-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathdataView.py
98 lines (78 loc) · 3.85 KB
/
dataView.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# @Time : 2020/8/25
# @Author : LeronQ
# @github : https://github.com/LeronQ
import numpy as np
import matplotlib.pyplot as plt
def get_flow(file_name): # 将读取文件写成一个函数
flow_data = np.load(file_name) # 载入交通流量数据
print([key for key in flow_data.keys()]) # 打印看看key是什么
print('before flow_data',flow_data["data"].shape) # (16992, 307, 3),16992是时间(59*24*12),307是节点数,3表示每一维特征的维度(类似于二维的列)
# flow_data = flow_data['data'] # [T, N, D],T为时间,N为节点数,D为节点特征
# print('Before flow_data',flow_data.shape)
flow_data = flow_data['data'].transpose([1, 0, 2])[:,:,0][:,:,np.newaxis]
return flow_data
def pre_process_data(data, norm_dim): # 预处理,归一化
"""
:param data: np.array,原始的交通流量数据
:param norm_dim: int,归一化的维度,就是说在哪个维度上归一化,这里是在dim=1时间维度上
:return:
norm_base: list, [max_data, min_data], 这个是归一化的基.
norm_data: np.array, normalized traffic data.
"""
norm_base = normalize_base(data, norm_dim) # 计算 normalize base
norm_data = normalize_data(norm_base[0], norm_base[1], data) # 归一化后的流量数据
return norm_base, norm_data # 返回基是为了恢复数据做准备的
def normalize_base(data, norm_dim):#计算归一化的基
"""
:param data: np.array, 原始的交通流量数据
:param norm_dim: int, normalization dimension.归一化的维度,就是说在哪个维度上归一化,这里是在dim=1时间维度上
:return:
max_data: np.array
min_data: np.array
"""
max_data = np.max(data, norm_dim, keepdims=True) # [N, T, D] , norm_dim=1, [N, 1, D], keepdims=True就保持了纬度一致
min_data = np.min(data, norm_dim, keepdims=True)
return max_data, min_data # 返回最大值和最小值
def normalize_data(max_data, min_data, data):#计算归一化的流量数据,用的是最大值最小值归一化法
"""
:param max_data: np.array, max data.
:param min_data: np.array, min data.
:param data: np.array, original traffic data without normalization.
:return:
np.array, normalized traffic data.
"""
mid = min_data
base = max_data - min_data
normalized_data = (data - mid) / base
return normalized_data
def slice_data(data, history_length, index, train_mode): #根据历史长度,下标来划分数据样本
"""
:param data: np.array, normalized traffic data.
:param history_length: int, length of history data to be used.
:param index: int, index on temporal axis.
:param train_mode: str, ["train", "test"].
:return:
data_x: np.array, [N, H, D].
data_y: np.array [N, D].
"""
if train_mode == "train":
start_index = index #开始下标就是时间下标本身,这个是闭区间
end_index = index + history_length #结束下标,这个是开区间
elif train_mode == "test":
start_index = index - history_length # 开始下标,这个最后面贴图了,可以帮助理解
end_index = index # 结束下标
else:
raise ValueError("train model {} is not defined".format(train_mode))
print('data',data.shape)
data_x = data[:, start_index: end_index] # 在切第二维,不包括end_index
data_y = data[:, end_index] # 把上面的end_index取上
return data_x, data_y
# 做工程、项目等第一步对拿来的数据进行可视化的直观分析
if __name__ == "__main__":
traffic_data = get_flow("PeMS_04/PeMS04.npz")
norm_base, norm_data = pre_process_data(traffic_data,1)
data_x, data_y = slice_data(norm_data,5,100,'train')
# print('norm_data',norm_data.shape)
# print('data_x',data_x.shape)
# print('data_y',data_y.shape)
# print(norm_data)