(a)\n", + "for i in indices.index:\n", + " print(i)\n", + " break" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "# Function for finding the index of similar user\n", + "def get_recommendations_userwise(userid,length=11):\n", + " idx = indices[userid]\n", + "# print (idx)\n", + " sim_scores = list(enumerate(cosine_sim[idx]))\n", + "# print (sim_scores[:10])\n", + " sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)\n", + "# print(sim_scores[:10])\n", + " user_indices = [i[0] for i in sim_scores]\n", + "# print (user_indices[:10])\n", + " return user_indices[0:length]" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-----Top 10 Similar users with userId: 72------\n" + ] + }, + { + "data": { + "text/plain": [ + "[1, 6054, 5871, 5162, 5354, 4799, 5120, 5412, 5247, 4731]" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print (\"-----Top 10 Similar users with userId: 72------\")\n", + "get_recommendations_userwise(72,10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "# Convertion of user indices to the userId\n", + "def convert_to_userID(user_index):\n", + " user_idx = user_based_approach['index'].isin(user_index)\n", + " df1 = pd.DataFrame(data = user_based_approach[user_idx], columns=['UserID'])\n", + " return df1['UserID'].tolist()" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "# get the job list from the similar users\n", + "def get_job_id(usrid_list):\n", + " jobs_userwise = apps_training['UserID'].isin(usrid_list) #\n", + " df1 = pd.DataFrame(data = apps_training[jobs_userwise], columns=['JobID'])\n", + " joblist = df1['JobID'].tolist()\n", + " Job_list = jobs['JobID'].isin(joblist) #[1083186, 516837, 507614, 754917, 686406, 1058896, 335132])\n", + " df_temp = pd.DataFrame(data = jobs[Job_list], columns=['JobID','Title','Description','City','State'])\n", + " return df_temp[:11]" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
indexUserIDWindowIDSplitCityStateCountryZipCodeDegreeTypeMajorGraduationDateWorkHistoryCountTotalYearsExperienceCurrentlyEmployedManagedOthersManagedHowManyWorkHistory
441231TrainBaton RougeLAUS70808Bachelor'sAgricultural Business0 10\\n1 ...Agricultural Business2011-05-01 00:00:0010 10\\n1 8\\n2 11\\n3 ...YesNo0Lead Hostess and Takeout Server
\n", + "
" + ], + "text/plain": [ + " index UserID WindowID Split City State Country ZipCode \\\n", + "4 4 123 1 Train Baton Rouge LA US 70808 \n", + "\n", + " DegreeType Major \\\n", + "4 Bachelor'sAgricultural Business0 10\\n1 ... Agricultural Business \n", + "\n", + " GraduationDate WorkHistoryCount \\\n", + "4 2011-05-01 00:00:00 1 \n", + "\n", + " TotalYearsExperience CurrentlyEmployed \\\n", + "4 0 10\\n1 8\\n2 11\\n3 ... Yes \n", + "\n", + " ManagedOthers ManagedHowMany WorkHistory \n", + "4 No 0 Lead Hostess and Takeout Server " + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "user_based_approach[user_based_approach['UserID']==123]" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JobIDTitleDescriptionCityState
16536867Mail Sorters - Part Time Evenings<div>\\r<div>\\r<div>\\r<p><strong>Mail Sorters -...SecaucusNJ
250410312Receptionist<span>To assist all departments in the dealers...ArlingtonTX
285411623Receptionist/HR Assistant<p><span>Operates system switchboard, </span><...MansfieldTX
395515796Maintenance Opportunities<p align=\"center\"><strong>Maintenance Opportun...Green BayWI
2021279199Community Support CoordinatorCommunity Options, Inc. is a national nonprofi...MoorestownNJ
2123384219Human Resources Business Process Analyst<b>Job ID:</b> 80006\\r\\n\\r\\n<b>Position Descri...RoanokeVA
50179196495Set Up Technician<SPAN></SPAN>WPI, a manufacturer of plastic in...Green BayWI
62581246306Front desk assistantF/t Personable, energetic, multitasker needed ...BedfordTX
63838250360Financial Representative<p><b><span style=\"text-decoration: underline\"...Delray BeachFL
76486300459FC BkkpFC Bkkp - P/T, Exp. w/Accrual, Multiple Books...Fort LauderdaleFL
79862314080Clinical Telephone Operator<P><SPAN>Primary responsibilities include oper...SartellMN
\n", + "
" + ], + "text/plain": [ + " JobID Title \\\n", + "1653 6867 Mail Sorters - Part Time Evenings \n", + "2504 10312 Receptionist \n", + "2854 11623 Receptionist/HR Assistant \n", + "3955 15796 Maintenance Opportunities \n", + "20212 79199 Community Support Coordinator \n", + "21233 84219 Human Resources Business Process Analyst \n", + "50179 196495 Set Up Technician \n", + "62581 246306 Front desk assistant \n", + "63838 250360 Financial Representative \n", + "76486 300459 FC Bkkp \n", + "79862 314080 Clinical Telephone Operator \n", + "\n", + " Description City \\\n", + "1653
\\r
\\r
\\r

Mail Sorters -... Secaucus \n", + "2504 To assist all departments in the dealers... Arlington \n", + "2854

Operates system switchboard, <... Mansfield \n", + "3955

Maintenance Opportun... Green Bay \n", + "20212 Community Options, Inc. is a national nonprofi... Moorestown \n", + "21233 Job ID: 80006\\r\\n\\r\\nPosition Descri... Roanoke \n", + "50179 WPI, a manufacturer of plastic in... Green Bay \n", + "62581 F/t Personable, energetic, multitasker needed ... Bedford \n", + "63838

Primary responsibilities include oper... Sartell \n", + "\n", + " State \n", + "1653 NJ \n", + "2504 TX \n", + "2854 TX \n", + "3955 WI \n", + "20212 NJ \n", + "21233 VA \n", + "50179 WI \n", + "62581 TX \n", + "63838 FL \n", + "76486 FL \n", + "79862 MN " + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_job_id(convert_to_userID(get_recommendations_userwise(123)))" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[4, 23, 3378, 6008, 6311, 41, 56, 9815, 7700, 2170]" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_recommendations_userwise(123,10)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-----Top 10 Similar users with userId: 47------\n" + ] + }, + { + "data": { + "text/plain": [ + "[0, 5909, 3774, 6296, 3560, 401, 2608, 3760, 3481, 3561, 2603]" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print (\"-----Top 10 Similar users with userId: 47------\")\n", + "get_recommendations_userwise(47)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JobIDTitleDescriptionCityState
6092121MEDICAL- FRONT OFFICEMedical - Front Office\\r\\nIndustrial Clinic, ...Los AngelesCA
438817358Data Entry - Customer Service Representative ...<div style=\"text-align: center\"><strong>\\r<p s...GreenvilleSC
782028992Customer Service Rep Experienced CSRs needed ...Customer Service Rep\\r\\n Experienced CSRs...NashvilleTN
1059839361Customer Service Representative<br>\\r<p style=\"text-align: center\" align=\"cen...CharlotteNC
2387392858Compliance Specialist II — Advertising ReviewOur unique culture of independence gives Raymo...Saint PetersburgFL
34021132647Purchasing Assistant<div><p>&nbsp;</p>\\r<p><b><span>ESSENTIAL DUTI...CharlotteNC
42812169528Resort Host/Marketing Coordinator - Anaheim, CA<P STYLE=\"MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px\"...AnaheimCA
47531186401Tax AssociateTax Associate\\t\\t\\t20-32583576\\n\\nA large insu...Hoffman EstatesIL
48693190688Medical Assistant/Per DiemKelly Healthcare Resources<BR> <BR><BR>Kelly H...BellevilleIL
55344217664Office AdministratorFORT MILL MANUFACTURE SEEKING IMMEDIATE HIRE!\\...Fort MillSC
55357217697Executive Administrative Assistant FTHOLY ANGEL THE HARDEST JOB YOU'LL EVER LOVE! E...BelmontNC
\n", + "
" + ], + "text/plain": [ + " JobID Title \\\n", + "609 2121 MEDICAL- FRONT OFFICE \n", + "4388 17358 Data Entry - Customer Service Representative ... \n", + "7820 28992 Customer Service Rep Experienced CSRs needed ... \n", + "10598 39361 Customer Service Representative \n", + "23873 92858 Compliance Specialist II — Advertising Review \n", + "34021 132647 Purchasing Assistant \n", + "42812 169528 Resort Host/Marketing Coordinator - Anaheim, CA \n", + "47531 186401 Tax Associate \n", + "48693 190688 Medical Assistant/Per Diem \n", + "55344 217664 Office Administrator \n", + "55357 217697 Executive Administrative Assistant FT \n", + "\n", + " Description City \\\n", + "609 Medical - Front Office\\r\\nIndustrial Clinic, ... Los Angeles \n", + "4388
\\r

\\r

 

\\r

ESSENTIAL DUTI... Charlotte \n", + "42812



Kelly H... Belleville \n", + "55344 FORT MILL MANUFACTURE SEEKING IMMEDIATE HIRE!\\... Fort Mill \n", + "55357 HOLY ANGEL THE HARDEST JOB YOU'LL EVER LOVE! E... Belmont \n", + "\n", + " State \n", + "609 CA \n", + "4388 SC \n", + "7820 TN \n", + "10598 NC \n", + "23873 FL \n", + "34021 NC \n", + "42812 CA \n", + "47531 IL \n", + "48693 IL \n", + "55344 SC \n", + "55357 NC " + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_job_id(convert_to_userID(get_recommendations_userwise(47,10)))" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
UserIDWindowIDSplitCityStateCountryZipCodeDegreeTypeMajorGraduationDateWorkHistoryCountTotalYearsExperienceCurrentlyEmployedManagedOthersManagedHowMany
0471TrainParamountCAUS90723High SchoolNaN1999-06-01 00:00:00310.0YesNo0
\n", + "
" + ], + "text/plain": [ + " UserID WindowID Split City State Country ZipCode DegreeType \\\n", + "0 47 1 Train Paramount CA US 90723 High School \n", + "\n", + " Major GraduationDate WorkHistoryCount TotalYearsExperience \\\n", + "0 NaN 1999-06-01 00:00:00 3 10.0 \n", + "\n", + " CurrentlyEmployed ManagedOthers ManagedHowMany \n", + "0 Yes No 0 " + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "users.loc[users.UserID == 47]" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[169528, 284009, 2121, 848187, 733748, 576958, 262470, 602298]" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = list(apps.loc[apps.UserID == 47]['JobID'])\n", + "b" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
JobIDWindowIDTitleDescriptionRequirementsCityStateCountryZip5StartDateEndDate
428121695281Resort Host/Marketing Coordinator - Anaheim, CA<P STYLE=\"MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px\"...• Bachelor's Degree preferred;<BR> \\r\\n• Posse...AnaheimCAUS928012012-04-03 22:31:26.412012-05-02 23:59:59
\n", + "
" + ], + "text/plain": [ + " JobID WindowID Title \\\n", + "42812 169528 1 Resort Host/Marketing Coordinator - Anaheim, CA \n", + "\n", + " Description \\\n", + "42812

\\r\\n• Posse... Anaheim CA \n", + "\n", + " Country Zip5 StartDate EndDate \n", + "42812 US 92801 2012-04-03 22:31:26.41 2012-05-02 23:59:59 " + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "jobs.loc[jobs.JobID == 169528]" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], + "source": [ + "# jobs.at[853328,'Requirements']" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [], + "source": [ + "# def find_accuracy(indices):\n", + "# total = 0\n", + "# for uid in indices.index:\n", + "# app_job_ids=set(list(apps.loc[apps.UserID == uid]['JobID']))\n", + "# len_app_job = len(app_job_ids)\n", + "# if len_app_job != 0:\n", + "# rec_job_ids=get_job_id(get_recommendations_userwise(uid, len_app_job))\n", + "# total += len(app_job_ids.intersection(rec_job_ids))/len_app_job\n", + "# return total/len(indices.index)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 3699fc8b5146c007467ba1af798936bd737fd430 Mon Sep 17 00:00:00 2001 From: Biswajit-Panda <55341816+Biswajit-Panda@users.noreply.github.com> Date: Wed, 23 Dec 2020 02:12:55 +0530 Subject: [PATCH 9/9] tf-idf and cosine sim uploaded --- .../Job Recommendation System/Learn.md | 21 ++++++++++++++++++- 1 file changed, 20 insertions(+), 1 deletion(-) diff --git a/intern-basics/Job Recommendation System/Learn.md b/intern-basics/Job Recommendation System/Learn.md index f02a6d5..f393e4e 100644 --- a/intern-basics/Job Recommendation System/Learn.md +++ b/intern-basics/Job Recommendation System/Learn.md @@ -2,10 +2,29 @@ *(sklearn.feature_extraction.text.TfidfVectorizer)* -It Convert a collection of raw documents to a matrix of TF-IDF features. +It Converts a collection of raw documents to a matrix of TF-IDF features. It is Equivalent to *CountVectorizer* followed by *TfidfTransformer*. * CountVectorizer implements both tokenization and occurrence counting in a single class. +* TfidfTransformer helps in removing the stop words (e.g. “the”, “a”, “is” in English) which carry very little information about the actual contents of the document. +Tf means **term-frequency** while tf–idf means term-frequency times **inverse document-frequency**: tf-idf(t,d)=tf(t,d)\*idf(t). + +Using the `TfidfTransformer`’s default settings, `TfidfTransformer(norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False)` the term frequency, the number of times a term occurs in a given document, is multiplied with idf component, which is computed as + +### idf(t) = log((1+n)/1+df(t)) +1 + +where n is the total number of documents in the document set, and df(t) is the number of documents in the document set that contain the term t. The resulting tf-idf vectors are then normalized by the Euclidean norm. # cosine_similarity +*sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True)* + +Compute cosine similarity between samples in X and Y. + +Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: + +![cosine similarity](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d94e5903f7936d3c131e040ef2c51b473dd071d) + +On L2-normalized data, this function is equivalent to linear_kernel. + +![cosine image](https://www.oreilly.com/library/view/statistics-for-machine/9781788295758/assets/2b4a7a82-ad4c-4b2a-b808-e423a334de6f.png)