forked from tbenst/silent_speech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharchitecture.py
1886 lines (1646 loc) · 68.1 KB
/
architecture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import random
import torch, numpy as np
from torch import nn
import torch.nn.functional as F
from transformer import TransformerEncoderLayer
from data_utils import combine_fixed_length, decollate_tensor
import sys, os, jiwer
import pytorch_lightning as pl, torchmetrics
from torchaudio.models.decoder import ctc_decoder
from torchaudio.functional import edit_distance
# from s4 import S4
from data_utils import TextTransform, token_error_rate
from magneto.models.hyena import HyenaOperator
from flash_attn.modules.block import Block
from magneto.models.s4d import S4D
from pytorch_lightning.profilers import PassThroughProfiler
from dataclasses import dataclass
from typing import Tuple, List, Union
from dataloaders import split_batch_into_emg_neural_audio
from contrastive import (
nobatch_cross_contrastive_loss,
supervised_contrastive_loss,
SupConLoss,
KoLeoLoss,
)
from typing import Tuple
from pytorch_lightning.loggers import NeptuneLogger
from align import align_from_distances
from torch.optim.lr_scheduler import LambdaLR
from collections import defaultdict
from warnings import warn
import gc
import logging
MODEL_SIZE = 768 # number of hidden dimensions
NUM_LAYERS = 6 # number of layers
DROPOUT = 0.2 # dropout
def layer_norm(
x: torch.Tensor, dim: Tuple[int] = None, eps: float = 0.00001
) -> torch.Tensor:
"""
Layer normalization as described in https://arxiv.org/pdf/1607.06450.pdf.
Supports inputs of any shape, where first dimension is the batch. Does not
apply elementwise affine transformation.
https://stackoverflow.com/questions/59830168/layer-normalization-in-pytorch
"""
if dim is None:
# all except batch
dim = tuple(range(1, len(x.shape)))
mean = torch.mean(x, dim=dim, keepdim=True)
var = torch.var(x, dim=dim, keepdim=True, correction=0)
return (x - mean) / torch.sqrt(var + eps)
class LayerNorm(nn.Module):
def __init__(self, dim: Tuple[int] = None, eps: float = 0.00001):
super().__init__()
self.dim = dim
self.eps = eps
def forward(self, x):
return layer_norm(x, dim=self.dim, eps=self.eps)
class ResBlock(nn.Module):
def __init__(
self, num_ins, num_outs, stride=1, pre_activation=False, beta: float = 1.0
):
super().__init__()
self.conv1 = nn.Conv1d(num_ins, num_outs, 3, padding=1, stride=stride)
self.norm1 = nn.LayerNorm(num_outs)
self.conv2 = nn.Conv1d(num_outs, num_outs, 3, padding=1)
self.norm2 = nn.LayerNorm(num_outs)
# self.act = nn.ReLU()
self.act = nn.GELU() # TODO: test which is better
self.beta = beta
if stride != 1 or num_ins != num_outs:
self.residual_path = nn.Conv1d(num_ins, num_outs, 1, stride=stride)
self.res_norm = nn.LayerNorm(num_outs)
if pre_activation:
self.skip = nn.Sequential(self.res_norm, self.residual_path)
else:
self.skip = nn.Sequential(self.residual_path, self.res_norm)
else:
self.skip = nn.Identity()
# ResNet v2 style pre-activation https://arxiv.org/pdf/1603.05027.pdf
self.pre_activation = pre_activation
if pre_activation:
self.block = nn.Sequential(
self.norm1, self.act, self.conv1, self.norm2, self.act, self.conv2
)
else:
self.block = nn.Sequential(
self.conv1, self.norm1, self.act, self.conv2, self.norm2
)
def forward(self, x):
# logging.warning(f"ResBlock forward pass. x.shape: {x.shape}")
res = self.block(x) * self.beta
x = self.skip(x)
if self.pre_activation:
return x + res
else:
return self.act(x + res)
@dataclass
class XtoTextConfig:
steps_per_epoch: int
lm_directory: str
togglePhones: bool = True
learning_rate_warmup: int = 500 # not used, todo refactor to MONA/Gaddy only
weight_decay: float = 1e-5
learning_rate: float = 0.01
gradient_accumulation_steps: int = 1
num_train_epochs: int = 200
precision: Union[int, str] = 32
class XtoText(pl.LightningModule):
"Base model for all (neural, audio, emg, X) to text models."
def __init__(self, cfg, text_transform: TextTransform):
super().__init__()
self.text_transform = text_transform
self.n_chars = len(text_transform.chars)
self.lm_directory = cfg.lm_directory
self.weight_decay = cfg.weight_decay
self.lr = cfg.learning_rate
self.target_lr = cfg.learning_rate # will not mutate
self.learning_rate_warmup = cfg.learning_rate_warmup
self.steps_per_epoch = cfg.steps_per_epoch
if cfg.togglePhones:
self.lexicon_file = os.path.join(cfg.lm_directory, "cmudict.txt")
else:
self.lexicon_file = os.path.join(
cfg.lm_directory, "lexicon_graphemes_noApostrophe.txt"
)
self.step_vocal_emg_text_target = []
self.step_vocal_emg_text_pred = []
self.step_vocal_emg_int_target = []
self.step_vocal_emg_int_pred = []
self.step_silent_emg_text_target = []
self.step_silent_emg_text_pred = []
self.step_silent_emg_int_target = []
self.step_silent_emg_int_pred = []
def _init_ctc_decoder(self):
self.ctc_decoder = ctc_decoder(
lexicon=self.lexicon_file,
# tokens = [x.lower() for x in self.text_transform.chars] + ['_'],
tokens=self.text_transform.chars + ["_"],
# lm = os.path.join(self.lm_directory, '4gram_lm.bin'),
lm=os.path.join(self.lm_directory, "lm.binary"),
blank_token="_",
sil_token="|",
nbest=1,
lm_weight=2, # default is 2; Gaddy sets to 1.85
# word_score = -3,
# sil_score = -2,
beam_size=150, # SET TO 150 during inference
)
def ctc_loss(self, pred, target, pred_len, target_len):
# this pads with 0, which corresponds to 'a', but by passing target_len
# to CTC loss we can ignore these padded values
pred = nn.utils.rnn.pad_sequence(
pred, batch_first=False
) # B x T x C -> T x B x C, as required by ctc
# pred = nn.utils.rnn.pad_sequence(decollate_tensor(pred, pred_len), batch_first=False)
target = nn.utils.rnn.pad_sequence(target, batch_first=True)
# print(f"\n ==== CTC ====\n{pred.shape=}, {target.shape=}\n{pred=}\n{target=}\n")
# print(f"{pred.shape=}, {target[0].shape=}, {pred_len=}, {target_len=}")
# print(f"ctc_loss: {[p.shape for p in pred]=}, {[t.shape for t in target]=}")
loss = F.ctc_loss(
pred, target, pred_len, target_len, blank=self.n_chars, zero_infinity=True
)
return loss
def on_train_epoch_start(self):
# bad separation of concerns / composability,
# but this seems forced by pytorch lightning
# maybe should use Fabric in the future..
if self.trainer.datamodule is not None:
try:
self.trainer.datamodule.TrainBatchSampler.set_epoch(self.current_epoch)
logging.debug(f"set epoch to {self.current_epoch=}")
except:
# not all datamodules have a TrainBatchSampler, or a set_epoch method
pass
# print(f"==== DEBUG: {self.lr_schedulers().state_dict()=} ====")
def training_step(self, batch, batch_idx):
c = self.calc_loss(**self.forward(batch))
loss = c["loss"]
emg_bz = c["emg_bz"] if "emg_bz" in c else 0
neural_bz = c["neural_bz"] if "neural_bz" in c else 0
audio_bz = c["audio_bz"] if "audio_bz" in c else 0
cross_con_bz = c["cross_con_bz"] if "cross_con_bz" in c else 0
summed_bz = emg_bz + neural_bz + audio_bz
self.maybe_log(
"train/loss",
c,
"loss",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=True,
batch_size=summed_bz,
sync_dist=True,
)
self.maybe_log(
"train/emg_ctc_loss",
c,
"emg_ctc_loss",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=False,
batch_size=emg_bz,
sync_dist=True,
)
self.maybe_log(
"train/neural_ctc_loss",
c,
"neural_ctc_loss",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=False,
batch_size=neural_bz,
sync_dist=True,
)
self.maybe_log(
"train/audio_ctc_loss",
c,
"audio_ctc_loss",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=False,
batch_size=audio_bz,
sync_dist=True,
)
self.maybe_log(
"train/cross_contrastive_loss",
c,
"cross_contrastive_loss",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=False,
batch_size=cross_con_bz,
sync_dist=True,
)
self.maybe_log(
"train/supervised_contrastive_loss",
c,
"supervised_contrastive_loss",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=False,
# same batch size as cross_con_bz as implemented in MONA calc_loss
# but not generally true
batch_size=cross_con_bz,
sync_dist=True,
)
self.maybe_log(
"train/avg_emg_latent",
c,
"emg_z_mean",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=False,
batch_size=emg_bz,
sync_dist=True,
)
self.maybe_log(
"train/avg_audio_latent",
c,
"audio_z_mean",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=False,
batch_size=audio_bz,
sync_dist=True,
)
self.maybe_log(
"train/avg_neural_latent",
c,
"neural_z_mean",
on_step=False,
on_epoch=True,
logger=True,
prog_bar=False,
batch_size=neural_bz,
sync_dist=True,
)
torch.cuda.empty_cache()
return loss
def on_validation_epoch_start(self):
# self.profiler.start(f"validation loop")
self._init_ctc_decoder()
def validation_step(self, batch, batch_idx, task="val"):
ret = self.forward(batch, fixed_length=False)
# supTcon will fail for silent-only data
c = self.calc_loss(**ret, use_supTcon=False, use_crossCon=False, use_dtw=False)
warn("only using EMG data for validation")
pred = ret["emg_pred"]
loss = c["loss"]
emg_bz = c["emg_bz"] if "emg_bz" in c else 0
neural_bz = c["neural_bz"] if "neural_bz" in c else 0
audio_bz = c["audio_bz"] if "audio_bz" in c else 0
paired_bz = c["paired_bz"] if "paired_bz" in c else 0
summed_bz = emg_bz + neural_bz + audio_bz + paired_bz
silent_emg_idx = ret["silent_emg_idx"]
parallel_emg_idx = ret["parallel_emg_idx"]
target_ints = ret["y_emg"]
batch_text = ret["text_emg"]
# logging.debug(f"{silent_emg_idx=}, {parallel_emg_idx=}, {emg_bz=}")
assert (
len(silent_emg_idx) + len(parallel_emg_idx) == emg_bz
), f"Expeceted all examples to be silent or parallel EMG, but got other examples, too"
is_silent = []
for i in range(emg_bz):
if i in silent_emg_idx:
is_silent.append(True)
elif i in parallel_emg_idx:
is_silent.append(False)
else:
raise ValueError(
"Expected all examples to be silent or parallel EMG, but got other examples, too"
)
# TODO: split text by emg, audio, neural
# TODO: think through if 'text' is being matched correctly to silent emg
pred_texts, pred_ints = self._beam_search_pred(pred.cpu())
pred_texts = [self.text_transform.clean_text(b) for b in pred_texts]
target_texts = [self.text_transform.clean_text(b) for b in batch_text]
# print(f"text: {batch['text']}; target_text: {target_text}; pred_text: {pred_text}")
# sanity check lengths
lens = [
len(t)
for t in [target_texts, pred_texts, pred_ints, target_ints, is_silent]
]
# check all equal
assert len(set(lens)) == 1, f"all lengths should be equal {lens=}"
for i, (target_text, pred_text, target_int, pred_int, is_s) in enumerate(
zip(target_texts, pred_texts, target_ints, pred_ints, is_silent)
):
if len(target_text) > 0:
if is_s:
stt = self.step_silent_emg_text_target
stp = self.step_silent_emg_text_pred
sit = self.step_silent_emg_int_target
sip = self.step_silent_emg_int_pred
if i % 16 == 0 and type(self.logger) == NeptuneLogger:
# log approx 10 examples
self.logger.experiment[
f"training/{task}/silent_emg_sentence_target"
].append(target_text)
self.logger.experiment[
f"training/{task}/silent_emg_sentence_pred"
].append(pred_text)
else:
stt = self.step_vocal_emg_text_target
stp = self.step_vocal_emg_text_pred
sit = self.step_vocal_emg_int_target
sip = self.step_vocal_emg_int_pred
if i % 16 == 0 and type(self.logger) == NeptuneLogger:
self.logger.experiment[
f"training/{task}/vocal_emg_sentence_target"
].append(target_text)
self.logger.experiment[
f"training/{task}/vocal_emg_sentence_pred"
].append(pred_text)
stt.append(target_text)
stp.append(pred_text)
sit.append(target_int.cpu().numpy())
sip.append(pred_int)
self.maybe_log(
f"{task}/loss",
c,
"loss",
prog_bar=True,
batch_size=summed_bz,
sync_dist=True,
)
self.maybe_log(
f"{task}/emg_ctc_loss",
c,
"emg_ctc_loss",
prog_bar=False,
batch_size=emg_bz,
sync_dist=True,
)
self.maybe_log(
f"{task}/neural_ctc_loss",
c,
"neural_ctc_loss",
prog_bar=False,
batch_size=neural_bz,
sync_dist=True,
)
self.maybe_log(
f"{task}/audio_ctc_loss",
c,
"audio_ctc_loss",
prog_bar=False,
batch_size=audio_bz,
sync_dist=True,
)
return loss
def _on_validation_epoch_end(
self, text_target, text_pred, int_target, int_pred
) -> None:
"Helper function for vocal & silent emg."
# TODO: this may not be implemented correctly for DDP
# raise NotImplementedError("on_validation_epoch_end not implemented neural, librispeech")
# logging.warning(f"start on_validation_epoch_end")
nonzero_text_target = []
nonzero_text_pred = []
nonzero_int_target = []
nonzero_int_pred = []
for t, p, i, j in zip(text_target, text_pred, int_target, int_pred):
if len(t) > 0:
nonzero_text_target.append(t)
nonzero_text_pred.append(p)
nonzero_int_target.append(i)
nonzero_int_pred.append(j)
else:
print("WARN: got target length of zero during validation.")
if len(p) == 0:
logging.debug("WARN: got prediction length of zero during validation.")
# logging.warning(f"on_validation_epoch_end: calc wer")
wer = jiwer.wer(nonzero_text_target, nonzero_text_pred)
# print(f"{nonzero_text_target=}, {nonzero_text_pred=}")
# print(f"WER: {wer}")
# print(f"{nonzero_int_target=}, {nonzero_int_pred=}")
try:
# CER not fully debugged yet
cer = token_error_rate(
nonzero_int_target, nonzero_int_pred, self.text_transform
)
except:
cer = None
text_target.clear()
text_pred.clear()
int_target.clear()
int_pred.clear()
return wer, cer
# self.profiler.stop(f"validation loop")
# self.profiler.describe()
# logging.warning(f"on_validation_epoch_end: gc.collect()")
gc.collect()
torch.cuda.empty_cache() # TODO: see if fixes occasional freeze...?
def on_validation_epoch_end(self) -> None:
vocal_wer, vocal_cer = self._on_validation_epoch_end(
self.step_vocal_emg_text_target,
self.step_vocal_emg_text_pred,
self.step_vocal_emg_int_target,
self.step_vocal_emg_int_pred,
)
self.log("val/vocal_emg_wer", vocal_wer, prog_bar=True, sync_dist=True)
self.log("val/vocal_emg_cer", vocal_cer, prog_bar=True, sync_dist=True)
silent_wer, silent_cer = self._on_validation_epoch_end(
self.step_silent_emg_text_target,
self.step_silent_emg_text_pred,
self.step_silent_emg_int_target,
self.step_silent_emg_int_pred,
)
self.log("val/silent_emg_wer", silent_wer, prog_bar=True, sync_dist=True)
self.log("val/silent_emg_cer", silent_cer, prog_bar=True, sync_dist=True)
# log for backwards compatibility / easy comparison with old results
self.log("val/wer", silent_wer, prog_bar=True, sync_dist=True)
self.log("val/cer", silent_cer, prog_bar=True, sync_dist=True)
gc.collect()
torch.cuda.empty_cache() # TODO: see if fixes occasional freeze...?
def _beam_search_pred(self, pred):
"Repeatedly called by validation_step & test_step."
beam_results = self.ctc_decoder(pred)
pred_text = []
pred_int = []
for b in beam_results:
if len(b) > 0:
# I think length is zero only when there's NaNs in the output
# we could just allow the crash here
pred_text.append(" ".join(b[0].words).strip().lower())
pred_int.append(b[0].tokens)
else:
pred_text.append("")
pred_int.append([])
return pred_text, pred_int
def test_step(self, batch, batch_idx):
return self.validation_step(batch, batch_idx, task="test")
def on_test_epoch_end(self) -> None:
wer = jiwer.wer(self.step_text_target, self.step_text_pred)
self.step_text_target.clear()
self.step_text_pred.clear()
self.log("test/wer", wer, prog_bar=True)
def maybe_log(self, name, my_dict, key, **kwargs):
if key in my_dict and not my_dict[key] is None:
self.log(name, my_dict[key], **kwargs)
def log(self, *args, **kwargs):
try:
isnan = np.isnan(args[0])
except:
isnan = False
if "batch_size" in kwargs and kwargs["batch_size"] == 0:
pass
elif args[0] is None:
pass
elif isnan:
logging.warning(f"got nan in log: {args=}, {kwargs=}")
pass
else:
super().log(*args, **kwargs)
class GaddyBase(XtoText):
def configure_optimizers(self):
initial_lr = self.target_lr / self.learning_rate_warmup
# for FSDP
optimizer = torch.optim.AdamW(
self.trainer.model.parameters(),
lr=initial_lr,
weight_decay=self.weight_decay,
)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
125 * self.steps_per_epoch,
150 * self.steps_per_epoch,
175 * self.steps_per_epoch,
],
gamma=0.5,
)
lr_scheduler = {"scheduler": scheduler, "interval": "step"}
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler}
def set_lr(self, new_lr):
optimizer = self.optimizers().optimizer
for param_group in optimizer.param_groups:
param_group["lr"] = new_lr
def lr_scheduler_step(self, scheduler, metric):
# warmup per Gaddy
# print(f"lr_scheduler_step: {self.global_step=}")
# optimizer = self.optimizers().optimizer
# for param_group in optimizer.param_groups:
# print(f"lr: {param_group['lr']}")
if metric is None:
scheduler.step()
else:
scheduler.step(metric)
# TODO: switch to a new (proper) scheduler that supports
# linear warmup and gamma decay
# linear warmup
if self.global_step <= self.learning_rate_warmup:
new_lr = self.global_step * self.target_lr / self.learning_rate_warmup
self.set_lr(new_lr)
class Model(GaddyBase):
def __init__(
self,
model_size,
dropout,
num_layers,
num_outs,
text_transform: TextTransform,
steps_per_epoch,
epochs,
lm_directory,
num_aux_outs=None,
lr=3e-4,
learning_rate_warmup=1000,
profiler=None,
weight_decay=0.0,
):
super().__init__(text_transform, lm_directory)
self.profiler = profiler or PassThroughProfiler()
self.conv_blocks = nn.Sequential(
ResBlock(8, model_size, 2),
ResBlock(model_size, model_size, 2),
ResBlock(model_size, model_size, 2),
)
self.w_raw_in = nn.Linear(model_size, model_size)
encoder_layer = TransformerEncoderLayer(
d_model=model_size,
nhead=8,
relative_positional=True,
relative_positional_distance=100,
dim_feedforward=3072,
dropout=dropout,
)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers)
self.w_out = nn.Linear(model_size, num_outs)
self.has_aux_out = num_aux_outs is not None
if self.has_aux_out:
self.w_aux = nn.Linear(model_size, num_aux_outs)
self.seqlen = 600
self.lr = lr
self.target_lr = lr # will not mutate
self.learning_rate_warmup = learning_rate_warmup
self.epochs = epochs
self.steps_per_epoch = steps_per_epoch
# val/test procedure...
self._init_ctc_decoder()
self.step_text_target = []
self.step_text_pred = []
self.step_int_target = []
self.step_int_pred = []
self.weight_decay = weight_decay
def forward(self, x_raw):
# x shape is (batch, time, electrode)
if self.training:
r = random.randrange(8)
if r > 0:
x_raw[:, :-r, :] = x_raw[:, r:, :] # shift left r
x_raw[:, -r:, :] = 0
x_raw = x_raw.transpose(1, 2) # put channel before time for conv
# print(f"before conv: {x_raw.shape=}")
x_raw = self.conv_blocks(x_raw)
# print(f"after conv: {x_raw.shape=}")
x_raw = x_raw.transpose(1, 2)
x_raw = self.w_raw_in(x_raw)
x = x_raw
x = x.transpose(0, 1) # put time first
# print(f"before transformer: {x.shape=}")
x = self.transformer(x)
x = x.transpose(0, 1)
if self.has_aux_out:
aux_out = self.w_aux(x)
x = F.log_softmax(self.w_out(x), -1)
if self.has_aux_out:
return x, aux_out
else:
return x
# before conv: x_raw.shape=torch.Size([4, 8, 4800])
# after conv: x_raw.shape=torch.Size([4, 768, 600])
# before transformer: x.shape=torch.Size([600, 4, 768])
# after w_out: x.shape=torch.Size([4, 600, 38])
# before conv: x_raw.shape=torch.Size([1, 8, 14568])
# after conv: x_raw.shape=torch.Size([1, 768, 1821])
# before transformer: x.shape=torch.Size([1821, 1, 768])
# after w_out: x.shape=torch.Size([1, 1821, 38])
# before conv: x_raw.shape=torch.Size([1, 8, 4800])
# after conv: x_raw.shape=torch.Size([1, 768, 600])
# before transformer: x.shape=torch.Size([600, 1, 768])
# after w_out: x.shape=torch.Size([1, 600, 38])
# before conv: x_raw.shape=torch.Size([1, 8, 2776])
# after conv: x_raw.shape=torch.Size([1, 768, 347])
# before transformer: x.shape=torch.Size([347, 1, 768])
# after w_out: x.shape=torch.Size([1, 347, 38])
def calc_loss(self, batch):
X = combine_fixed_length(batch["emg"], self.seqlen)
X_raw = combine_fixed_length(batch["raw_emg"], self.seqlen * 8)
bz = X.shape[0]
pred = self(X_raw)
# seq first, as required by ctc
pred = nn.utils.rnn.pad_sequence(
decollate_tensor(pred, batch["lengths"]), batch_first=False
)
y = nn.utils.rnn.pad_sequence(batch["text_int"], batch_first=True)
loss = F.ctc_loss(
pred, y, batch["lengths"], batch["text_int_lengths"], blank=self.n_chars
)
if torch.isnan(loss) or torch.isinf(loss):
# print('batch:', batch_idx)
print("Isnan output:", torch.any(torch.isnan(pred)))
print("Isinf output:", torch.any(torch.isinf(pred)))
# raise ValueError("NaN/Inf detected in loss")
return loss, bz
def _beam_search_step(self, batch):
"Repeatedly called by validation_step & test_step. Impure function!"
X_raw = batch["raw_emg"][0].unsqueeze(0)
pred = self(X_raw).cpu()
beam_results = self.ctc_decoder(pred)
pred_text = " ".join(beam_results[0][0].words).strip().lower()
b0 = batch["text"][0]
if len(batch["text"][0]) == 1:
# index twice for gaddy's collate function
target_text = self.text_transform.clean_text(b0[0])
else:
# Only index once for new collate function
target_text = self.text_transform.clean_text(b0)
return target_text, pred_text
def training_step(self, batch, batch_idx):
loss, bz = self.calc_loss(batch)
self.log(
"train/loss",
loss,
on_step=False,
on_epoch=True,
logger=True,
prog_bar=True,
batch_size=bz,
)
return loss
def validation_step(self, batch, batch_idx):
loss, bz = self.calc_loss(batch)
target_text, pred_text = self._beam_search_step(batch)
assert (
len(batch["emg"]) == 1
), "Currently only support batch size of 1 for validation"
if len(target_text) > 0:
self.step_text_target.append(target_text)
self.step_text_pred.append(pred_text)
self.log("val/loss", loss, prog_bar=True, batch_size=bz)
return loss
def on_validation_epoch_end(self) -> None:
# TODO: this may not be implemented correctly for DDP
logging.warning(f"start on_validation_epoch_end")
step_text_target = []
step_text_pred = []
for t, p in zip(self.step_text_target, self.step_text_pred):
if len(t) > 0:
step_text_target.append(t)
step_text_pred.append(p)
else:
print("WARN: got target length of zero during validation.")
if len(p) == 0:
logging.debug("WARN: got prediction length of zero during validation.")
logging.warning(f"on_validation_epoch_end: calc wer")
wer = jiwer.wer(step_text_target, step_text_pred)
self.step_text_target.clear()
self.step_text_pred.clear()
self.log("val/wer", wer, prog_bar=True, sync_dist=True)
# self.profiler.stop(f"validation loop")
# self.profiler.describe()
logging.warning(f"on_validation_epoch_end: gc.collect()")
gc.collect()
torch.cuda.empty_cache() # TODO: see if fixes occasional freeze...?
def test_step(self, batch, batch_idx):
loss, bz = self.calc_loss(batch)
target_text, pred_text = self._beam_search_step(batch)
if len(target_text) > 0:
self.step_text_target.append(target_text)
self.step_text_pred.append(pred_text)
self.log("test/loss", loss, prog_bar=True, batch_size=bz)
return loss
class S4Layer(nn.Module):
"""
https://github.com/HazyResearch/state-spaces/blob/ab287c63f4938a76d06a6b6868ee4a7163b50b05/example.py
Abstraction layer that gives more fine-grained control over S4 design.
This module has a S4Kernel, dropout, and layer norm.
"""
def __init__(
self, model_size, dropout, s4_dropout=None, diagonal=False, prenorm=False
):
super().__init__()
self.model_size = model_size
self.s4_dropout = dropout if s4_dropout is None else s4_dropout
if diagonal:
self.s4_layer = S4(
model_size,
dropout=self.s4_dropout,
bidirectional=True,
transposed=True,
lr=None,
mode="diag",
measure="diag-inv",
disc="zoh",
real_type="exp",
)
else:
self.s4_layer = S4(
model_size,
dropout=self.s4_dropout,
bidirectional=True,
transposed=True,
lr=None,
)
self.norm = nn.LayerNorm(model_size)
self.dropout = nn.Dropout1d(dropout)
# self.dropout = nn.Dropout(dropout)
self.prenorm = prenorm
def forward(self, x):
"""
Input x is list of tensors with shape (B, L, d_input)
Returns tensor of same size.
"""
x = x.transpose(-1, -2) # (B, L, d_model) -> (B, d_model, L)
z = x
if self.prenorm: # Prenorm
z = self.norm(z.transpose(-1, -2)).transpose(-1, -2)
# Apply S4 block: we ignore the state input and output
z, _ = self.s4_layer(z)
# Dropout on the output of the S4 block
z = self.dropout(z)
# Residual connection
x = z + x
if not self.prenorm:
# Postnorm
x = self.norm(x.transpose(-1, -2)).transpose(-1, -2)
x = x.transpose(-1, -2)
return x
class S4Model(nn.Module):
def __init__(self, num_features, num_outs, num_aux_outs=None):
super().__init__()
self.prenorm = False
self.diagonal = False
# Linear encoder
self.encoder = nn.Sequential(
nn.Linear(8, MODEL_SIZE), nn.Softsign(), nn.Linear(8, MODEL_SIZE)
)
# Stack S4 layers as residual blocks
self.s4_layers = nn.ModuleList()
self.norms = nn.ModuleList()
self.dropouts = nn.ModuleList()
self.linears = nn.ModuleList()
for i in range(NUM_LAYERS):
if i > 2:
s4_dropout = DROPOUT
# # channels = 2
# else:
s4_dropout = 0
# # channels = 3
s4_dropout = DROPOUT
dropout = DROPOUT
self.s4_layers.append(S4Layer(MODEL_SIZE, dropout, s4_dropout=s4_dropout))
self.w_out = nn.Linear(MODEL_SIZE, num_outs)
self.has_aux_out = num_aux_outs is not None
if self.has_aux_out:
self.w_aux = nn.Linear(MODEL_SIZE, num_aux_outs)
def forward(self, x_raw):
# x shape is (batch, time, electrode)
if self.training:
r = random.randrange(8)
if r > 0:
x_raw[:, :-r, :] = x_raw[:, r:, :] # shift left r
x_raw[:, -r:, :] = 0
x = self.encoder(x_raw)
for i, layer in enumerate(self.s4_layers):
x = layer(x)
# if i == 2 or i == 4 or i == 6:
# x = x[:, ::2, :] # 8x downsampling
if i <= 2:
x = x[:, ::2, :]
if self.has_aux_out:
return self.w_out(x), self.w_aux(x)
else:
return self.w_out(x)
sys.path.append("/home/users/ghwilson/repos/safari/src/models/sequence/")
sys.path.append("/home/users/ghwilson/repos/safari/")
try:
from h3 import H3
except:
print("Could not import H3")
class H3Model(nn.Module):
def __init__(self, num_features, num_outs, num_aux_outs=None):
super().__init__()
self.prenorm = False
# Linear encoder
self.encoder = nn.Linear(8, MODEL_SIZE)
# Stack S4 layers as residual blocks
self.h3_layers = nn.ModuleList()
self.norms = nn.ModuleList()
self.dropouts = nn.ModuleList()
self.linears = nn.ModuleList()
for i in range(NUM_LAYERS):
self.h3_layers.append(H3(d_model=MODEL_SIZE, dropout=DROPOUT, lr=None))
self.norms.append(nn.LayerNorm(MODEL_SIZE))
self.dropouts.append(nn.Dropout1d(DROPOUT))
self.w_out = nn.Linear(MODEL_SIZE, num_outs)
self.has_aux_out = num_aux_outs is not None
if self.has_aux_out:
self.w_aux = nn.Linear(MODEL_SIZE, num_aux_outs)
def forward(self, x_raw):
# x shape is (batch, time, electrode)
if self.training:
r = random.randrange(8)
if r > 0:
x_raw[:, :-r, :] = x_raw[:, r:, :] # shift left r
x_raw[:, -r:, :] = 0
x = self.encoder(x_raw)
# x = x.transpose(-1, -2) # (B, L, d_model) -> (B, d_model, L)