-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathaudio_handler.py
62 lines (50 loc) · 1.69 KB
/
audio_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from transformers import pipeline
import librosa
import io
from utils import load_config, timeit
import os
import subprocess
config = load_config()
def convert_webm_to_wav_ffmpeg(audio_bytes):
# Save the WebM bytes to a file
with open("temp_audio.webm", "wb") as f:
f.write(audio_bytes)
# Use FFmpeg to convert WebM to WAV
result = subprocess.run(
["ffmpeg", "-fflags", "+igndts", "-i", "temp_audio.webm", "-c:a", "pcm_s16le", "temp_audio.wav"],
capture_output=True
)
if result.returncode != 0:
print(result.stderr.decode())
raise RuntimeError("FFmpeg failed to convert WebM to WAV")
# Read the WAV file back into memory
with open("temp_audio.wav", "rb") as f:
wav_data = f.read()
wav_io = io.BytesIO(wav_data)
# Clean up the temp files
os.remove("temp_audio.webm")
os.remove("temp_audio.wav")
return wav_io
def convert_bytes_to_array(audio_bytes):
try:
audio_bytes_io = io.BytesIO(audio_bytes)
audio, sample_rate = librosa.load(audio_bytes)
except Exception as e:
print("Audio error, trying to convert to wav.")
wav_io = convert_webm_to_wav_ffmpeg(audio_bytes)
audio, sample_rate = librosa.load(wav_io)
print(sample_rate)
return audio
@timeit
def transcribe_audio(audio_bytes):
#device = "cuda:0" if torch.cuda.is_available() else "cpu"
device = "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=config["whisper_model"],
chunk_length_s=30,
device=device,
)
audio_array = convert_bytes_to_array(audio_bytes)
prediction = pipe(audio_array, batch_size=1)["text"]
return prediction