-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
275 lines (215 loc) · 11.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from prettytable import PrettyTable
from torch.optim import Adam
from torch.optim.lr_scheduler import StepLR
import torch
import random
import json
import time
import models
import numpy as np
import os
from eval import eval_model
from utils import tensor_dict_to_gpu, tensor_dict_to_cpu, ResultWriter, get_num_model_parameters, print_model_parameters
from task import Task, Fold
import gc
import copy
class SentenceClassificationTrainer:
'''Trainer for baseline model and also for Sequantial Transfer Learning. '''
def __init__(self, device, config, task: Task, result_writer:ResultWriter):
self.device = device
self.config = config
self.result_writer = result_writer
self.cur_result = dict()
self.cur_result["task"] = task.task_name
self.cur_result["config"] = config
self.labels = task.labels
self.task = task
def write_results(self, fold_num, epoch, train_duration, dev_metrics, dev_confusion, test_metrics, test_confusion):
self.cur_result["fold"] = fold_num
self.cur_result["epoch"] = epoch
self.cur_result["train_duration"] = train_duration
self.cur_result["dev_metrics"] = dev_metrics
self.cur_result["dev_confusion"] = dev_confusion
self.cur_result["test_metrics"] = test_metrics
self.cur_result["test_confusion"] = test_confusion
self.result_writer.write(json.dumps(self.cur_result))
def run_training_for_fold(self, fold_num, fold: Fold, initial_model=None, return_best_model=False):
self.result_writer.log(f'device: {self.device}')
train_batches, dev_batches, test_batches = fold.train, fold.dev, fold.test
self.result_writer.log(f"fold: {fold_num}")
self.result_writer.log(f"train batches: {len(train_batches)}")
self.result_writer.log(f"dev batches: {len(dev_batches)}")
self.result_writer.log(f"test batches: {len(test_batches)}")
# instantiate model per reflection
if initial_model is None:
model = getattr(models, self.config["model"])(self.config, [self.task])
else:
self.result_writer.log("Loading weights from initial model....")
model = copy.deepcopy(initial_model)
# for transfer learning do not transfer the output layer
model.reinit_output_layer([self.task], self.config)
self.result_writer.log("Model: " + model.__class__.__name__)
self.cur_result["model"] = model.__class__.__name__
model.to(self.device)
max_train_epochs = self.config["max_epochs"]
lr = self.config["lr"]
max_grad_norm = 1.0
self.result_writer.log(f"Number of model parameters: {get_num_model_parameters(model)}")
self.result_writer.log(f"Number of model parameters bert: {get_num_model_parameters(model.bert)}")
self.result_writer.log(f"Number of model parameters word_lstm: {get_num_model_parameters(model.word_lstm)}")
self.result_writer.log(f"Number of model parameters attention_pooling: {get_num_model_parameters(model.attention_pooling)}")
self.result_writer.log(f"Number of model parameters sentence_lstm: {get_num_model_parameters(model.sentence_lstm)}")
self.result_writer.log(f"Number of model parameters crf: {get_num_model_parameters(model.crf)}")
print_model_parameters(model)
# for feature based training use Adam optimizer with lr decay after each epoch (see Jin et al. Paper)
optimizer = Adam(model.parameters(), lr=lr)
epoch_scheduler = StepLR(optimizer, step_size=1, gamma=self.config["lr_epoch_decay"])
best_dev_result = 0.0
early_stopping_counter = 0
epoch = 0
early_stopping = self.config["early_stopping"]
best_model = None
optimizer.zero_grad()
while epoch < max_train_epochs and early_stopping_counter < early_stopping:
epoch_start = time.time()
self.result_writer.log(f'training model for fold {fold_num} in epoch {epoch} ...')
random.shuffle(train_batches)
# train model
model.train()
for batch_num, batch in enumerate(train_batches):
# move tensor to gpu
tensor_dict_to_gpu(batch, self.device)
output = model(
batch=batch,
labels=batch["label_ids"]
)
loss = output["loss"]
loss = loss.sum()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
optimizer.zero_grad()
# move batch to cpu again to save gpu memory
tensor_dict_to_cpu(batch)
if batch_num % 100 == 0:
self.result_writer.log(f"Loss in fold {fold_num}, epoch {epoch}, batch {batch_num}: {loss.item()}")
train_duration = time.time() - epoch_start
epoch_scheduler.step()
# evaluate model
results={}
self.result_writer.log(f'evaluating model...')
dev_metrics, dev_confusion,labels_dict, _ = eval_model(model, dev_batches, self.device, self.task)
results['dev_metrics']=dev_metrics
results['dev_confusion'] = dev_confusion
results['labels_dict'] = labels_dict
results['classification_report']=_
if dev_metrics[self.task.dev_metric] > best_dev_result:
if return_best_model:
best_model = copy.deepcopy(model)
best_dev_result = dev_metrics[self.task.dev_metric]
early_stopping_counter = 0
self.result_writer.log(f"New best dev {self.task.dev_metric} {best_dev_result}!")
results={}
test_metrics, test_confusion,labels_dict,_ = eval_model(model, test_batches, self.device, self.task)
results['dev_metrics']=dev_metrics
results['dev_confusion'] = dev_confusion
results['labels_dict'] = labels_dict
results['classification_report']=_
self.write_results(fold_num, epoch, train_duration, dev_metrics, dev_confusion, test_metrics, test_confusion)
self.result_writer.log(
f'*** fold: {fold_num}, epoch: {epoch}, train duration: {train_duration}, dev {self.task.dev_metric}: {dev_metrics[self.task.dev_metric]}, test weighted-F1: {test_metrics["weighted-f1"]}, test macro-F1: {test_metrics["macro-f1"]}, test accuracy: {test_metrics["acc"]}')
else:
early_stopping_counter += 1
self.result_writer.log(f'fold: {fold_num}, epoch: {epoch}, train duration: {train_duration}, dev {self.task.dev_metric}: {dev_metrics[self.task.dev_metric]}')
epoch += 1
return best_model
class SentenceClassificationMultitaskTrainer:
'''Trainer for multitask model.
Has only small differences to SentenceClassificationTrainer
(i.e. no early stopping, two devices to separate models on several gpus)
'''
def __init__(self, device, config, tasks, result_writer, device2=None):
self.device = device
self.device2 = device2
self.config = config
self.result_writer = result_writer
self.cur_result = dict()
self.cur_result["tasks"] = [task.task_name for task in tasks]
self.cur_result["config"] = config
self.tasks = tasks
def write_results(self, task, epoch, train_duration, dev_metrics, dev_confusion, test_metrics, test_confusion):
self.cur_result["task"] = task.task_name
self.cur_result["epoch"] = epoch
self.cur_result["train_duration"] = train_duration
self.cur_result["dev_metrics"] = dev_metrics
self.cur_result["dev_confusion"] = dev_confusion
self.cur_result["test_metrics"] = test_metrics
self.cur_result["test_confusion"] = test_confusion
self.result_writer.write(json.dumps(self.cur_result))
def run_training(self, train_batches, dev_batches, test_batches, restart, fold_num, save_models=False, save_best_model_path=None):
self.result_writer.log(f'device: {self.device}')
train_batch_count = len(train_batches)
self.result_writer.log(f"train batches: {train_batch_count}")
self.result_writer.log(f"dev batches: {len(dev_batches)}")
self.result_writer.log(f"test batches: {len(test_batches)}")
# instantiate model per reflection
model = getattr(models, self.config["model"])(self.config, self.tasks)
self.result_writer.log("Model: " + model.__class__.__name__)
self.cur_result["model"] = model.__class__.__name__
if self.device2 is not None:
model.to_device(self.device, self.device2)
else:
model.to(self.device)
max_train_epochs = self.config["max_epochs"]
lr = self.config["lr"]
max_grad_norm = 1.0
# for feature based training use Adam optimizer with lr decay after each epoch (see Jin et al. Paper)
optimizer = Adam(model.parameters(), lr=lr)
epoch_scheduler = StepLR(optimizer, step_size=1, gamma=self.config["lr_epoch_decay"])
optimizer.zero_grad()
best_dev_result = 0.0
epoch = 0
while epoch < max_train_epochs:
epoch_start = time.time()
self.result_writer.log(f'training model in epoch {epoch} ...')
random.shuffle(train_batches)
# train model
model.train()
for batch_num, batch in enumerate(train_batches):
# move tensor to gpu
tensor_dict_to_gpu(batch, self.device)
output = model(batch=batch, labels=batch["label_ids"])
loss = output["loss"]
loss = loss.sum()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
optimizer.zero_grad()
# move batch to cpu again to save gpu memory
tensor_dict_to_cpu(batch)
if batch_num % 100 == 0:
self.result_writer.log(f"Loss in epoch {epoch}, batch {batch_num}: {loss.item()}")
train_duration = time.time() - epoch_start
epoch_scheduler.step()
# evaluate model
weighted_f1_dev_scores = []
for task in self.tasks:
self.result_writer.log(f'evaluating model for task {task.task_name}...')
dev_metrics, dev_confusion, _ = eval_model(model, dev_batches, self.device, task)
test_metrics, test_confusion, _ = eval_model(model, test_batches, self.device, task)
self.write_results(task, epoch, train_duration, dev_metrics, dev_confusion, test_metrics, test_confusion)
self.result_writer.log(
f'epoch: {epoch}, train duration: {train_duration}, dev weighted f1: {dev_metrics["weighted-f1"]}, dev {task.dev_metric}: {dev_metrics[task.dev_metric]}, test weighted-F1: {test_metrics["weighted-f1"]}, test micro-F1: {test_metrics["micro-f1"]}. test macro-F1: {test_metrics["macro-f1"]}, test accuracy: {test_metrics["acc"]}')
weighted_f1_dev_scores.append(test_metrics["weighted-f1"])
weighted_f1_avg = np.mean(weighted_f1_dev_scores)
if save_models:
model_copy = copy.deepcopy(model)
model_path = os.path.join(save_best_model_path, f'{restart}_{fold_num}_{epoch}_model.pt')
self.result_writer.log(f"saving model to {model_path}")
torch.save(model_copy.state_dict(), model_path)
if weighted_f1_avg > best_dev_result:
best_dev_result = weighted_f1_avg
self.result_writer.log(f'*** epoch: {epoch}, mean weighted-F1 dev score: {weighted_f1_avg}')
else:
self.result_writer.log(f'epoch: {epoch}, mean weighted-F1 dev score: {weighted_f1_avg}')
epoch += 1