forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sites-cohomology.tex
14341 lines (13100 loc) · 518 KB
/
sites-cohomology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Cohomology on Sites}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this document we work out some topics on cohomology of sheaves.
We work out what happens for sheaves on sites,
although often we will simply duplicate the discussion,
the constructions, and the proofs from the topological
case in the case.
Basic references are \cite{SGA4}, \cite{Godement} and \cite{Iversen}.
\section{Cohomology of sheaves}
\label{section-cohomology-sheaves}
\noindent
Let $\mathcal{C}$ be a site, see
Sites, Definition \ref{sites-definition-site}.
Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$.
We know that the category of abelian sheaves on $\mathcal{C}$
has enough injectives, see
Injectives, Theorem \ref{injectives-theorem-sheaves-injectives}.
Hence we can choose an injective resolution
$\mathcal{F}[0] \to \mathcal{I}^\bullet$.
For any object $U$ of the site $\mathcal{C}$ we define
\begin{equation}
\label{equation-cohomology-object-site}
H^i(U, \mathcal{F}) = H^i(\Gamma(U, \mathcal{I}^\bullet))
\end{equation}
to be the {\it $i$th cohomology group of the abelian sheaf
$\mathcal{F}$ over the object $U$}. In other words, these are the
right derived functors of the functor $\mathcal{F} \mapsto \mathcal{F}(U)$.
The family of functors $H^i(U, -)$ forms a universal $\delta$-functor
$\textit{Ab}(\mathcal{C}) \to \textit{Ab}$.
\medskip\noindent
It sometimes happens that
the site $\mathcal{C}$ does not have a final object. In this
case we define the {\it global sections} of a presheaf
of sets $\mathcal{F}$ over $\mathcal{C}$ to be the set
\begin{equation}
\label{equation-global-sections}
\Gamma(\mathcal{C}, \mathcal{F}) =
\Mor_{\textit{PSh}(\mathcal{C})}(e, \mathcal{F})
\end{equation}
where $e$ is a final object in the category of presheaves on $\mathcal{C}$.
In this case, given an abelian sheaf $\mathcal{F}$ on $\mathcal{C}$,
we define the {\it $i$th cohomology group of $\mathcal{F}$ on $\mathcal{C}$}
as follows
\begin{equation}
\label{equation-cohomology}
H^i(\mathcal{C}, \mathcal{F}) = H^i(\Gamma(\mathcal{C}, \mathcal{I}^\bullet))
\end{equation}
in other words, it is the $i$th right derived functor of the
global sections functor.
The family of functors $H^i(\mathcal{C}, -)$ forms a universal $\delta$-functor
$\textit{Ab}(\mathcal{C}) \to \textit{Ab}$.
\medskip\noindent
Let $f : \Sh(\mathcal{C}) \to \Sh(\mathcal{D})$ be a morphism of topoi, see
Sites, Definition \ref{sites-definition-topos}.
With $\mathcal{F}[0] \to \mathcal{I}^\bullet$ as above
we define
\begin{equation}
\label{equation-higher-direct-image}
R^if_*\mathcal{F} = H^i(f_*\mathcal{I}^\bullet)
\end{equation}
to be the {\it $i$th higher direct image of $\mathcal{F}$}.
These are the right derived functors of $f_*$.
The family of functors $R^if_*$ forms a universal $\delta$-functor
from $\textit{Ab}(\mathcal{C}) \to \textit{Ab}(\mathcal{D})$.
\medskip\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site, see
Modules on Sites, Definition \ref{sites-modules-definition-ringed-site}.
Let $\mathcal{F}$ be an $\mathcal{O}$-module.
We know that the category of $\mathcal{O}$-modules
has enough injectives, see
Injectives, Theorem \ref{injectives-theorem-sheaves-modules-injectives}.
Hence we can choose an injective resolution
$\mathcal{F}[0] \to \mathcal{I}^\bullet$.
For any object $U$ of the site $\mathcal{C}$ we define
\begin{equation}
\label{equation-cohomology-object-site-modules}
H^i(U, \mathcal{F}) = H^i(\Gamma(U, \mathcal{I}^\bullet))
\end{equation}
to be the {\it the $i$th cohomology group of $\mathcal{F}$ over $U$}.
The family of functors $H^i(U, -)$ forms a universal $\delta$-functor
$\textit{Mod}(\mathcal{O}) \to \text{Mod}_{\mathcal{O}(U)}$. Similarly
\begin{equation}
\label{equation-cohomology-modules}
H^i(\mathcal{C}, \mathcal{F}) = H^i(\Gamma(\mathcal{C}, \mathcal{I}^\bullet))
\end{equation}
it the {\it $i$th cohomology group of $\mathcal{F}$ on $\mathcal{C}$}.
The family of functors $H^i(\mathcal{C}, -)$ forms a universal
$\delta$-functor
$\textit{Mod}(\mathcal{C}) \to \text{Mod}_{\Gamma(\mathcal{C}, \mathcal{O})}$.
\medskip\noindent
Let $f : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$
be a morphism of ringed topoi, see
Modules on Sites, Definition \ref{sites-modules-definition-ringed-topos}.
With $\mathcal{F}[0] \to \mathcal{I}^\bullet$ as above
we define
\begin{equation}
\label{equation-higher-direct-image-modules}
R^if_*\mathcal{F} = H^i(f_*\mathcal{I}^\bullet)
\end{equation}
to be the {\it $i$th higher direct image of $\mathcal{F}$}.
These are the right derived functors of $f_*$.
The family of functors $R^if_*$ forms a universal $\delta$-functor
from $\textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}')$.
\section{Derived functors}
\label{section-derived-functors}
\noindent
We briefly explain an approach to right derived functors using resolution
functors. Namely, suppose that $(\mathcal{C}, \mathcal{O})$ is a ringed site.
In this chapter we will write
$$
K(\mathcal{O}) = K(\textit{Mod}(\mathcal{O}))
\quad
\text{and}
\quad
D(\mathcal{O}) = D(\textit{Mod}(\mathcal{O}))
$$
and similarly for the bounded versions for the triangulated categories
introduced in
Derived Categories, Definition \ref{derived-definition-complexes-notation} and
Definition \ref{derived-definition-unbounded-derived-category}.
By
Derived Categories, Remark \ref{derived-remark-big-abelian-category}
there exists a resolution functor
$$
j = j_{(\mathcal{C}, \mathcal{O})} :
K^{+}(\textit{Mod}(\mathcal{O}))
\longrightarrow
K^{+}(\mathcal{I})
$$
where $\mathcal{I}$ is the strictly full additive subcategory of
$\textit{Mod}(\mathcal{O})$ which consists of injective $\mathcal{O}$-modules.
For any left exact functor $F : \textit{Mod}(\mathcal{O}) \to \mathcal{B}$
into any abelian category $\mathcal{B}$ we will denote $RF$ the
right derived functor of
Derived Categories, Section \ref{derived-section-right-derived-functor}
constructed using the resolution functor $j$ just described:
\begin{equation}
\label{equation-RF}
RF = F \circ j' : D^{+}(\mathcal{O}) \longrightarrow D^{+}(\mathcal{B})
\end{equation}
see
Derived Categories, Lemma \ref{derived-lemma-right-derived-functor}
for notation. Note that we may think of $RF$ as defined on
$\textit{Mod}(\mathcal{O})$, $\text{Comp}^{+}(\textit{Mod}(\mathcal{O}))$, or
$K^{+}(\mathcal{O})$ depending on the situation. According to
Derived Categories, Definition \ref{derived-definition-higher-derived-functors}
we obtain the $i$the right derived functor
\begin{equation}
\label{equation-RFi}
R^iF = H^i \circ RF : \textit{Mod}(\mathcal{O}) \longrightarrow \mathcal{B}
\end{equation}
so that $R^0F = F$ and $\{R^iF, \delta\}_{i \geq 0}$ is universal
$\delta$-functor, see
Derived Categories, Lemma \ref{derived-lemma-higher-derived-functors}.
\medskip\noindent
Here are two special cases of this construction. Given a ring $R$ we write
$K(R) = K(\text{Mod}_R)$ and $D(R) = D(\text{Mod}_R)$ and similarly for the
bounded versions. For any object $U$ of $\mathcal{C}$ have a left exact functor
$
\Gamma(U, -) :
\textit{Mod}(\mathcal{O})
\longrightarrow
\text{Mod}_{\mathcal{O}(U)}
$
which gives rise to
$$
R\Gamma(U, -) :
D^{+}(\mathcal{O})
\longrightarrow
D^{+}(\mathcal{O}(U))
$$
by the discussion above. Note that $H^i(U, -) = R^i\Gamma(U, -)$
is compatible with (\ref{equation-cohomology-object-site-modules}) above.
We similarly have
$$
R\Gamma(\mathcal{C}, -) :
D^{+}(\mathcal{O})
\longrightarrow
D^{+}(\Gamma(\mathcal{C}, \mathcal{O}))
$$
compatible with (\ref{equation-cohomology-modules}). If
$f : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$
is a morphism of ringed topoi then we get a left exact functor
$f_* : \textit{Mod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}')$
which gives rise to {\it derived pushforward}
$$
Rf_* : D^{+}(\mathcal{O}) \to D^+(\mathcal{O}')
$$
The $i$th cohomology sheaf of $Rf_*\mathcal{F}^\bullet$ is denoted
$R^if_*\mathcal{F}^\bullet$ and called the $i$th {\it higher direct image}
in accordance with (\ref{equation-higher-direct-image-modules}).
The displayed functors above are exact functor
of derived categories.
\section{First cohomology and torsors}
\label{section-h1-torsors}
\begin{definition}
\label{definition-torsor}
Let $\mathcal{C}$ be a site.
Let $\mathcal{G}$ be a sheaf of (possibly non-commutative)
groups on $\mathcal{C}$.
A {\it pseudo torsor}, or more precisely a
{\it pseudo $\mathcal{G}$-torsor}, is a sheaf
of sets $\mathcal{F}$ on $\mathcal{C}$ endowed with an action
$\mathcal{G} \times \mathcal{F} \to \mathcal{F}$ such that
\begin{enumerate}
\item whenever $\mathcal{F}(U)$ is nonempty the action
$\mathcal{G}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$
is simply transitive.
\end{enumerate}
A {\it morphism of pseudo $\mathcal{G}$-torsors}
$\mathcal{F} \to \mathcal{F}'$
is simply a morphism of sheaves of sets compatible with the
$\mathcal{G}$-actions.
A {\it torsor}, or more precisely a
{\it $\mathcal{G}$-torsor}, is a pseudo $\mathcal{G}$-torsor such that
in addition
\begin{enumerate}
\item[(2)] for every $U \in \Ob(\mathcal{C})$
there exists a covering $\{U_i \to U\}_{i \in I}$ of $U$
such that $\mathcal{F}(U_i)$ is nonempty for all $i \in I$.
\end{enumerate}
A {\it morphism of $\mathcal{G}$-torsors} is simply a morphism of
pseudo $\mathcal{G}$-torsors.
The {\it trivial $\mathcal{G}$-torsor}
is the sheaf $\mathcal{G}$ endowed with the obvious left
$\mathcal{G}$-action.
\end{definition}
\noindent
It is clear that a morphism of torsors is automatically an isomorphism.
\begin{lemma}
\label{lemma-trivial-torsor}
Let $\mathcal{C}$ be a site.
Let $\mathcal{G}$ be a sheaf of (possibly non-commutative)
groups on $\mathcal{C}$.
A $\mathcal{G}$-torsor $\mathcal{F}$ is trivial if and only if
$\Gamma(\mathcal{C}, \mathcal{F}) \not = \emptyset$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-torsors-h1}
Let $\mathcal{C}$ be a site.
Let $\mathcal{H}$ be an abelian sheaf on $\mathcal{C}$.
There is a canonical bijection between the set of isomorphism
classes of $\mathcal{H}$-torsors and $H^1(\mathcal{C}, \mathcal{H})$.
\end{lemma}
\begin{proof}
Let $\mathcal{F}$ be a $\mathcal{H}$-torsor.
Consider the free abelian sheaf $\mathbf{Z}[\mathcal{F}]$
on $\mathcal{F}$. It is the sheafification of the rule
which associates to $U \in \Ob(\mathcal{C})$ the collection of finite
formal sums $\sum n_i[s_i]$ with $n_i \in \mathbf{Z}$
and $s_i \in \mathcal{F}(U)$. There is a natural map
$$
\sigma : \mathbf{Z}[\mathcal{F}] \longrightarrow \underline{\mathbf{Z}}
$$
which to a local section $\sum n_i[s_i]$ associates $\sum n_i$.
The kernel of $\sigma$ is generated by sections of the form
$[s] - [s']$. There is a canonical map
$a : \Ker(\sigma) \to \mathcal{H}$
which maps $[s] - [s'] \mapsto h$ where $h$ is the local section of
$\mathcal{H}$ such that $h \cdot s = s'$. Consider the pushout diagram
$$
\xymatrix{
0 \ar[r] &
\Ker(\sigma) \ar[r] \ar[d]^a &
\mathbf{Z}[\mathcal{F}] \ar[r] \ar[d] &
\underline{\mathbf{Z}} \ar[r] \ar[d] &
0 \\
0 \ar[r] &
\mathcal{H} \ar[r] &
\mathcal{E} \ar[r] &
\underline{\mathbf{Z}} \ar[r] &
0
}
$$
Here $\mathcal{E}$ is the extension obtained by pushout.
From the long exact cohomology sequence associated to the lower
short exact sequence we obtain an element
$\xi = \xi_\mathcal{F} \in H^1(\mathcal{C}, \mathcal{H})$
by applying the boundary operator to
$1 \in H^0(\mathcal{C}, \underline{\mathbf{Z}})$.
\medskip\noindent
Conversely, given $\xi \in H^1(\mathcal{C}, \mathcal{H})$ we can associate to
$\xi$ a torsor as follows. Choose an embedding $\mathcal{H} \to \mathcal{I}$
of $\mathcal{H}$ into an injective abelian sheaf $\mathcal{I}$. We set
$\mathcal{Q} = \mathcal{I}/\mathcal{H}$ so that we have a short exact
sequence
$$
\xymatrix{
0 \ar[r] &
\mathcal{H} \ar[r] &
\mathcal{I} \ar[r] &
\mathcal{Q} \ar[r] &
0
}
$$
The element $\xi$ is the image of a global section
$q \in H^0(\mathcal{C}, \mathcal{Q})$
because $H^1(\mathcal{C}, \mathcal{I}) = 0$ (see
Derived Categories, Lemma \ref{derived-lemma-higher-derived-functors}).
Let $\mathcal{F} \subset \mathcal{I}$ be the subsheaf (of sets) of sections
that map to $q$ in the sheaf $\mathcal{Q}$. It is easy to verify that
$\mathcal{F}$ is a $\mathcal{H}$-torsor.
\medskip\noindent
We omit the verification that the two constructions given
above are mutually inverse.
\end{proof}
\section{First cohomology and extensions}
\label{section-h1-extensions}
\begin{lemma}
\label{lemma-h1-extensions}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules on $\mathcal{C}$.
There is a canonical bijection
$$
\Ext^1_{\textit{Mod}(\mathcal{O})}(\mathcal{O}, \mathcal{F})
\longrightarrow
H^1(\mathcal{C}, \mathcal{F})
$$
which associates to the extension
$$
0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{O} \to 0
$$
the image of $1 \in \Gamma(\mathcal{C}, \mathcal{O})$ in
$H^1(\mathcal{C}, \mathcal{F})$.
\end{lemma}
\begin{proof}
Let us construct the inverse of the map given in the lemma.
Let $\xi \in H^1(\mathcal{C}, \mathcal{F})$.
Choose an injection $\mathcal{F} \subset \mathcal{I}$ with
$\mathcal{I}$ injective in $\textit{Mod}(\mathcal{O})$.
Set $\mathcal{Q} = \mathcal{I}/\mathcal{F}$.
By the long exact sequence of cohomology, we see that
$\xi$ is the image of a section
$\tilde \xi \in \Gamma(\mathcal{C}, \mathcal{Q}) =
\Hom_\mathcal{O}(\mathcal{O}, \mathcal{Q})$.
Now, we just form the pullback
$$
\xymatrix{
0 \ar[r] &
\mathcal{F} \ar[r] \ar@{=}[d] &
\mathcal{E} \ar[r] \ar[d] &
\mathcal{O} \ar[r] \ar[d]^{\tilde \xi} &
0 \\
0 \ar[r] &
\mathcal{F} \ar[r] &
\mathcal{I} \ar[r] &
\mathcal{Q} \ar[r] &
0
}
$$
see Homology, Section \ref{homology-section-extensions}.
\end{proof}
\noindent
The following lemma will be superseded by the more general
Lemma \ref{lemma-cohomology-modules-abelian-agree}.
\begin{lemma}
\label{lemma-h1-mod-ab-agree}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules on $\mathcal{C}$.
Let $\mathcal{F}_{ab}$ denote the underlying sheaf of abelian
groups. Then there is a functorial isomorphism
$$
H^1(\mathcal{C}, \mathcal{F}_{ab})
=
H^1(\mathcal{C}, \mathcal{F})
$$
where the left hand side is cohomology computed in
$\textit{Ab}(\mathcal{C})$ and the right hand side
is cohomology computed in $\textit{Mod}(\mathcal{O})$.
\end{lemma}
\begin{proof}
Let $\underline{\mathbf{Z}}$ denote the constant sheaf
$\mathbf{Z}$. As
$\textit{Ab}(\mathcal{C}) = \textit{Mod}(\underline{\mathbf{Z}})$
we may apply
Lemma \ref{lemma-h1-extensions}
twice, and it follows that we have to show
$$
\Ext^1_{\textit{Mod}(\mathcal{O})}(\mathcal{O}, \mathcal{F})
=
\Ext^1_{\textit{Mod}(\underline{\mathbf{Z}})}(
\underline{\mathbf{Z}}, \mathcal{F}_{ab}).
$$
Suppose that $0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{O} \to 0$
is an extension in $\textit{Mod}(\mathcal{O})$. Then we can use
the obvious map of abelian sheaves
$1 : \underline{\mathbf{Z}} \to \mathcal{O}$
and pullback to obtain an extension $\mathcal{E}_{ab}$, like so:
$$
\xymatrix{
0 \ar[r] &
\mathcal{F}_{ab} \ar[r] \ar@{=}[d] &
\mathcal{E}_{ab} \ar[r] \ar[d] &
\underline{\mathbf{Z}} \ar[r] \ar[d]^{1} &
0 \\
0 \ar[r] &
\mathcal{F} \ar[r] &
\mathcal{E} \ar[r] &
\mathcal{O} \ar[r] &
0
}
$$
The converse is a little more fun. Suppose that
$0 \to \mathcal{F}_{ab} \to \mathcal{E}_{ab} \to \underline{\mathbf{Z}} \to 0$
is an extension in $\textit{Mod}(\underline{\mathbf{Z}})$.
Since $\underline{\mathbf{Z}}$ is a flat $\underline{\mathbf{Z}}$-module
we see that the sequence
$$
0 \to \mathcal{F}_{ab} \otimes_{\underline{\mathbf{Z}}} \mathcal{O}
\to \mathcal{E}_{ab} \otimes_{\underline{\mathbf{Z}}} \mathcal{O}
\to \underline{\mathbf{Z}} \otimes_{\underline{\mathbf{Z}}} \mathcal{O}
\to 0
$$
is exact, see
Modules on Sites, Lemma \ref{sites-modules-lemma-flat-tor-zero}.
Of course
$\underline{\mathbf{Z}} \otimes_{\underline{\mathbf{Z}}} \mathcal{O}
= \mathcal{O}$.
Hence we can form the pushout via the ($\mathcal{O}$-linear) multiplication map
$\mu : \mathcal{F} \otimes_{\underline{\mathbf{Z}}} \mathcal{O}
\to \mathcal{F}$ to get an extension of $\mathcal{O}$ by
$\mathcal{F}$, like this
$$
\xymatrix{
0 \ar[r] &
\mathcal{F}_{ab} \otimes_{\underline{\mathbf{Z}}} \mathcal{O}
\ar[r] \ar[d]^\mu &
\mathcal{E}_{ab} \otimes_{\underline{\mathbf{Z}}} \mathcal{O}
\ar[r] \ar[d] &
\mathcal{O} \ar[r] \ar@{=}[d] &
0 \\
0 \ar[r] &
\mathcal{F} \ar[r] &
\mathcal{E} \ar[r] &
\mathcal{O} \ar[r] &
0
}
$$
which is the desired extension. We omit the verification that these
constructions are mutually inverse.
\end{proof}
\section{First cohomology and invertible sheaves}
\label{section-invertible-sheaves}
\noindent
The Picard group of a ringed site is defined in
Modules on Sites, Section \ref{sites-modules-section-invertible}.
\begin{lemma}
\label{lemma-h1-invertible}
Let $(\mathcal{C}, \mathcal{O})$ be a locally ringed site.
There is a canonical isomorphism
$$
H^1(\mathcal{C}, \mathcal{O}^*) = \Pic(\mathcal{O}).
$$
of abelian groups.
\end{lemma}
\begin{proof}
Let $\mathcal{L}$ be an invertible $\mathcal{O}$-module.
Consider the presheaf $\mathcal{L}^*$ defined by the rule
$$
U \longmapsto \{s \in \mathcal{L}(U)
\text{ such that } \mathcal{O}_U \xrightarrow{s \cdot -} \mathcal{L}_U
\text{ is an isomorphism}\}
$$
This presheaf satisfies the sheaf condition. Moreover, if
$f \in \mathcal{O}^*(U)$ and $s \in \mathcal{L}^*(U)$, then clearly
$fs \in \mathcal{L}^*(U)$. By the same token, if $s, s' \in \mathcal{L}^*(U)$
then there exists a unique $f \in \mathcal{O}^*(U)$ such that
$fs = s'$. Moreover, the sheaf $\mathcal{L}^*$ has sections locally
by Modules on Sites, Lemma
\ref{sites-modules-lemma-invertible-is-locally-free-rank-1}.
In other words we
see that $\mathcal{L}^*$ is a $\mathcal{O}^*$-torsor. Thus we get
a map
$$
\begin{matrix}
\text{set of invertible sheaves on }(\mathcal{C}, \mathcal{O}) \\
\text{ up to isomorphism}
\end{matrix}
\longrightarrow
\begin{matrix}
\text{set of }\mathcal{O}^*\text{-torsors} \\
\text{ up to isomorphism}
\end{matrix}
$$
We omit the verification that this is a homomorphism of abelian groups.
By
Lemma \ref{lemma-torsors-h1}
the right hand side is canonically
bijective to $H^1(\mathcal{C}, \mathcal{O}^*)$.
Thus we have to show this map is injective and surjective.
\medskip\noindent
Injective. If the torsor $\mathcal{L}^*$ is trivial, this means by
Lemma \ref{lemma-trivial-torsor}
that $\mathcal{L}^*$ has a global section.
Hence this means exactly that $\mathcal{L} \cong \mathcal{O}$ is
the neutral element in $\Pic(\mathcal{O})$.
\medskip\noindent
Surjective. Let $\mathcal{F}$ be an $\mathcal{O}^*$-torsor.
Consider the presheaf of sets
$$
\mathcal{L}_1 : U \longmapsto
(\mathcal{F}(U) \times \mathcal{O}(U))/\mathcal{O}^*(U)
$$
where the action of $f \in \mathcal{O}^*(U)$ on
$(s, g)$ is $(fs, f^{-1}g)$. Then $\mathcal{L}_1$ is a presheaf
of $\mathcal{O}$-modules by setting
$(s, g) + (s', g') = (s, g + (s'/s)g')$ where $s'/s$ is the local
section $f$ of $\mathcal{O}^*$ such that $fs = s'$, and
$h(s, g) = (s, hg)$ for $h$ a local section of $\mathcal{O}$.
We omit the verification that the sheafification
$\mathcal{L} = \mathcal{L}_1^\#$ is an invertible $\mathcal{O}$-module
whose associated $\mathcal{O}^*$-torsor $\mathcal{L}^*$ is isomorphic
to $\mathcal{F}$.
\end{proof}
\section{Locality of cohomology}
\label{section-locality}
\noindent
The following lemma says there is no ambiguity in defining the cohomology
of a sheaf $\mathcal{F}$ over an object of the site.
\begin{lemma}
\label{lemma-cohomology-of-open}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $U$ be an object of $\mathcal{C}$.
\begin{enumerate}
\item If $\mathcal{I}$ is an injective $\mathcal{O}$-module
then $\mathcal{I}|_U$ is an injective $\mathcal{O}_U$-module.
\item For any sheaf of $\mathcal{O}$-modules $\mathcal{F}$ we have
$H^p(U, \mathcal{F}) = H^p(\mathcal{C}/U, \mathcal{F}|_U)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Recall that the functor $j_U^{-1}$ of restriction to $U$ is a right adjoint
to the functor $j_{U!}$ of extension by $0$, see
Modules on Sites, Section
\ref{sites-modules-section-localize}.
Moreover, $j_{U!}$ is exact. Hence (1) follows from
Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives}.
\medskip\noindent
By definition $H^p(U, \mathcal{F}) = H^p(\mathcal{I}^\bullet(U))$
where $\mathcal{F} \to \mathcal{I}^\bullet$ is an injective resolution
in $\textit{Mod}(\mathcal{O})$.
By the above we see that $\mathcal{F}|_U \to \mathcal{I}^\bullet|_U$
is an injective resolution in $\textit{Mod}(\mathcal{O}_U)$.
Hence $H^p(U, \mathcal{F}|_U)$ is equal to
$H^p(\mathcal{I}^\bullet|_U(U))$.
Of course $\mathcal{F}(U) = \mathcal{F}|_U(U)$ for
any sheaf $\mathcal{F}$ on $\mathcal{C}$.
Hence the equality in (2).
\end{proof}
\noindent
The following lemma will be use to see what happens if we change a
partial universe, or to compare cohomology of the small and big \'etale
sites.
\begin{lemma}
\label{lemma-cohomology-bigger-site}
Let $\mathcal{C}$ and $\mathcal{D}$ be sites.
Let $u : \mathcal{C} \to \mathcal{D}$ be a functor.
Assume $u$ satisfies the hypotheses of
Sites, Lemma \ref{sites-lemma-bigger-site}.
Let $g : \Sh(\mathcal{C}) \to \Sh(\mathcal{D})$
be the associated morphism of topoi.
For any abelian sheaf $\mathcal{F}$ on $\mathcal{D}$ we have
isomorphisms
$$
R\Gamma(\mathcal{C}, g^{-1}\mathcal{F}) = R\Gamma(\mathcal{D}, \mathcal{F}),
$$
in particular
$H^p(\mathcal{C}, g^{-1}\mathcal{F}) = H^p(\mathcal{D}, \mathcal{F})$
and for any $U \in \Ob(\mathcal{C})$ we have isomorphisms
$$
R\Gamma(U, g^{-1}\mathcal{F}) = R\Gamma(u(U), \mathcal{F}),
$$
in particular
$H^p(U, g^{-1}\mathcal{F}) = H^p(u(U), \mathcal{F})$. All of these
isomorphisms are functorial in $\mathcal{F}$.
\end{lemma}
\begin{proof}
Since it is clear that
$\Gamma(\mathcal{C}, g^{-1}\mathcal{F}) = \Gamma(\mathcal{D}, \mathcal{F})$
by hypothesis (e), it suffices to show that $g^{-1}$ transforms injective
abelian sheaves into injective abelian sheaves. As usual we use
Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives}
to see this. The left adjoint to $g^{-1}$ is $g_! = f^{-1}$ with the
notation of
Sites, Lemma \ref{sites-lemma-bigger-site}
which is an exact functor. Hence the lemma does indeed apply.
\end{proof}
\noindent
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules.
Let $\varphi : U \to V$ be a morphism of $\mathcal{O}$.
Then there is a canonical {\it restriction mapping}
\begin{equation}
\label{equation-restriction-mapping}
H^n(V, \mathcal{F})
\longrightarrow
H^n(U, \mathcal{F}), \quad
\xi \longmapsto \xi|_U
\end{equation}
functorial in $\mathcal{F}$. Namely, choose any injective
resolution $\mathcal{F} \to \mathcal{I}^\bullet$. The restriction
mappings of the sheaves $\mathcal{I}^p$ give a morphism of complexes
$$
\Gamma(V, \mathcal{I}^\bullet)
\longrightarrow
\Gamma(U, \mathcal{I}^\bullet)
$$
The LHS is a complex representing $R\Gamma(V, \mathcal{F})$
and the RHS is a complex representing $R\Gamma(U, \mathcal{F})$.
We get the map on cohomology groups by applying the functor $H^n$.
As indicated we will use the notation $\xi \mapsto \xi|_U$ to denote this map.
Thus the rule $U \mapsto H^n(U, \mathcal{F})$ is a presheaf of
$\mathcal{O}$-modules. This presheaf is customarily denoted
$\underline{H}^n(\mathcal{F})$. We will give another interpretation
of this presheaf in Lemma \ref{lemma-include}.
\medskip\noindent
The following lemma says that it is possible to kill higher cohomology
classes by going to a covering.
\begin{lemma}
\label{lemma-kill-cohomology-class-on-covering}
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site.
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules.
Let $U$ be an object of $\mathcal{C}$.
Let $n > 0$ and let $\xi \in H^n(U, \mathcal{F})$.
Then there exists a covering $\{U_i \to U\}$ of $\mathcal{C}$
such that $\xi|_{U_i} = 0$ for all $i \in I$.
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{I}^\bullet$ be an injective resolution.
Then
$$
H^n(U, \mathcal{F}) =
\frac{\Ker(\mathcal{I}^n(U) \to \mathcal{I}^{n + 1}(U))}
{\Im(\mathcal{I}^{n - 1}(U) \to \mathcal{I}^n(U))}.
$$
Pick an element $\tilde \xi \in \mathcal{I}^n(U)$ representing the
cohomology class in the presentation above. Since $\mathcal{I}^\bullet$
is an injective resolution of $\mathcal{F}$ and $n > 0$ we see that
the complex $\mathcal{I}^\bullet$ is exact in degree $n$. Hence
$\Im(\mathcal{I}^{n - 1} \to \mathcal{I}^n) =
\Ker(\mathcal{I}^n \to \mathcal{I}^{n + 1})$ as sheaves.
Since $\tilde \xi$ is a section of the kernel sheaf over $U$
we conclude there exists a covering $\{U_i \to U\}$ of the site
such that $\tilde \xi|_{U_i}$ is the image under $d$ of a section
$\xi_i \in \mathcal{I}^{n - 1}(U_i)$. By our definition of the
restriction $\xi|_{U_i}$ as corresponding to the class of
$\tilde \xi|_{U_i}$ we conclude.
\end{proof}
\begin{lemma}
\label{lemma-higher-direct-images}
Let $f : (\mathcal{C}, \mathcal{O}_\mathcal{C}) \to
(\mathcal{D}, \mathcal{O}_\mathcal{D})$ be a morphism of ringed sites
corresponding to the continuous functor $u : \mathcal{D} \to \mathcal{C}$.
For any $\mathcal{F} \in \Ob(\textit{Mod}(\mathcal{O}_\mathcal{C}))$
the sheaf $R^if_*\mathcal{F}$ is the sheaf associated to the
presheaf
$$
V \longmapsto H^i(u(V), \mathcal{F})
$$
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{I}^\bullet$ be an injective resolution.
Then $R^if_*\mathcal{F}$ is by definition the $i$th cohomology sheaf
of the complex
$$
f_*\mathcal{I}^0 \to f_*\mathcal{I}^1 \to f_*\mathcal{I}^2 \to \ldots
$$
By definition of the abelian category structure on
$\mathcal{O}_\mathcal{D}$-modules
this cohomology sheaf is the sheaf associated to the presheaf
$$
V
\longmapsto
\frac{\Ker(f_*\mathcal{I}^i(V) \to f_*\mathcal{I}^{i + 1}(V))}
{\Im(f_*\mathcal{I}^{i - 1}(V) \to f_*\mathcal{I}^i(V))}
$$
and this is obviously equal to
$$
\frac{\Ker(\mathcal{I}^i(u(V)) \to \mathcal{I}^{i + 1}(u(V)))}
{\Im(\mathcal{I}^{i - 1}(u(V)) \to \mathcal{I}^i(u(V)))}
$$
which is equal to $H^i(u(V), \mathcal{F})$
and we win.
\end{proof}
\section{The {\v C}ech complex and {\v C}ech cohomology}
\label{section-cech}
\noindent
Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$
be a family of morphisms with fixed target, see
Sites, Definition \ref{sites-definition-family-morphisms-fixed-target}.
Assume that all fibre products $U_{i_0} \times_U \ldots \times_U U_{i_p}$
exist in $\mathcal{C}$. Let $\mathcal{F}$ be an abelian presheaf on
$\mathcal{C}$. Set
$$
\check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F})
=
\prod\nolimits_{(i_0, \ldots, i_p) \in I^{p + 1}}
\mathcal{F}(U_{i_0} \times_U \ldots \times_U U_{i_p}).
$$
This is an abelian group. For
$s \in \check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F})$ we denote
$s_{i_0\ldots i_p}$ its value in the factor
$\mathcal{F}(U_{i_0} \times_U \ldots \times_U U_{i_p})$.
We define
$$
d : \check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F})
\longrightarrow
\check{\mathcal{C}}^{p + 1}(\mathcal{U}, \mathcal{F})
$$
by the formula
\begin{equation}
\label{equation-d-cech}
d(s)_{i_0\ldots i_{p + 1}} =
\sum\nolimits_{j = 0}^{p + 1}
(-1)^j s_{i_0\ldots \hat i_j \ldots i_{p + 1}}
|_{U_{i_0} \times_U \ldots \times_U U_{i_{p + 1}}}
\end{equation}
where the restriction is via the projection map
$$
U_{i_0} \times_U \ldots \times_U U_{i_{p + 1}} \longrightarrow
U_{i_0} \times_U \ldots \times_U \widehat{U_{i_j}} \times_U
\ldots \times_U U_{i_{p + 1}}.
$$
It is straightforward to see that $d \circ d = 0$. In other words
$\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})$ is a complex.
\begin{definition}
\label{definition-cech-complex}
Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$
be a family of morphisms with fixed target such that all fibre products
$U_{i_0} \times_U \ldots \times_U U_{i_p}$ exist in $\mathcal{C}$.
Let $\mathcal{F}$ be an abelian presheaf on $\mathcal{C}$.
The complex $\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})$
is the {\it {\v C}ech complex} associated to $\mathcal{F}$ and the
family $\mathcal{U}$. Its cohomology groups
$H^i(\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}))$ are
called the {\it {\v C}ech cohomology groups} of $\mathcal{F}$ with respect
to $\mathcal{U}$. They are denoted $\check H^i(\mathcal{U}, \mathcal{F})$.
\end{definition}
\noindent
We observe that any covering $\{U_i \to U\}$ of a site $\mathcal{C}$
is a family of morphisms with fixed target to which the definition applies.
\begin{lemma}
\label{lemma-cech-h0}
Let $\mathcal{C}$ be a site.
Let $\mathcal{F}$ be an abelian presheaf on $\mathcal{C}$.
The following are equivalent
\begin{enumerate}
\item $\mathcal{F}$ is an abelian sheaf on $\mathcal{C}$ and
\item for every covering $\mathcal{U} = \{U_i \to U\}_{i \in I}$
of the site $\mathcal{C}$ the natural map
$$
\mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F})
$$
(see Sites, Section \ref{sites-section-sheafification}) is bijective.
\end{enumerate}
\end{lemma}
\begin{proof}
This is true since the sheaf condition is exactly that
$\mathcal{F}(U) \to \check{H}^0(\mathcal{U}, \mathcal{F})$
is bijective for every covering of $\mathcal{C}$.
\end{proof}
\noindent
Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{U_i \to U\}_{i\in I}$
be a family of morphisms of $\mathcal{C}$ with fixed target such that
all fibre products $U_{i_0} \times_U \ldots \times_U U_{i_p}$ exist in
$\mathcal{C}$. Let $\mathcal{V} = \{V_j \to V\}_{j\in J}$ be another.
Let $f : U \to V$, $\alpha : I \to J$ and $f_i : U_i \to V_{\alpha(i)}$
be a morphism of families of morphisms with fixed target, see
Sites, Section \ref{sites-section-refinements}.
In this case we get a map of {\v C}ech complexes
\begin{equation}
\label{equation-map-cech-complexes}
\varphi : \check{\mathcal{C}}^\bullet(\mathcal{V}, \mathcal{F})
\longrightarrow
\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})
\end{equation}
which in degree $p$ is given by
$$
\varphi(s)_{i_0 \ldots i_p} =
(f_{i_0} \times \ldots \times f_{i_p})^*s_{\alpha(i_0) \ldots \alpha(i_p)}
$$
\section{{\v C}ech cohomology as a functor on presheaves}
\label{section-cech-functor}
\noindent
Warning: In this section we work exclusively with abelian presheaves
on a category. The results are completely wrong in the
setting of sheaves and categories of sheaves!
\medskip\noindent
Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$
be a family of morphisms with fixed target such that all fibre products
$U_{i_0} \times_U \ldots \times_U U_{i_p}$ exist in $\mathcal{C}$.
Let $\mathcal{F}$ be an abelian presheaf on $\mathcal{C}$.
The construction
$$
\mathcal{F} \longmapsto \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})
$$
is functorial in $\mathcal{F}$. In fact, it is a functor
\begin{equation}
\label{equation-cech-functor}
\check{\mathcal{C}}^\bullet(\mathcal{U}, -) :
\textit{PAb}(\mathcal{C})
\longrightarrow
\text{Comp}^{+}(\textit{Ab})
\end{equation}
see
Derived Categories, Definition \ref{derived-definition-complexes-notation}
for notation. Recall that the category of bounded below complexes
in an abelian category is an abelian category, see
Homology, Lemma \ref{homology-lemma-cat-cochain-abelian}.
\begin{lemma}
\label{lemma-cech-exact-presheaves}
The functor given by Equation (\ref{equation-cech-functor})
is an exact functor (see Homology, Lemma \ref{homology-lemma-exact-functor}).
\end{lemma}
\begin{proof}
For any object $W$ of $\mathcal{C}$ the functor
$\mathcal{F} \mapsto \mathcal{F}(W)$ is an additive exact functor
from $\textit{PAb}(\mathcal{C})$ to $\textit{Ab}$.
The terms $\check{\mathcal{C}}^p(\mathcal{U}, \mathcal{F})$
of the complex are products of these exact functors and hence exact.
Moreover a sequence of complexes is exact if and only if the sequence
of terms in a given degree is exact. Hence the lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-cech-cohomology-delta-functor-presheaves}
Let $\mathcal{C}$ be a category.
Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$ be a family of morphisms
with fixed target such that all fibre products
$U_{i_0} \times_U \ldots \times_U U_{i_p}$ exist in $\mathcal{C}$.
The functors $\mathcal{F} \mapsto \check{H}^n(\mathcal{U}, \mathcal{F})$
form a $\delta$-functor from the abelian category $\textit{PAb}(\mathcal{C})$
to the category of $\mathbf{Z}$-modules (see
Homology, Definition \ref{homology-definition-cohomological-delta-functor}).
\end{lemma}
\begin{proof}
By
Lemma \ref{lemma-cech-exact-presheaves}
a short exact sequence of abelian presheaves
$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$
is turned into a short exact sequence of complexes of
$\mathbf{Z}$-modules. Hence we can use
Homology, Lemma \ref{homology-lemma-long-exact-sequence-cochain}
to get the boundary maps
$\delta_{\mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3} :
\check{H}^n(\mathcal{U}, \mathcal{F}_3) \to
\check{H}^{n + 1}(\mathcal{U}, \mathcal{F}_1)$
and a corresponding long exact sequence. We omit the verification
that these maps are compatible with maps between short exact
sequences of presheaves.
\end{proof}
\begin{lemma}
\label{lemma-cech-map-into}
Let $\mathcal{C}$ be a category. Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$
be a family of morphisms with fixed target such that all fibre products
$U_{i_0} \times_U \ldots \times_U U_{i_p}$ exist in $\mathcal{C}$.
Consider the chain complex $\mathbf{Z}_{\mathcal{U}, \bullet}$
of abelian presheaves
$$
\ldots
\to
\bigoplus_{i_0i_1i_2} \mathbf{Z}_{U_{i_0} \times_U U_{i_1} \times_U U_{i_2}}
\to
\bigoplus_{i_0i_1} \mathbf{Z}_{U_{i_0} \times_U U_{i_1}}
\to
\bigoplus_{i_0} \mathbf{Z}_{U_{i_0}}
\to 0 \to \ldots
$$
where the last nonzero term is placed in degree $0$
and where the map
$$
\mathbf{Z}_{U_{i_0} \times_U \ldots \times_u U_{i_{p + 1}}}
\longrightarrow
\mathbf{Z}_{U_{i_0} \times_U
\ldots \widehat{U_{i_j}} \ldots \times_U U_{i_{p + 1}}}
$$
is given by $(-1)^j$ times the canonical map.
Then there is an isomorphism
$$
\Hom_{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{\mathcal{U}, \bullet}, \mathcal{F})
=
\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})