forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spaces-descent.tex
3675 lines (3263 loc) · 132 KB
/
spaces-descent.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Descent and Algebraic Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In the chapter on topologies on algebraic spaces (see
Topologies on Spaces, Section \ref{spaces-topologies-section-introduction})
we introduced \'etale, fppf, smooth, syntomic and fpqc coverings of
algebraic spaces.
In this chapter we discuss what kind of structures over algebraic spaces
can be descended through such coverings.
See for example \cite{Gr-I}, \cite{Gr-II}, \cite{Gr-III},
\cite{Gr-IV}, \cite{Gr-V}, and \cite{Gr-VI}.
\section{Conventions}
\label{section-conventions}
\noindent
The standing assumption is that all schemes are contained in
a big fppf site $\Sch_{fppf}$. And all rings $A$ considered
have the property that $\Spec(A)$ is (isomorphic) to an
object of this big site.
\medskip\noindent
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
In this chapter and the following we will write $X \times_S X$
for the product of $X$ with itself (in the category of algebraic
spaces over $S$), instead of $X \times X$.
\section{Descent data for quasi-coherent sheaves}
\label{section-equivalence}
\noindent
This section is the analogue of
Descent, Section \ref{descent-section-equivalence}
for algebraic spaces.
It makes sense to read that section first.
\begin{definition}
\label{definition-descent-datum-quasi-coherent}
Let $S$ be a scheme. Let $\{f_i : X_i \to X\}_{i \in I}$ be a family
of morphisms of algebraic spaces over $S$ with fixed target $X$.
\begin{enumerate}
\item A {\it descent datum $(\mathcal{F}_i, \varphi_{ij})$
for quasi-coherent sheaves} with respect to the given family
is given by a quasi-coherent sheaf $\mathcal{F}_i$ on $X_i$ for
each $i \in I$, an isomorphism of quasi-coherent
$\mathcal{O}_{X_i \times_X X_j}$-modules
$\varphi_{ij} : \text{pr}_0^*\mathcal{F}_i \to \text{pr}_1^*\mathcal{F}_j$
for each pair $(i, j) \in I^2$
such that for every triple of indices $(i, j, k) \in I^3$ the
diagram
$$
\xymatrix{
\text{pr}_0^*\mathcal{F}_i \ar[rd]_{\text{pr}_{01}^*\varphi_{ij}}
\ar[rr]_{\text{pr}_{02}^*\varphi_{ik}} & &
\text{pr}_2^*\mathcal{F}_k \\
& \text{pr}_1^*\mathcal{F}_j \ar[ru]_{\text{pr}_{12}^*\varphi_{jk}} &
}
$$
of $\mathcal{O}_{X_i \times_X X_j \times_X X_k}$-modules
commutes. This is called the {\it cocycle condition}.
\item A {\it morphism $\psi : (\mathcal{F}_i, \varphi_{ij}) \to
(\mathcal{F}'_i, \varphi'_{ij})$ of descent data} is given
by a family $\psi = (\psi_i)_{i\in I}$ of morphisms of
$\mathcal{O}_{X_i}$-modules $\psi_i : \mathcal{F}_i \to \mathcal{F}'_i$
such that all the diagrams
$$
\xymatrix{
\text{pr}_0^*\mathcal{F}_i \ar[r]_{\varphi_{ij}} \ar[d]_{\text{pr}_0^*\psi_i}
& \text{pr}_1^*\mathcal{F}_j \ar[d]^{\text{pr}_1^*\psi_j} \\
\text{pr}_0^*\mathcal{F}'_i \ar[r]^{\varphi'_{ij}} &
\text{pr}_1^*\mathcal{F}'_j \\
}
$$
commute.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-map-families}
Let $S$ be a scheme.
Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$ and
$\mathcal{V} = \{V_j \to V\}_{j \in J}$
be families of morphisms of algebraic spaces over $S$ with fixed targets.
Let $(g, \alpha : I \to J, (g_i)) : \mathcal{U} \to \mathcal{V}$
be a morphism of families of maps with fixed target, see
Sites, Definition \ref{sites-definition-morphism-coverings}.
Let $(\mathcal{F}_j, \varphi_{jj'})$ be a descent
datum for quasi-coherent sheaves with respect to the
family $\{V_j \to V\}_{j \in J}$. Then
\begin{enumerate}
\item The system
$$
\left(g_i^*\mathcal{F}_{\alpha(i)},
(g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')}\right)
$$
is a descent datum with respect to the family $\{U_i \to U\}_{i \in I}$.
\item This construction is functorial in the descent datum
$(\mathcal{F}_j, \varphi_{jj'})$.
\item Given a second morphism
$(g', \alpha' : I \to J, (g'_i))$
of families of maps with fixed target
with $g = g'$ there exists a functorial isomorphism of descent data
$$
(g_i^*\mathcal{F}_{\alpha(i)},
(g_i \times g_{i'})^*\varphi_{\alpha(i)\alpha(i')})
\cong
((g'_i)^*\mathcal{F}_{\alpha'(i)},
(g'_i \times g'_{i'})^*\varphi_{\alpha'(i)\alpha'(i')}).
$$
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. Hint: The maps
$g_i^*\mathcal{F}_{\alpha(i)} \to (g'_i)^*\mathcal{F}_{\alpha'(i)}$
which give the isomorphism of descent data in part (3)
are the pullbacks of the maps $\varphi_{\alpha(i)\alpha'(i)}$ by the
morphisms $(g_i, g'_i) : U_i \to V_{\alpha(i)} \times_V V_{\alpha'(i)}$.
\end{proof}
\noindent
Let $g : U \to V$ be a morphism of algebraic spaces.
The lemma above tells us that there is a well defined pullback functor
between the categories of descent data relative to families of
maps with target $V$ and $U$ provided there is a morphism between those
families of maps which ``lives over $g$''.
\begin{definition}
\label{definition-descent-datum-effective-quasi-coherent}
Let $S$ be a scheme.
Let $\{U_i \to U\}_{i \in I}$ be a family of morphisms of algebraic
spaces over $S$ with fixed target.
\begin{enumerate}
\item Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_U$-module.
We call the unique descent on $\mathcal{F}$ datum with respect to the covering
$\{U \to U\}$ the {\it trivial descent datum}.
\item The pullback of the trivial descent datum to
$\{U_i \to U\}$ is called the {\it canonical descent datum}.
Notation: $(\mathcal{F}|_{U_i}, can)$.
\item A descent datum $(\mathcal{F}_i, \varphi_{ij})$
for quasi-coherent sheaves with respect to the given family
is said to be {\it effective} if there exists a quasi-coherent
sheaf $\mathcal{F}$ on $U$ such that $(\mathcal{F}_i, \varphi_{ij})$
is isomorphic to $(\mathcal{F}|_{U_i}, can)$.
\end{enumerate}
\end{definition}
\begin{lemma}
\label{lemma-zariski-descent-effective}
Let $S$ be a scheme. Let $U$ be an algebraic space over $S$.
Let $\{U_i \to U\}$ be a Zariski covering of $U$, see
Topologies on Spaces,
Definition \ref{spaces-topologies-definition-zariski-covering}.
Any descent datum on quasi-coherent sheaves
for the family $\mathcal{U} = \{U_i \to U\}$ is
effective. Moreover, the functor from the category of
quasi-coherent $\mathcal{O}_U$-modules to the category
of descent data with respect to $\{U_i \to U\}$ is fully faithful.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Fpqc descent of quasi-coherent sheaves}
\label{section-fpqc-descent-quasi-coherent}
\noindent
The main application of flat descent for modules is
the corresponding descent statement for quasi-coherent
sheaves with respect to fpqc-coverings.
\begin{proposition}
\label{proposition-fpqc-descent-quasi-coherent}
Let $S$ be a scheme.
Let $\{X_i \to X\}$ be an fpqc covering of algebraic spaces over $S$, see
Topologies on Spaces,
Definition \ref{spaces-topologies-definition-fpqc-covering}.
Any descent datum on quasi-coherent sheaves
for $\{X_i \to X\}$ is effective.
Moreover, the functor from the category of
quasi-coherent $\mathcal{O}_X$-modules to the category
of descent data with respect to $\{X_i \to X\}$ is fully faithful.
\end{proposition}
\begin{proof}
This is more or less a formal consequence of
the corresponding result for schemes, see
Descent, Proposition \ref{descent-proposition-fpqc-descent-quasi-coherent}.
Here is a strategy for a proof:
\begin{enumerate}
\item The fact that $\{X_i \to X\}$ is a refinement of the trivial
covering $\{X \to X\}$ gives, via
Lemma \ref{lemma-map-families},
a functor $\QCoh(\mathcal{O}_X) \to DD(\{X_i \to X\})$ from the
category of quasi-coherent $\mathcal{O}_X$-modules to the category of
descent data for the given family.
\item In order to prove the proposition we will construct a
quasi-inverse functor
$back : DD(\{X_i \to X\}) \to \QCoh(\mathcal{O}_X)$.
\item Applying again
Lemma \ref{lemma-map-families}
we see that there is a functor
$DD(\{X_i \to X\}) \to DD(\{T_j \to X\})$
if $\{T_j \to X\}$ is a refinement of the given family.
Hence in order to construct the functor $back$ we may assume that
each $X_i$ is a scheme, see
Topologies on Spaces,
Lemma \ref{spaces-topologies-lemma-refine-fpqc-schemes}.
This reduces us to the case where all the $X_i$ are schemes.
\item A quasi-coherent sheaf on $X$ is by definition a quasi-coherent
$\mathcal{O}_X$-module on $X_\etale$. Now for any
$U \in \Ob(X_\etale)$ we get an fppf covering
$\{U_i \times_X X_i \to U\}$ by schemes and a morphism
$g : \{U_i \times_X X_i \to U\} \to \{X_i \to X\}$ of coverings
lying over $U \to X$. Given a descent datum
$\xi = (\mathcal{F}_i, \varphi_{ij})$ we obtain a quasi-coherent
$\mathcal{O}_U$-module $\mathcal{F}_{\xi, U}$ corresponding
to the pullback $g^*\xi$ of
Lemma \ref{lemma-map-families}
to the covering of $U$ and using effectivity for fppf covering of schemes, see
Descent, Proposition \ref{descent-proposition-fpqc-descent-quasi-coherent}.
\item Check that $\xi \mapsto \mathcal{F}_{\xi, U}$ is functorial in $\xi$.
Omitted.
\item Check that $\xi \mapsto \mathcal{F}_{\xi, U}$ is compatible
with morphisms $U \to U'$ of the site $X_\etale$, so that
the system of sheaves $\mathcal{F}_{\xi, U}$ corresponds to a quasi-coherent
$\mathcal{F}_\xi$ on $X_\etale$, see
Properties of Spaces,
Lemma \ref{spaces-properties-lemma-characterize-quasi-coherent-small-etale}.
Details omitted.
\item Check that $back : \xi \mapsto \mathcal{F}_\xi$ is quasi-inverse
to the functor constructed in (1). Omitted.
\end{enumerate}
This finishes the proof.
\end{proof}
\section{Quasi-coherent modules and affines}
\label{section-alternative-quasi-coherent}
\noindent
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Recall that $X_{affine, \etale}$ is the full subcategory of $X_\etale$
whose objects are affine turned into a site by declaring the coverings
to be the standard \'etale coverings. See Properties of Spaces, Definition
\ref{spaces-properties-definition-affine-etale-site}.
By Properties of Spaces, Lemma \ref{spaces-properties-lemma-alternative}
we have an equivalence of topoi
$g : \Sh(X_{affine, \etale}) \to \Sh(X_\etale)$
whose pullback functor is given by restriction.
Recall that $\mathcal{O}_X$ denotes the structure sheaf on
$X_\etale$. Then we obtain an equivalence
\begin{equation}
\label{equation-alternative-small-ringed}
(\Sh(X_{affine, \etale}), \mathcal{O}_X|_{X_{affine, \etale}})
\longrightarrow
(\Sh(X_\etale), \mathcal{O}_X)
\end{equation}
of ringed topoi. We will often write $\mathcal{O}_X$
in stead of $\mathcal{O}_X|_{X_{affine, \etale}}$.
Having said this we can compare quasi-coherent modules as well.
\begin{lemma}
\label{lemma-quasi-coherent-alternative-small}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{F}$ be a presheaf of $\mathcal{O}_X$-modules
on $X_{affine, \etale}$. The following are equivalent
\begin{enumerate}
\item for every morphism $U \to U'$ of $X_{affine, \etale}$ the map
$\mathcal{F}(U') \otimes_{\mathcal{O}_X(U')} \mathcal{O}_X(U)
\to \mathcal{F}(U)$ is an isomorphism,
\item $\mathcal{F}$ is a quasi-coherent module on the ringed site
$(X_{affine, \etale}, \mathcal{O}_X)$ in the sense of
Modules on Sites, Definition \ref{sites-modules-definition-site-local},
\item $\mathcal{F}$ corresponds to a quasi-coherent module on $X$
via the equivalence (\ref{equation-alternative-small-ringed}),
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1) holds. To show that $\mathcal{F}$ is a sheaf, let
$\mathcal{U} = \{U_i \to U\}_{i = 1, \ldots, n}$ be a covering
of $X_{affine, \etale}$. The sheaf condition for $\mathcal{F}$
and $\mathcal{U}$, by our assumption on $\mathcal{F}$,
reduces to showing that
$$
0 \to \mathcal{F}(U) \to
\prod \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(U_i) \to
\prod \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(U_i \times_U U_j)
$$
is exact. This is true because $\mathcal{O}_X(U) \to \prod \mathcal{O}_X(U_i)$
is faithfully flat
(by Descent, Lemma \ref{descent-lemma-standard-covering-Cech} and
the fact that coverings in $X_{affine, \etale}$ are standard \'etale
coverings) and we may apply Descent, Lemma \ref{descent-lemma-ff-exact}.
Next, we show that $\mathcal{F}$ is quasi-coherent on $X_{affine, \etale}$.
Namely, for $U$ in $X_{affine, \etale}$, set $R = \mathcal{O}_X(U)$
and choose a presentation
$$
\bigoplus\nolimits_{k \in K} R
\longrightarrow
\bigoplus\nolimits_{l \in L} R
\longrightarrow
\mathcal{F}(U)
\longrightarrow 0
$$
by free $R$-modules. By property (1) and the right exactness of tensor product
we see that for every morphism $U' \to U$ in $X_{affine, \etale}$
we obtain a presentation
$$
\bigoplus\nolimits_{k \in K} \mathcal{O}_X(U')
\longrightarrow
\bigoplus\nolimits_{l \in L} \mathcal{O}_X(U')
\longrightarrow
\mathcal{F}(U')
\longrightarrow 0
$$
In other words, we see that the restriction of $\mathcal{F}$
to the localized category $X_{affine, etale}/U$ has a presentation
$$
\bigoplus\nolimits_{k \in K} \mathcal{O}_X|_{X_{affine, \etale}/U}
\longrightarrow
\bigoplus\nolimits_{l \in L} \mathcal{O}_X|_{X_{affine, \etale}/U}
\longrightarrow
\mathcal{F}|_{X_{affine, \etale}/U}
\longrightarrow 0
$$
as required to show that $\mathcal{F}$ is quasi-coherent.
With apologies for the horrible notation, this finishes the proof
that (1) implies (2).
\medskip\noindent
Since the notion of a quasi-coherent module is intrinsic
(Modules on Sites, Lemma \ref{sites-modules-lemma-special-locally-free})
we see that the equivalence (\ref{equation-alternative-small-ringed})
induces an equivalence between categories of quasi-coherent modules.
Thus we have the equivalence of (2) and (3).
\medskip\noindent
Let us assume (3) and prove (1). Namely, let
$\mathcal{G}$ be a quasi-coherent module on $X$ corresponding to $\mathcal{F}$.
Let $h : U \to U' \to X$ be a morphism of $X_{affine, \etale}$.
Denote $f : U \to X$ and $f' : U' \to X$ the structure morphisms,
so that $f = f' \circ h$. We have
$\mathcal{F}(U') = \Gamma(U', (f')^*\mathcal{G})$ and
$\mathcal{F}(U) = \Gamma(U, f^*\mathcal{G}) = \Gamma(U, h^*(f')^*\mathcal{G})$.
Hence (1) holds by Schemes, Lemma \ref{schemes-lemma-widetilde-pullback}.
\end{proof}
\section{Descent of finiteness properties of modules}
\label{section-descent-finiteness}
\noindent
This section is the analogue for the case of algebraic spaces of
Descent, Section \ref{descent-section-descent-finiteness}.
The goal is to show that one can check a quasi-coherent module
has a certain finiteness conditions by checking on the members of
a covering. We will repeatedly use the following proof scheme.
Suppose that $X$ is an algebraic space, and that $\{X_i \to X\}$
is a fppf (resp.\ fpqc) covering. Let $U \to X$ be a surjective
\'etale morphism such that $U$ is a scheme. Then there exists an
fppf (resp.\ fpqc) covering $\{Y_j \to X\}$ such that
\begin{enumerate}
\item $\{Y_j \to X\}$ is a refinement of $\{X_i \to X\}$,
\item each $Y_j$ is a scheme, and
\item each morphism $Y_j \to X$ factors though $U$, and
\item $\{Y_j \to U\}$ is an fppf (resp.\ fpqc) covering of $U$.
\end{enumerate}
Namely, first refine $\{X_i \to X\}$ by an fppf (resp.\ fpqc)
covering such that each $X_i$ is a scheme, see
Topologies on Spaces, Lemma \ref{spaces-topologies-lemma-refine-fppf-schemes},
resp.\ Lemma \ref{spaces-topologies-lemma-refine-fpqc-schemes}.
Then set $Y_i = U \times_X X_i$. A quasi-coherent
$\mathcal{O}_X$-module $\mathcal{F}$ is of finite type, of
finite presentation, etc if and only if the quasi-coherent
$\mathcal{O}_U$-module $\mathcal{F}|_U$ is of finite type, of
finite presentation, etc. Hence we can use the existence of the
refinement $\{Y_j \to X\}$ to reduce the proof of the following
lemmas to the case of schemes. We will indicate this by saying
that ``{\it the result follows from the case of schemes by
\'etale localization}''.
\begin{lemma}
\label{lemma-finite-type-descends}
Let $X$ be an algebraic space over a scheme $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that
each $f_i^*\mathcal{F}$ is a finite type $\mathcal{O}_{X_i}$-module.
Then $\mathcal{F}$ is a finite type $\mathcal{O}_X$-module.
\end{lemma}
\begin{proof}
This follows from the case of schemes, see
Descent, Lemma \ref{descent-lemma-finite-type-descends},
by \'etale localization.
\end{proof}
\begin{lemma}
\label{lemma-finite-presentation-descends}
Let $X$ be an algebraic space over a scheme $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that
each $f_i^*\mathcal{F}$ is an $\mathcal{O}_{X_i}$-module of finite
presentation. Then $\mathcal{F}$ is an $\mathcal{O}_X$-module
of finite presentation.
\end{lemma}
\begin{proof}
This follows from the case of schemes, see
Descent, Lemma \ref{descent-lemma-finite-presentation-descends},
by \'etale localization.
\end{proof}
\begin{lemma}
\label{lemma-flat-descends}
Let $X$ be an algebraic space over a scheme $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that
each $f_i^*\mathcal{F}$ is a flat $\mathcal{O}_{X_i}$-module.
Then $\mathcal{F}$ is a flat $\mathcal{O}_X$-module.
\end{lemma}
\begin{proof}
This follows from the case of schemes, see
Descent, Lemma \ref{descent-lemma-flat-descends},
by \'etale localization.
\end{proof}
\begin{lemma}
\label{lemma-finite-locally-free-descends}
Let $X$ be an algebraic space over a scheme $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that
each $f_i^*\mathcal{F}$ is a finite locally free $\mathcal{O}_{X_i}$-module.
Then $\mathcal{F}$ is a finite locally free $\mathcal{O}_X$-module.
\end{lemma}
\begin{proof}
This follows from the case of schemes, see
Descent, Lemma \ref{descent-lemma-finite-locally-free-descends},
by \'etale localization.
\end{proof}
\noindent
The definition of a locally projective quasi-coherent sheaf can be found in
Properties of Spaces, Section
\ref{spaces-properties-section-locally-projective}.
It is also proved there that this notion is preserved under pullback.
\begin{lemma}
\label{lemma-locally-projective-descends}
Let $X$ be an algebraic space over a scheme $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $\{f_i : X_i \to X\}_{i \in I}$ be an fpqc covering such that
each $f_i^*\mathcal{F}$ is a locally projective $\mathcal{O}_{X_i}$-module.
Then $\mathcal{F}$ is a locally projective $\mathcal{O}_X$-module.
\end{lemma}
\begin{proof}
This follows from the case of schemes, see
Descent, Lemma \ref{descent-lemma-locally-projective-descends},
by \'etale localization.
\end{proof}
\noindent
We also add here two results which are related to the results above, but
are of a slightly different nature.
\begin{lemma}
\label{lemma-finite-over-finite-module}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Assume $f$ is a finite morphism.
Then $\mathcal{F}$ is an $\mathcal{O}_X$-module of finite type
if and only if $f_*\mathcal{F}$ is an $\mathcal{O}_Y$-module of finite
type.
\end{lemma}
\begin{proof}
As $f$ is finite it is representable. Choose a scheme $V$ and a surjective
\'etale morphism $V \to Y$. Then $U = V \times_Y X$ is a scheme with
a surjective \'etale morphism towards $X$ and a finite morphism
$\psi : U \to V$ (the base change of $f$). Since
$\psi_*(\mathcal{F}|_U) = f_*\mathcal{F}|_V$
the result of the lemma follows immediately from the schemes version which
is
Descent, Lemma \ref{descent-lemma-finite-over-finite-module}.
\end{proof}
\begin{lemma}
\label{lemma-finite-finitely-presented-module}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Assume $f$ is finite and of finite presentation.
Then $\mathcal{F}$ is an $\mathcal{O}_X$-module of finite presentation
if and only if $f_*\mathcal{F}$ is an $\mathcal{O}_Y$-module of finite
presentation.
\end{lemma}
\begin{proof}
As $f$ is finite it is representable. Choose a scheme $V$ and a surjective
\'etale morphism $V \to Y$. Then $U = V \times_Y X$ is a scheme with
a surjective \'etale morphism towards $X$ and a finite morphism
$\psi : U \to V$ (the base change of $f$). Since
$\psi_*(\mathcal{F}|_U) = f_*\mathcal{F}|_V$
the result of the lemma follows immediately from the schemes version which
is
Descent, Lemma \ref{descent-lemma-finite-finitely-presented-module}.
\end{proof}
\section{Fpqc coverings}
\label{section-fpqc}
\noindent
This section is the analogue of
Descent, Section \ref{descent-section-fpqc-universal-effective-epimorphisms}.
At the moment we do not know if all of the material for
fpqc coverings of schemes holds also for algebraic spaces.
\begin{lemma}
\label{lemma-open-fpqc-covering}
Let $S$ be a scheme.
Let $\{f_i : T_i \to T\}_{i \in I}$ be an fpqc covering
of algebraic spaces over $S$.
Suppose that for each $i$ we have an open subspace $W_i \subset T_i$
such that for all $i, j \in I$ we have
$\text{pr}_0^{-1}(W_i) = \text{pr}_1^{-1}(W_j)$ as open
subspaces of $T_i \times_T T_j$. Then there exists a unique open subspace
$W \subset T$ such that $W_i = f_i^{-1}(W)$ for each $i$.
\end{lemma}
\begin{proof}
By
Topologies on Spaces, Lemma \ref{spaces-topologies-lemma-refine-fpqc-schemes}
we may assume each $T_i$ is a scheme.
Choose a scheme $U$ and a surjective \'etale morphism $U \to T$.
Then $\{T_i \times_T U \to U\}$ is an fpqc covering of $U$
and $T_i \times_T U$ is a scheme for each $i$. Hence we
see that the collection of opens $W_i \times_T U$ comes from a unique
open subscheme $W' \subset U$ by
Descent, Lemma \ref{descent-lemma-open-fpqc-covering}.
As $U \to X$ is open we can define $W \subset X$ the Zariski
open which is the image of $W'$, see
Properties of Spaces, Section \ref{spaces-properties-section-points}.
We omit the verification that this works, i.e., that
$W_i$ is the inverse image of $W$ for each $i$.
\end{proof}
\begin{lemma}
\label{lemma-fpqc-universal-effective-epimorphisms}
Let $S$ be a scheme. Let $\{T_i \to T\}$ be an fpqc covering of algebraic
spaces over $S$, see Topologies on Spaces, Definition
\ref{spaces-topologies-definition-fpqc-covering}.
Then given an algebraic space $B$ over $S$ the sequence
$$
\xymatrix{
\Mor_S(T, B) \ar[r] &
\prod\nolimits_i \Mor_S(T_i, B) \ar@<1ex>[r] \ar@<-1ex>[r] &
\prod\nolimits_{i, j} \Mor_S(T_i \times_T T_j, B)
}
$$
is an equalizer diagram.
In other words, every representable functor on the category of
algebraic spaces over $S$ satisfies the sheaf condition for
fpqc coverings.
\end{lemma}
\begin{proof}
We know this is true if $\{T_i \to T\}$ is an fpqc covering of
schemes, see Properties of Spaces, Proposition
\ref{spaces-properties-proposition-sheaf-fpqc}.
This is the key fact and we encourage the reader to skip the rest
of the proof which is formal. Choose a scheme $U$ and a surjective
\'etale morphism
$U \to T$. Let $U_i$ be a scheme and let $U_i \to T_i \times_T U$
be a surjective \'etale morphism. Then $\{U_i \to U\}$ is an
fpqc covering. This follows from
Topologies on Spaces, Lemmas \ref{spaces-topologies-lemma-fpqc} and
\ref{spaces-topologies-lemma-recognize-fpqc-covering}.
By the above we have the result for $\{U_i \to U\}$.
\medskip\noindent
What this means is the following: Suppose that $b_i : T_i \to B$
is a family of morphisms with
$b_i \circ \text{pr}_0 = b_j \circ \text{pr}_1$ as morphisms
$T_i \times_T T_j \to B$. Then we let $a_i : U_i \to B$ be the
composition of $U_i \to T_i$ with $b_i$. By what was said above
we find a unique morphism $a : U \to B$ such that
$a_i$ is the composition of $a$ with $U_i \to U$.
The uniqueness guarantees that $a \circ \text{pr}_0 = a \circ \text{pr}_1$
as morphisms $U \times_T U \to B$. Then since $T = U/(U \times_T U)$
as a sheaf, we find that $a$ comes from a unique morphism $b : T \to B$.
Chasing diagrams we find that $b$ is the morphism we are looking for.
\end{proof}
\section{Descent of finiteness and smoothness properties of morphisms}
\label{section-descent-finiteness-morphisms}
\noindent
The following type of lemma is occasionally useful.
\begin{lemma}
\label{lemma-curiosity}
Let $S$ be a scheme. Let $X \to Y \to Z$ be morphism of algebraic spaces.
Let $P$ be one of the following properties of morphisms of algebraic spaces
over $S$:
flat, locally finite type, locally finite presentation.
Assume that $X \to Z$ has $P$ and that
$X \to Y$ is a surjection of sheaves on $(\Sch/S)_{fppf}$.
Then $Y \to Z$ is $P$.
\end{lemma}
\begin{proof}
Choose a scheme $W$ and a surjective \'etale morphism $W \to Z$.
Choose a scheme $V$ and a surjective \'etale morphism $V \to W \times_Z Y$.
Choose a scheme $U$ and a surjective \'etale morphism $U \to V \times_Y X$.
By assumption we can find an fppf covering $\{V_i \to V\}$ and
lifts $V_i \to X$ of the morphism $V_i \to Y$. Since $U \to X$ is surjective
\'etale we see that over the members of the fppf covering
$\{V_i \times_X U \to V\}$ we have lifts into $U$. Hence $U \to V$ induces
a surjection of sheaves on $(\Sch/S)_{fppf}$.
By our definition of what it means to have property $P$ for a
morphism of algebraic spaces (see
Morphisms of Spaces,
Definition \ref{spaces-morphisms-definition-flat},
Definition \ref{spaces-morphisms-definition-locally-finite-type}, and
Definition \ref{spaces-morphisms-definition-locally-finite-presentation})
we see that $U \to W$ has $P$ and we have to show $V \to W$ has $P$.
Thus we reduce the question to the case of morphisms of schemes
which is treated in
Descent, Lemma \ref{descent-lemma-curiosity}.
\end{proof}
\noindent
A more standard case of the above lemma is the following.
(The version with ``flat'' follows from
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-flat-permanence}.)
\begin{lemma}
\label{lemma-flat-finitely-presented-permanence}
Let $S$ be a scheme. Let
$$
\xymatrix{
X \ar[rr]_f \ar[rd]_p & &
Y \ar[dl]^q \\
& B
}
$$
be a commutative diagram of morphisms of algebraic spaces over $S$.
Assume that $f$ is surjective, flat, and locally of finite presentation
and assume that $p$ is locally of finite presentation (resp.\ locally
of finite type). Then $q$ is locally of finite presentation
(resp.\ locally of finite type).
\end{lemma}
\begin{proof}
Since $\{X \to Y\}$ is an fppf covering, it induces a surjection of
fppf sheaves (Topologies on Spaces, Lemma
\ref{spaces-topologies-lemma-fppf-covering-surjective}) and the
lemma is a special case of Lemma \ref{lemma-curiosity}.
On the other hand, an easier argument is to deduce it from
the analogue for schemes. Namely, the problem is \'etale local
on $B$ and $Y$ (Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-finite-type-local} and
\ref{spaces-morphisms-lemma-finite-presentation-local}).
Hence we may assume that $B$ and $Y$ are affine
schemes. Since $|X| \to |Y|$ is open
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-fppf-open}),
we can choose an affine
scheme $U$ and an \'etale morphism $U \to X$ such that the
composition $U \to Y$ is surjective. In this case the result
follows from Descent, Lemma
\ref{descent-lemma-flat-finitely-presented-permanence}.
\end{proof}
\begin{lemma}
\label{lemma-syntomic-smooth-etale-permanence}
Let $S$ be a scheme. Let
$$
\xymatrix{
X \ar[rr]_f \ar[rd]_p & &
Y \ar[dl]^q \\
& B
}
$$
be a commutative diagram of morphisms of algebraic spaces over $S$.
Assume that
\begin{enumerate}
\item $f$ is surjective, and syntomic (resp.\ smooth, resp.\ \'etale),
\item $p$ is syntomic (resp.\ smooth, resp.\ \'etale).
\end{enumerate}
Then $q$ is syntomic (resp.\ smooth, resp.\ \'etale).
\end{lemma}
\begin{proof}
We deduce this from the analogue for schemes.
Namely, the problem is \'etale local on $B$ and $Y$
(Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-syntomic-local},
\ref{spaces-morphisms-lemma-smooth-local}, and
\ref{spaces-morphisms-lemma-etale-local}).
Hence we may assume that $B$ and $Y$ are affine
schemes. Since $|X| \to |Y|$ is open
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-fppf-open}),
we can choose an affine
scheme $U$ and an \'etale morphism $U \to X$ such that the
composition $U \to Y$ is surjective. In this case the result
follows from Descent, Lemma
\ref{descent-lemma-syntomic-smooth-etale-permanence}.
\end{proof}
\noindent
Actually we can strengthen this result as follows.
\begin{lemma}
\label{lemma-smooth-permanence}
Let $S$ be a scheme. Let
$$
\xymatrix{
X \ar[rr]_f \ar[rd]_p & &
Y \ar[dl]^q \\
& B
}
$$
be a commutative diagram of morphisms of algebraic spaces over $S$. Assume that
\begin{enumerate}
\item $f$ is surjective, flat, and locally of finite presentation,
\item $p$ is smooth (resp.\ \'etale).
\end{enumerate}
Then $q$ is smooth (resp.\ \'etale).
\end{lemma}
\begin{proof}
We deduce this from the analogue for schemes.
Namely, the problem is \'etale local on $B$ and $Y$
(Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-smooth-local} and
\ref{spaces-morphisms-lemma-etale-local}).
Hence we may assume that $B$ and $Y$ are affine
schemes. Since $|X| \to |Y|$ is open
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-fppf-open}),
we can choose an affine
scheme $U$ and an \'etale morphism $U \to X$ such that the
composition $U \to Y$ is surjective. In this case the result
follows from Descent, Lemma
\ref{descent-lemma-smooth-permanence}.
\end{proof}
\begin{lemma}
\label{lemma-syntomic-permanence}
Let $S$ be a scheme. Let
$$
\xymatrix{
X \ar[rr]_f \ar[rd]_p & &
Y \ar[dl]^q \\
& B
}
$$
be a commutative diagram of morphisms of algebraic spaces over $S$. Assume that
\begin{enumerate}
\item $f$ is surjective, flat, and locally of finite presentation,
\item $p$ is syntomic.
\end{enumerate}
Then both $q$ and $f$ are syntomic.
\end{lemma}
\begin{proof}
We deduce this from the analogue for schemes.
Namely, the problem is \'etale local on $B$ and $Y$
(Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-syntomic-local}).
Hence we may assume that $B$ and $Y$ are affine
schemes. Since $|X| \to |Y|$ is open
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-fppf-open}),
we can choose an affine
scheme $U$ and an \'etale morphism $U \to X$ such that the
composition $U \to Y$ is surjective. In this case the result
follows from Descent, Lemma
\ref{descent-lemma-syntomic-permanence}.
\end{proof}
\section{Descending properties of spaces}
\label{section-descending-properties-spaces}
\noindent
In this section we put some results of the following kind.
\begin{lemma}
\label{lemma-descend-unibranch}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $x \in |X|$.
If $f$ is flat at $x$ and $X$ is geometrically unibranch at $x$, then $Y$ is
geometrically unibranch at $f(x)$.
\end{lemma}
\begin{proof}
Consider the map of \'etale local rings
$\mathcal{O}_{Y, f(\overline{x})} \to \mathcal{O}_{X, \overline{x}}$.
By
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-flat-at-point-etale-local-rings}
this is flat. Hence if $\mathcal{O}_{X, \overline{x}}$ has a unique minimal
prime, so does $\mathcal{O}_{Y, f(\overline{x})}$ (by going down, see
Algebra, Lemma \ref{algebra-lemma-flat-going-down}).
\end{proof}
\begin{lemma}
\label{lemma-descend-reduced}
\begin{slogan}
A flat and surjective morphism of algebraic spaces with a reduced source
has a reduced target.
\end{slogan}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
If $f$ is flat and surjective and $X$ is reduced, then $Y$ is reduced.
\end{lemma}
\begin{proof}
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
Choose a scheme $U$ and a surjective \'etale morphism
$U \to X \times_Y V$. As $f$ is surjective and flat, the morphism of
schemes $U \to V$ is surjective and flat. In this way we reduce the
problem to the case of schemes (as reducedness of $X$ and $Y$ is defined
in terms of reducedness of $U$ and $V$, see
Properties of Spaces,
Section \ref{spaces-properties-section-types-properties}).
The case of schemes is
Descent, Lemma \ref{descent-lemma-descend-reduced}.
\end{proof}
\begin{lemma}
\label{lemma-descend-locally-Noetherian}
Let $f : X \to Y$ be a morphism of algebraic spaces.
If $f$ is locally of finite presentation, flat, and surjective and
$X$ is locally Noetherian, then $Y$ is locally Noetherian.
\end{lemma}
\begin{proof}
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
Choose a scheme $U$ and a surjective \'etale morphism
$U \to X \times_Y V$. As $f$ is surjective, flat, and locally of
finite presentation the morphism of schemes $U \to V$ is surjective, flat, and
locally of finite presentation. In this way we reduce the
problem to the case of schemes (as being locally Noetherian for $X$ and $Y$
is defined in terms of being locally Noetherian of $U$ and $V$, see
Properties of Spaces,
Section \ref{spaces-properties-section-types-properties}).
In the case of schemes the result follows from
Descent, Lemma \ref{descent-lemma-Noetherian-local-fppf}.
\end{proof}
\begin{lemma}
\label{lemma-descend-regular}
Let $f : X \to Y$ be a morphism of algebraic spaces.
If $f$ is locally of finite presentation, flat, and surjective and
$X$ is regular, then $Y$ is regular.
\end{lemma}
\begin{proof}
By
Lemma \ref{lemma-descend-locally-Noetherian}
we know that $Y$ is locally Noetherian.
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
It suffices to prove that the local rings of $V$ are all regular local
rings, see
Properties, Lemma \ref{properties-lemma-characterize-regular}.
Choose a scheme $U$ and a surjective \'etale morphism
$U \to X \times_Y V$. As $f$ is surjective and flat the morphism of schemes
$U \to V$ is surjective and flat. By assumption $U$ is a regular scheme
in particular all of its local rings are regular (by the lemma above).
Hence the lemma follows from
Algebra, Lemma \ref{algebra-lemma-flat-under-regular}.
\end{proof}
\begin{lemma}
\label{lemma-reduced-local-smooth}
Let $f : X \to Y$ be a smooth morphism of algebraic spaces.
If $Y$ is reduced, then $X$ is reduced. If $f$ is surjective
and $X$ is reduced, then $Y$ is reduced.
\end{lemma}
\begin{proof}
Choose a commutative diagram
$$
\xymatrix{
U \ar[d] \ar[r] & V \ar[d] \\
X \ar[r] & Y
}
$$
where $U$ and $V$ are schemes, the vertical arrows are surjective and
\'etale, and $U \to X \times_Y V$ is surjective \'etale. Observe that $X$ is
a reduced algebraic space if and only if $U$ is a reduced scheme
by our definition of reduced algebraic spaces in
Properties of Spaces, Section \ref{spaces-properties-section-types-properties}.
Similarly for $Y$ and $V$.
The morphism $U \to V$ is a smooth morphism of schemes, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-smooth-local}.
Since being reduced is local for the smooth topology for
schemes (Descent, Lemma \ref{descent-lemma-reduced-local-smooth})
we see that $U$ is reduced if $V$ is reduced.
On the other hand, if $X \to Y$ is surjective, then $U \to V$ is
surjective and in this case if $U$ is reduced, then $V$ is reduced.
\end{proof}
\section{Descending properties of morphisms}
\label{section-descending-properties-morphisms}
\noindent
In this section we introduce the notion of when a property of morphisms of
algebraic spaces is local on the target in a topology. Please compare with
Descent, Section \ref{descent-section-descending-properties-morphisms}.
\begin{definition}
\label{definition-property-morphisms-local}
Let $S$ be a scheme.
Let $\mathcal{P}$ be a property of morphisms of algebraic spaces over $S$.
Let $\tau \in \{fpqc, fppf, syntomic, smooth, \etale\}$.
We say $\mathcal{P}$ is {\it $\tau$ local on the base}, or
{\it $\tau$ local on the target}, or
{\it local on the base for the $\tau$-topology} if for any
$\tau$-covering $\{Y_i \to Y\}_{i \in I}$ of algebraic spaces
and any morphism of algebraic spaces $f : X \to Y$ we