forked from ZiyuanMa/DHC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker.py
436 lines (346 loc) · 18 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import time
import random
import os
from copy import deepcopy
from typing import Tuple
import threading
import ray
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.optim.lr_scheduler import MultiStepLR
from torch.cuda.amp import GradScaler
import numpy as np
from model import Network
from environment import Environment
from buffer import SumTree, LocalBuffer
import configs
@ray.remote(num_cpus=1)
class GlobalBuffer:
def __init__(self, episode_capacity=configs.episode_capacity, local_buffer_capacity=configs.max_episode_length,
init_env_settings=configs.init_env_settings, max_comm_agents=configs.max_comm_agents,
alpha=configs.prioritized_replay_alpha, beta=configs.prioritized_replay_beta):
self.capacity = episode_capacity
self.local_buffer_capacity = local_buffer_capacity
self.size = 0
self.ptr = 0
# prioritized experience replay
self.priority_tree = SumTree(episode_capacity*local_buffer_capacity)
self.alpha = alpha
self.beta = beta
self.counter = 0
self.batched_data = []
self.stat_dict = {init_env_settings:[]}
self.lock = threading.Lock()
self.env_settings_set = ray.put([init_env_settings])
# 一般观测相比于动作多1
self.obs_buf = np.zeros(((local_buffer_capacity+1)*episode_capacity, configs.max_num_agents, *configs.obs_shape), dtype=np.bool)
self.act_buf = np.zeros((local_buffer_capacity*episode_capacity), dtype=np.uint8)
self.rew_buf = np.zeros((local_buffer_capacity*episode_capacity), dtype=np.float16)
self.hid_buf = np.zeros((local_buffer_capacity*episode_capacity, configs.max_num_agents, configs.hidden_dim), dtype=np.float16)
self.done_buf = np.zeros(episode_capacity, dtype=np.bool)
self.size_buf = np.zeros(episode_capacity, dtype=np.uint)
self.comm_mask_buf = np.zeros(((local_buffer_capacity+1)*episode_capacity, configs.max_num_agents, configs.max_num_agents), dtype=np.bool)
def __len__(self):
return self.size
# 创建新的后台线程,单独执行self.prepare_data
def run(self):
self.background_thread = threading.Thread(target=self.prepare_data, daemon=True)
self.background_thread.start()
def prepare_data(self):
while True:
if len(self.batched_data) <= 4:
data = self.sample_batch(configs.batch_size)
data_id = ray.put(data)
self.batched_data.append(data_id)
else:
time.sleep(0.1)
def get_data(self):
if len(self.batched_data) == 0:
print('no prepared data')
data = self.sample_batch(configs.batch_size)
data_id = ray.put(data)
return data_id
else:
return self.batched_data.pop(0)
def add(self, data: Tuple):
'''
data: actor_id 0, num_agents 1, map_len 2, obs_buf 3, act_buf 4, rew_buf 5, hid_buf 6, td_errors 7, done 8, size 9, comm_mask 10
'''
# 限制记录不同智能体配置的数量,有助于内存的管理
if data[0] >= 12:
stat_key = (data[1], data[2])
if stat_key in self.stat_dict:
self.stat_dict[stat_key].append(data[8])
if len(self.stat_dict[stat_key]) == 201:
self.stat_dict[stat_key].pop(0)
with self.lock:
idxes = np.arange(self.ptr*self.local_buffer_capacity, (self.ptr+1)*self.local_buffer_capacity)
start_idx = self.ptr*self.local_buffer_capacity
# update buffer size
self.size -= self.size_buf[self.ptr].item()
self.size += data[9]
self.counter += data[9]
self.priority_tree.batch_update(idxes, data[7]**self.alpha)
self.obs_buf[start_idx+self.ptr:start_idx+self.ptr+data[9]+1, :data[1]] = data[3]
self.act_buf[start_idx:start_idx+data[9]] = data[4]
self.rew_buf[start_idx:start_idx+data[9]] = data[5]
self.hid_buf[start_idx:start_idx+data[9], :data[1]] = data[6]
self.done_buf[self.ptr] = data[8]
self.size_buf[self.ptr] = data[9]
self.comm_mask_buf[start_idx+self.ptr:start_idx+self.ptr+data[9]+1] = 0
self.comm_mask_buf[start_idx+self.ptr:start_idx+self.ptr+data[9]+1, :data[1], :data[1]] = data[10]
self.ptr = (self.ptr+1) % self.capacity
def sample_batch(self, batch_size: int) -> Tuple:
b_obs, b_action, b_reward, b_done, b_steps, b_seq_len, b_comm_mask = [], [], [], [], [], [], []
idxes, priorities = [], []
b_hidden = []
with self.lock:
idxes, priorities = self.priority_tree.batch_sample(batch_size)
global_idxes = idxes // self.local_buffer_capacity
local_idxes = idxes % self.local_buffer_capacity
for idx, global_idx, local_idx in zip(idxes.tolist(), global_idxes.tolist(), local_idxes.tolist()):
assert local_idx < self.size_buf[global_idx], 'index is {} but size is {}'.format(local_idx, self.size_buf[global_idx])
# steps代表n-TD中的步数,考虑多少个时间步来计算td-error
steps = min(configs.forward_steps, (self.size_buf[global_idx].item()-local_idx))
# 历史序列的长度
seq_len = min(local_idx+1, configs.seq_len)
if local_idx < configs.seq_len-1:
obs = self.obs_buf[global_idx*(self.local_buffer_capacity+1):idx+global_idx+1+steps]
comm_mask = self.comm_mask_buf[global_idx*(self.local_buffer_capacity+1):idx+global_idx+1+steps]
hidden = np.zeros((configs.max_num_agents, configs.hidden_dim), dtype=np.float16)
elif local_idx == configs.seq_len-1:
obs = self.obs_buf[idx+global_idx+1-configs.seq_len:idx+global_idx+1+steps]
comm_mask = self.comm_mask_buf[global_idx*(self.local_buffer_capacity+1):idx+global_idx+1+steps]
hidden = np.zeros((configs.max_num_agents, configs.hidden_dim), dtype=np.float16)
else:
obs = self.obs_buf[idx+global_idx+1-configs.seq_len:idx+global_idx+1+steps]
comm_mask = self.comm_mask_buf[idx+global_idx+1-configs.seq_len:idx+global_idx+1+steps]
hidden = self.hid_buf[idx-configs.seq_len]
if obs.shape[0] < configs.seq_len+configs.forward_steps:
pad_len = configs.seq_len+configs.forward_steps-obs.shape[0]
obs = np.pad(obs, ((0,pad_len),(0,0),(0,0),(0,0),(0,0)))
comm_mask = np.pad(comm_mask, ((0,pad_len),(0,0),(0,0)))
action = self.act_buf[idx]
reward = 0
for i in range(steps):
reward += self.rew_buf[idx+i]*0.99**i
if self.done_buf[global_idx] and local_idx >= self.size_buf[global_idx]-configs.forward_steps:
done = True
else:
done = False
b_obs.append(obs)
b_action.append(action)
b_reward.append(reward)
b_done.append(done)
b_steps.append(steps)
b_seq_len.append(seq_len)
b_hidden.append(hidden)
b_comm_mask.append(comm_mask)
# importance sampling weight
min_p = np.min(priorities)
weights = np.power(priorities/min_p, -self.beta)
data = (
torch.from_numpy(np.stack(b_obs).astype(np.float16)),
torch.LongTensor(b_action).unsqueeze(1),
torch.HalfTensor(b_reward).unsqueeze(1),
torch.HalfTensor(b_done).unsqueeze(1),
torch.HalfTensor(b_steps).unsqueeze(1),
torch.LongTensor(b_seq_len),
torch.from_numpy(np.concatenate(b_hidden)),
torch.from_numpy(np.stack(b_comm_mask)),
idxes,
torch.from_numpy(weights).unsqueeze(1),
self.ptr
)
return data
def update_priorities(self, idxes: np.ndarray, priorities: np.ndarray, old_ptr: int):
"""Update priorities of sampled transitions"""
with self.lock:
# discard the indices that already been discarded in replay buffer during training
if self.ptr > old_ptr:
# range from [old_ptr, self.ptr)
mask = (idxes < old_ptr*self.local_buffer_capacity) | (idxes >= self.ptr*self.local_buffer_capacity)
idxes = idxes[mask]
priorities = priorities[mask]
elif self.ptr < old_ptr:
# range from [0, self.ptr) & [old_ptr, self,capacity)
mask = (idxes < old_ptr*self.local_buffer_capacity) & (idxes >= self.ptr*self.local_buffer_capacity)
idxes = idxes[mask]
priorities = priorities[mask]
self.priority_tree.batch_update(np.copy(idxes), np.copy(priorities)**self.alpha)
def stats(self, interval: int):
print('buffer update speed: {}/s'.format(self.counter/interval))
print('buffer size: {}'.format(self.size))
print(' ', end='')
for i in range(configs.init_env_settings[1], configs.max_map_lenght+1, 5):
print(' {:2d} '.format(i), end='')
print()
for num_agents in range(configs.init_env_settings[0], configs.max_num_agents+1):
print('{:2d}'.format(num_agents), end='')
for map_len in range(configs.init_env_settings[1], configs.max_map_lenght+1, 5):
if (num_agents, map_len) in self.stat_dict:
print('{:4d}/{:<3d}'.format(sum(self.stat_dict[(num_agents, map_len)]), len(self.stat_dict[(num_agents, map_len)])), end='')
else:
print(' N/A ', end='')
print()
for key, val in self.stat_dict.copy().items():
# print('{}: {}/{}'.format(key, sum(val), len(val)))
if len(val) == 200 and sum(val) >= 200*configs.pass_rate:
# add number of agents
add_agent_key = (key[0]+1, key[1])
if add_agent_key[0] <= configs.max_num_agents and add_agent_key not in self.stat_dict:
self.stat_dict[add_agent_key] = []
if key[1] < configs.max_map_lenght:
add_map_key = (key[0], key[1]+5)
if add_map_key not in self.stat_dict:
self.stat_dict[add_map_key] = []
self.env_settings_set = ray.put(list(self.stat_dict.keys()))
self.counter = 0
def ready(self):
if len(self) >= configs.learning_starts:
return True
else:
return False
def get_env_settings(self):
return self.env_settings_set
def check_done(self):
for i in range(configs.max_num_agents):
if (i+1, configs.max_map_lenght) not in self.stat_dict:
return False
l = self.stat_dict[(i+1, configs.max_map_lenght)]
if len(l) < 200:
return False
elif sum(l) < 200*configs.pass_rate:
return False
return True
@ray.remote(num_cpus=1, num_gpus=1)
class Learner:
def __init__(self, buffer: GlobalBuffer):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = Network()
self.model.to(self.device)
self.tar_model = deepcopy(self.model)
self.optimizer = Adam(self.model.parameters(), lr=1e-4)
self.scheduler = MultiStepLR(self.optimizer, milestones=[200000, 400000], gamma=0.5)
self.buffer = buffer
self.counter = 0
self.last_counter = 0
self.done = False
self.loss = 0
self.store_weights()
def get_weights(self):
return self.weights_id
def store_weights(self):
state_dict = self.model.state_dict()
for k, v in state_dict.items():
state_dict[k] = v.cpu()
self.weights_id = ray.put(state_dict)
def run(self):
self.learning_thread = threading.Thread(target=self.train, daemon=True)
self.learning_thread.start()
def train(self):
scaler = GradScaler()
while not ray.get(self.buffer.check_done.remote()) and self.counter < configs.training_times:
for i in range(1, 10001):
data_id = ray.get(self.buffer.get_data.remote())
data = ray.get(data_id)
b_obs, b_action, b_reward, b_done, b_steps, b_seq_len, b_hidden, b_comm_mask, idxes, weights, old_ptr = data
b_obs, b_action, b_reward = b_obs.to(self.device), b_action.to(self.device), b_reward.to(self.device)
b_done, b_steps, weights = b_done.to(self.device), b_steps.to(self.device), weights.to(self.device)
b_hidden = b_hidden.to(self.device)
b_comm_mask = b_comm_mask.to(self.device)
b_next_seq_len = [ (seq_len+forward_steps).item() for seq_len, forward_steps in zip(b_seq_len, b_steps) ]
b_next_seq_len = torch.LongTensor(b_next_seq_len)
with torch.no_grad():
b_q_ = (1 - b_done) * self.tar_model(b_obs, b_next_seq_len, b_hidden, b_comm_mask).max(1, keepdim=True)[0]
b_q = self.model(b_obs[:, :-configs.forward_steps], b_seq_len, b_hidden, b_comm_mask[:, :-configs.forward_steps]).gather(1, b_action)
td_error = (b_q - (b_reward + (0.99 ** b_steps) * b_q_))
priorities = td_error.detach().squeeze().abs().clamp(1e-4).cpu().numpy()
loss = (weights * self.huber_loss(td_error)).mean()
self.loss += loss.item()
self.optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(self.model.parameters(), 40)
scaler.step(self.optimizer)
scaler.update()
self.scheduler.step()
# store new weights in shared memory
if i % 5 == 0:
self.store_weights()
self.buffer.update_priorities.remote(idxes, priorities, old_ptr)
self.counter += 1
# update target net, save model
if i % configs.target_network_update_freq == 0:
self.tar_model.load_state_dict(self.model.state_dict())
if i % configs.save_interval == 0:
torch.save(self.model.state_dict(), os.path.join(configs.save_path, '{}.pth'.format(self.counter)))
self.done = True
def huber_loss(self, td_error, kappa=1.0):
abs_td_error = td_error.abs()
flag = (abs_td_error < kappa).float()
return flag * abs_td_error.pow(2) * 0.5 + (1 - flag) * (abs_td_error - 0.5)
def stats(self, interval: int):
print('number of updates: {}'.format(self.counter))
print('update speed: {}/s'.format((self.counter-self.last_counter)/interval))
if self.counter != self.last_counter:
print('loss: {:.4f}'.format(self.loss / (self.counter-self.last_counter)))
self.last_counter = self.counter
self.loss = 0
return self.done
@ray.remote(num_cpus=1)
class Actor:
def __init__(self, worker_id: int, epsilon: float, learner: Learner, buffer: GlobalBuffer):
self.id = worker_id
self.model = Network()
self.model.eval()
self.env = Environment(curriculum=True)
self.epsilon = epsilon
self.learner = learner
self.global_buffer = buffer
self.max_episode_length = configs.max_episode_length
self.counter = 0
def run(self):
done = False
obs, pos, local_buffer = self.reset()
while True:
# sample action
actions, q_val, hidden, comm_mask = self.model.step(torch.from_numpy(obs.astype(np.float32)), torch.from_numpy(pos.astype(np.float32)))
if random.random() < self.epsilon:
# Note: only one agent do random action in order to keep the environment stable
actions[0] = np.random.randint(0, 5)
# take action in env
(next_obs, next_pos), rewards, done, _ = self.env.step(actions)
# return data and update observation
local_buffer.add(q_val[0], actions[0], rewards[0], next_obs, hidden, comm_mask)
if done == False and self.env.steps < self.max_episode_length:
obs, pos = next_obs, next_pos
else:
# finish and send buffer
if done:
data = local_buffer.finish()
else:
_, q_val, hidden, comm_mask = self.model.step(torch.from_numpy(next_obs.astype(np.float32)), torch.from_numpy(next_pos.astype(np.float32)))
data = local_buffer.finish(q_val[0], comm_mask)
self.global_buffer.add.remote(data)
done = False
obs, pos, local_buffer = self.reset()
self.counter += 1
if self.counter == configs.actor_update_steps:
self.update_weights()
self.counter = 0
def update_weights(self):
'''load weights from learner'''
# update network parameters
weights_id = ray.get(self.learner.get_weights.remote())
weights = ray.get(weights_id)
self.model.load_state_dict(weights)
# update environment settings set (number of agents and map size)
new_env_settings_set = ray.get(self.global_buffer.get_env_settings.remote())
self.env.update_env_settings_set(ray.get(new_env_settings_set))
def reset(self):
self.model.reset()
obs, pos = self.env.reset()
local_buffer = LocalBuffer(self.id, self.env.num_agents, self.env.map_size[0], obs)
return obs, pos, local_buffer