forked from megvii-research/cv-master-ex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
encoding.py
111 lines (88 loc) · 2.84 KB
/
encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import torch.nn as nn
import torch.nn.functional as F
from hashencoder import AnnealableHashEncoder, HashEncoder
from shencoder import SHEncoder
class FreqEncoder(nn.Module):
def __init__(
self,
input_dim,
max_freq_log2,
N_freqs,
log_sampling=True,
include_input=True,
periodic_fns=(torch.sin, torch.cos),
):
super().__init__()
self.input_dim = input_dim
self.include_input = include_input
self.periodic_fns = periodic_fns
self.output_dim = 0
if self.include_input:
self.output_dim += self.input_dim
self.output_dim += self.input_dim * N_freqs * len(self.periodic_fns)
if log_sampling:
self.freq_bands = 2.0 ** torch.linspace(0.0, max_freq_log2, N_freqs)
else:
self.freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq_log2, N_freqs)
self.freq_bands = self.freq_bands.numpy().tolist()
def forward(self, input, **kwargs):
out = []
if self.include_input:
out.append(input)
for i in range(len(self.freq_bands)):
freq = self.freq_bands[i]
for p_fn in self.periodic_fns:
out.append(p_fn(input * freq))
out = torch.cat(out, dim=-1)
return out
def get_encoder(
encoding,
input_dim=3,
multires=6,
degree=4,
num_levels=16,
level_dim=2,
base_resolution=16,
log2_hashmap_size=19,
desired_resolution=2048,
annealing_start=0.2,
annealing_end=0.5,
annealing_start_level=0,
**kwargs
):
if encoding == "None":
return lambda x, **kwargs: x, input_dim
elif encoding == "frequency":
encoder = FreqEncoder(
input_dim=input_dim,
max_freq_log2=multires - 1,
N_freqs=multires,
log_sampling=True,
)
elif encoding == "sphere_harmonics":
encoder = SHEncoder(input_dim=input_dim, degree=degree)
elif encoding == "hashgrid":
encoder = HashEncoder(
input_dim=input_dim,
num_levels=num_levels,
level_dim=level_dim,
base_resolution=base_resolution,
log2_hashmap_size=log2_hashmap_size,
desired_resolution=desired_resolution,
)
elif encoding == "annealable_hashgrid":
encoder = AnnealableHashEncoder(
input_dim=input_dim,
num_levels=num_levels,
level_dim=level_dim,
base_resolution=base_resolution,
log2_hashmap_size=log2_hashmap_size,
desired_resolution=desired_resolution,
annealing_start=annealing_start,
annealing_end=annealing_end,
annealing_start_level=annealing_start_level,
)
else:
raise NotImplementedError()
return encoder, encoder.output_dim