forked from orafce/orafce
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom.c
382 lines (329 loc) · 8.11 KB
/
random.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*
* Note - I don't find any documentation about pseudo random
* number generator used in Oracle. So the results of these
* functions should be different then native Oracle functions!
* This library is based on ANSI C implementation.
*/
#include "postgres.h"
#include "access/hash.h"
#include "lib/stringinfo.h"
#include "utils/builtins.h"
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <errno.h>
#include "orafce.h"
#include "builtins.h"
#if PG_VERSION_NUM >= 160000
#include "varatt.h"
#endif
PG_FUNCTION_INFO_V1(dbms_random_initialize);
PG_FUNCTION_INFO_V1(dbms_random_normal);
PG_FUNCTION_INFO_V1(dbms_random_random);
PG_FUNCTION_INFO_V1(dbms_random_seed_int);
PG_FUNCTION_INFO_V1(dbms_random_seed_varchar);
PG_FUNCTION_INFO_V1(dbms_random_string);
PG_FUNCTION_INFO_V1(dbms_random_terminate);
PG_FUNCTION_INFO_V1(dbms_random_value);
PG_FUNCTION_INFO_V1(dbms_random_value_range);
/* Coefficients in rational approximations. */
static const double a[] =
{
-3.969683028665376e+01,
2.209460984245205e+02,
-2.759285104469687e+02,
1.383577518672690e+02,
-3.066479806614716e+01,
2.506628277459239e+00
};
static const double b[] =
{
-5.447609879822406e+01,
1.615858368580409e+02,
-1.556989798598866e+02,
6.680131188771972e+01,
-1.328068155288572e+01
};
static const double c[] =
{
-7.784894002430293e-03,
-3.223964580411365e-01,
-2.400758277161838e+00,
-2.549732539343734e+00,
4.374664141464968e+00,
2.938163982698783e+00
};
static const double d[] =
{
7.784695709041462e-03,
3.224671290700398e-01,
2.445134137142996e+00,
3.754408661907416e+00
};
#define LOW 0.02425
#define HIGH 0.97575
static double ltqnorm(double p);
/*
* dbms_random.initialize (seed IN BINARY_INTEGER)
*
* Initialize package with a seed value
*/
Datum
dbms_random_initialize(PG_FUNCTION_ARGS)
{
int seed = PG_GETARG_INT32(0);
srand(seed);
PG_RETURN_VOID();
}
/*
* dbms_random.normal() RETURN NUMBER;
*
* Returns random numbers in a standard normal distribution
*/
Datum
dbms_random_normal(PG_FUNCTION_ARGS)
{
float8 result;
/* need random value from (0..1) */
result = ltqnorm(((double) rand() + 1) / ((double) RAND_MAX + 2));
PG_RETURN_FLOAT8(result);
}
/*
* dbms_random.random() RETURN BINARY_INTEGER;
*
* Generate Random Numeric Values
*/
Datum
dbms_random_random(PG_FUNCTION_ARGS)
{
int result;
/*
* Oracle generator generates numebers from -2^31 and +2^31,
* ANSI C only from 0 .. RAND_MAX,
*/
result = 2 * (rand() - RAND_MAX / 2);
PG_RETURN_INT32(result);
}
/*
* dbms_random.seed(val IN BINARY_INTEGER);
* dbms_random.seed(val IN VARCHAR2);
*
* Reset the seed value
*/
Datum
dbms_random_seed_int(PG_FUNCTION_ARGS)
{
int seed = PG_GETARG_INT32(0);
srand(seed);
PG_RETURN_VOID();
}
/*
* Atention!
*
* Hash function should be changed between mayor pg versions,
* don't use text based seed for regres tests!
*/
Datum
dbms_random_seed_varchar(PG_FUNCTION_ARGS)
{
text *key = PG_GETARG_TEXT_P(0);
Datum seed;
seed = hash_any((unsigned char *) VARDATA_ANY(key), VARSIZE_ANY_EXHDR(key));
srand((int) seed);
PG_RETURN_VOID();
}
/*
* dbms_random.string(opt IN CHAR, len IN NUMBER) RETURN VARCHAR2;
*
* Create Random Strings
* opt seed values:
* 'a','A' alpha characters only (mixed case)
* 'l','L' lower case alpha characters only
* 'p','P' any printable characters
* 'u','U' upper case alpha characters only
* 'x','X' any alpha-numeric characters (upper)
*/
static text *
random_string(const char *charset, size_t chrset_size, int len)
{
StringInfo str;
int i;
str = makeStringInfo();
for (i = 0; i < len; i++)
{
double r = (double) rand();
int pos = (int) floor((r / ((double) RAND_MAX + 1)) * chrset_size);
appendStringInfoChar(str, charset[pos]);
}
return cstring_to_text(str->data);
}
Datum
dbms_random_string(PG_FUNCTION_ARGS)
{
char *option;
int len;
const char *charset;
size_t chrset_size;
const char *alpha_mixed = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
const char *lower_only = "abcdefghijklmnopqrstuvwxyz";
const char *upper_only = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const char *upper_alphanum = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const char *printable = "`1234567890-=qwertyuiop[]asdfghjkl;'zxcvbnm,./!@#$%^&*()_+QWERTYUIOP{}|ASDFGHJKL:\"ZXCVVBNM<>? \\~";
if (PG_ARGISNULL(0) || PG_ARGISNULL(1))
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("an argument is NULL")));
option = text_to_cstring(PG_GETARG_TEXT_P(0));
if (strlen(option) != 1)
ereport(ERROR,
(errcode(ERRCODE_STRING_DATA_RIGHT_TRUNCATION),
errmsg("this first parameter value is more than 1 characters long")));
len = PG_GETARG_INT32(1);
switch (option[0])
{
case 'a':
case 'A':
charset = alpha_mixed;
chrset_size = strlen(alpha_mixed);
break;
case 'l':
case 'L':
charset = lower_only;
chrset_size = strlen(lower_only);
break;
case 'u':
case 'U':
charset = upper_only;
chrset_size = strlen(upper_only);
break;
case 'x':
case 'X':
charset = upper_alphanum;
chrset_size = strlen(upper_alphanum);
break;
case 'p':
case 'P':
charset = printable;
chrset_size = strlen(printable);
break;
/* Otherwise the returning string is in uppercase alpha characters. */
default:
charset = upper_only;
chrset_size = strlen(upper_only);
break;
}
PG_RETURN_TEXT_P(random_string(charset, chrset_size, len));
}
/*
* dbms_random.terminate;
*
* Terminate use of the Package
*/
Datum
dbms_random_terminate(PG_FUNCTION_ARGS)
{
/* do nothing */
PG_RETURN_VOID();
}
/*
* dbms_random.value() RETURN NUMBER;
*
* Gets a random number, greater than or equal to 0 and less than 1.
*/
Datum
dbms_random_value(PG_FUNCTION_ARGS)
{
float8 result;
/* result [0.0 - 1.0) */
result = (double) rand() / ((double) RAND_MAX + 1);
PG_RETURN_FLOAT8(result);
}
/*
* dbms_random.value(low NUMBER, high NUMBER) RETURN NUMBER
*
* Alternatively, you can get a random Oracle number x,
* where x is greater than or equal to low and less than high
*/
Datum
dbms_random_value_range(PG_FUNCTION_ARGS)
{
float8 low = PG_GETARG_FLOAT8(0);
float8 high = PG_GETARG_FLOAT8(1);
float8 result;
if (low > high)
{
float8 aux;
aux = low;
low = high; high = aux;
}
/*
* in the case high == low, we don't need to calculate result, but then
* we change order of calls rand() functions, and this should break
* customer's regress tests. To minimize impact on regress tests, we use same formula
* for this case too.
*/
result = ((double) rand() / ((double) RAND_MAX + 1)) * (high - low) + low;
PG_RETURN_FLOAT8(result);
}
/*
* Lower tail quantile for standard normal distribution function.
*
* This function returns an approximation of the inverse cumulative
* standard normal distribution function. I.e., given P, it returns
* an approximation to the X satisfying P = Pr{Z <= X} where Z is a
* random variable from the standard normal distribution.
*
* The algorithm uses a minimax approximation by rational functions
* and the result has a relative error whose absolute value is less
* than 1.15e-9.
*
* Author: Peter J. Acklam
* Time-stamp: 2002-06-09 18:45:44 +0200
* E-mail: [email protected]
* WWW URL: http://www.math.uio.no/~jacklam
*
* C implementation adapted from Peter's Perl version
*/
static double
ltqnorm(double p)
{
double q, r;
errno = 0;
if (p < 0 || p > 1)
{
errno = EDOM;
return 0.0;
}
else if (p == 0)
{
errno = ERANGE;
return -HUGE_VAL /* minus "infinity" */;
}
else if (p == 1)
{
errno = ERANGE;
return HUGE_VAL /* "infinity" */;
}
else if (p < LOW)
{
/* Rational approximation for lower region */
q = sqrt(-2*log(p));
return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
}
else if (p > HIGH)
{
/* Rational approximation for upper region */
q = sqrt(-2*log(1-p));
return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
}
else
{
/* Rational approximation for central region */
q = p - 0.5;
r = q*q;
return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q /
(((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1);
}
}