-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path10x_across-regions-analyses_step03-correlations_MNT.R
1152 lines (965 loc) · 54.1 KB
/
10x_across-regions-analyses_step03-correlations_MNT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### MNT 10x snRNA-seq workflow: step 04 - downstream comparisons
### **Pan-brain analyses**
### - n=24 samples from 5 regions
### * Cross-region analysis/correlation and comp. to other datasets
#####################################################################
library(SingleCellExperiment)
library(EnsDb.Hsapiens.v86)
library(org.Hs.eg.db)
library(scater)
library(scran)
library(batchelor)
library(DropletUtils)
library(jaffelab)
library(limma)
library(lattice)
library(RColorBrewer)
library(pheatmap)
library(gridExtra)
source("plotExpressionCustom.R")
### Palette taken from `scater`
tableau10medium = c("#729ECE", "#FF9E4A", "#67BF5C", "#ED665D",
"#AD8BC9", "#A8786E", "#ED97CA", "#A2A2A2",
"#CDCC5D", "#6DCCDA")
tableau20 = c("#1F77B4", "#AEC7E8", "#FF7F0E", "#FFBB78", "#2CA02C",
"#98DF8A", "#D62728", "#FF9896", "#9467BD", "#C5B0D5",
"#8C564B", "#C49C94", "#E377C2", "#F7B6D2", "#7F7F7F",
"#C7C7C7", "#BCBD22", "#DBDB8D", "#17BECF", "#9EDAE5")
# ===
load("rdas/revision/markers-stats_DLPFC-n3_findMarkers-SN-LEVEL_MNT_v2_2021.rda", verbose=T)
# markers.dlpfc.t.1vAll, medianNon0.dlpfc
rm(medianNon0.dlpfc)
load("rdas/revision/markers-stats_HPC-n3_findMarkers-SN-LEVEL_MNT2021.rda", verbose=T)
# markers.hpc.t.pw, markers.hpc.t.1vAll, medianNon0.hpc
rm(markers.hpc.t.pw, medianNon0.hpc)
load("rdas/revision/markers-stats_NAc-n8_findMarkers-SN-LEVEL_MNT2021.rda", verbose=T)
# markers.nac.t.pw, markers.nac.t.1vAll, medianNon0.nac
rm(markers.nac.t.pw, medianNon0.nac)
load("rdas/revision/markers-stats_Amyg-n5_findMarkers-SN-LEVEL_MNT2021.rda", verbose=T)
# markers.amy.t.pw, markers.amy.wilcox.block, markers.amy.t.1vAll, medianNon0.amy
rm(markers.amy.t.pw, markers.amy.wilcox.block, medianNon0.amy)
load("rdas/revision/markers-stats_sACC-n5_findMarkers-SN-LEVEL_MNT2021.rda", verbose=T)
# markers.sacc.t.pw, markers.sacc.wilcox.block, markers.sacc.t.1vAll, medianNon0.sacc
rm(markers.sacc.t.pw, markers.sacc.wilcox.block, medianNon0.sacc)
# Re-order rows in each list entry for each set of stats
expressedGenes.list <- list(amy=rownames(markers.amy.t.1vAll[["Astro_A"]][[2]]),
dlpfc=rownames(markers.dlpfc.t.1vAll[["Astro"]][[2]]),
hpc=rownames(markers.hpc.t.1vAll[["Astro_A"]][[2]]),
nac=rownames(markers.nac.t.1vAll[["Astro_A"]][[2]]),
sacc=rownames(markers.sacc.t.1vAll[["Astro_A"]][[2]])
)
expressedGenes <- unique(unlist(expressedGenes.list))
expressedGenes <- expressedGenes[expressedGenes %in% expressedGenes.list[["amy"]] &
expressedGenes %in% expressedGenes.list[["dlpfc"]] &
expressedGenes %in% expressedGenes.list[["nac"]] &
expressedGenes %in% expressedGenes.list[["hpc"]] &
expressedGenes %in% expressedGenes.list[["sacc"]]
]
length(expressedGenes) # 27875
# Store each set of stats into a list
FMstats.list <- list(amy=lapply(markers.amy.t.1vAll,function(x){x[[2]]}),
dlpfc=lapply(markers.dlpfc.t.1vAll,function(x){x[[2]]}),
hpc=lapply(markers.hpc.t.1vAll,function(x){x[[2]]}),
nac=lapply(markers.nac.t.1vAll,function(x){x[[2]]}),
sacc=lapply(markers.sacc.t.1vAll,function(x){x[[2]]}))
# How many subclusters in each region?
sapply(FMstats.list, length)
# amy dlpfc hpc nac sacc
# 19 19 20 24 25
sapply(FMstats.list, function(x){nrow(x[[1]])})
# amy dlpfc hpc nac sacc
#29371 29310 28764 29680 29583
# Subset and re-order for those intersecting genes across all regions
for(x in names(FMstats.list)){
for(s in names(FMstats.list[[x]])){
FMstats.list[[x]][[s]] <- FMstats.list[[x]][[s]][expressedGenes, ]
}
}
sapply(FMstats.list, function(x){nrow(x[[1]])})
# good
sapply(FMstats.list, function(x){head(x[[1]], n=3)})
### Get n Nuclei numbers for each region so can compute t-statistics ===
# This can be done with Cohen's D (the 'std.lfc'), as d = t/sqrt(N)
load("rdas/revision/all-n24-samples_across-regions-analyses_forFigOnly_MNT2021.rda", verbose=T)
# sce.allRegions, chosen.hvgs.union, ref.sampleInfo, Readme
sce.allRegions
# class: SingleCellExperiment
# dim: 33538 70497
table(sce.allRegions$region)
# amy dlpfc hpc nac sacc
#14039 11202 10139 19892 15343
table(sce.allRegions$cellType)
sampleNumNuclei <- table(sce.allRegions$region)
## Calculate and add t-statistic (= std.logFC * sqrt(N))
for(x in names(FMstats.list)){
for(s in names(FMstats.list[[x]])){
FMstats.list[[x]][[s]]$t.stat <- FMstats.list[[x]][[s]]$std.logFC * sqrt(sampleNumNuclei[x])
}
}
## Let's save these
readme.mnt <- "These stats are from region-specific specificity modeling (cluster-vs-all-others) at the single-nucleus level with 'scran::findMarkers()'. The t-statistic is computed by sqrt(N.nuclei) * std.logFC."
save(FMstats.list, sampleNumNuclei, readme.mnt, ref.sampleInfo,
file="rdas/revision/markers-stats_all-regions-combined_SN-LEVEL-1vAll_MNT2021.rda")
# (If needed)
load("rdas/revision/markers-stats_all-regions-combined_SN-LEVEL-1vAll_MNT2021.rda", verbose=T)
# FMstats.list, sampleNumNuclei, readme.mnt, ref.sampleInfo
readme.mnt
## Create matrix of t's with region:subcluster identifiers
ts.list <- lapply(FMstats.list, function(x){
sapply(x, function(y){y$t.stat})
}
)
# Add back in region suffix
for(i in names(ts.list)){
colnames(ts.list[[i]]) <- paste0(colnames(ts.list[[i]]), "_", i)
}
# Cbind
ts.fullMat <- do.call(cbind, ts.list)
## Correlation; first shorten names
colnames(ts.fullMat) <- gsub("Excit", "Ex", colnames(ts.fullMat))
colnames(ts.fullMat) <- gsub("Inhib", "In", colnames(ts.fullMat))
colnames(ts.fullMat) <- gsub("Astro", "As", colnames(ts.fullMat))
colnames(ts.fullMat)[colnames(ts.fullMat)=="Neu_FAT2.CDH15_sacc"] <- "Neu_ambig_sacc"
# Perform in cluster-specific gene space, as with across-species comparisons
clus_specific_indices = mapply(function(t) {
oo = order(t, decreasing = TRUE)[1:100]
},
as.data.frame(ts.fullMat)
)
clus_ind = unique(as.numeric(clus_specific_indices))
length(clus_ind) # so of up to 10200 (100 x 102 cellType), 3715 unique
ts.defined <- ts.fullMat[clus_ind, ]
cor_t_xRegions <- cor(ts.fullMat)
cor_t_defined <- cor(ts.defined)
### Heatmap - typically use levelplot (e.g. below), but will want pheatmap bc can cluster cols/rows
theSeq.all = seq(-1, 1, by = 0.025)
my.col.all <- colorRampPalette(brewer.pal(7, "PRGn"))(length(theSeq.all)-1)
pdf("pdfs/revision/acrossRegions_correlation_region-specific-subcluster-ts_MNT2021.pdf")
pheatmap(cor_t_xRegions,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=4.5, fontsize_col=4.5,
main="Correlation of cluster-specific t's from all regions \n (all shared expressed genes)")
pheatmap(cor_t_defined,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=4.5, fontsize_col=4.5,
main="Correlation of cluster-specific t's from all regions \n (top 100 cluster genes space)")
dev.off()
## Subset on neuronal subcluster t's and check
ts.fullMat.neu <- ts.fullMat
ts.defined.neu <- ts.defined
for(i in c("As", "Micro", "Endo", "Mural","Oligo", "OPC", "Tcell", "Macro")){
ts.fullMat.neu <- ts.fullMat.neu[ ,-grep(i, colnames(ts.fullMat.neu))]
ts.defined.neu <- ts.defined.neu[ ,-grep(i, colnames(ts.defined.neu))]
}
cor_t_xRegions.neu <- cor(ts.fullMat.neu)
cor_t_defined.neu <- cor(ts.defined.neu)
# Add some cluster info for add'l heatmap annotations
clusterInfo <- data.frame(region=ss(colnames(ts.fullMat.neu), "_",3))
rownames(clusterInfo) <- colnames(ts.fullMat.neu)
# Region cols to be consistent with the TSNE
clusterCols <- list(region=tableau10medium[1:5])
names(clusterCols[["region"]]) <- levels(as.factor(clusterInfo$region))
# Print
pdf("pdfs/revision/acrossRegions_correlation_region-specific-NeuronalSubcluster-ts_MNT2021.pdf",width=9, height=9)
# All genes
pheatmap(cor_t_xRegions.neu,
annotation_col=clusterInfo,
annotation_colors=clusterCols,
#show_colnames=FALSE,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=6.2, fontsize_col=6.2,
main="Correlation of neuronal cluster-specific t's from all regions \n (all shared expressed genes)")
# With numbers
pheatmap(cor_t_xRegions.neu,
annotation_col=clusterInfo,
annotation_colors=clusterCols,
#show_colnames=FALSE,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=6.2, fontsize_col=6.2,
display_numbers=TRUE, fontsize_number=2.6,
main="Correlation of neuronal cluster-specific t's from all regions \n (all shared expressed genes)")
# Top 100 cluster genes space
pheatmap(cor_t_defined.neu,
annotation_col=clusterInfo,
annotation_colors=clusterCols,
#show_colnames=FALSE,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=6.2, fontsize_col=6.2,
main="Correlation of neuronal cluster-specific t's from all regions \n (top 100 cluster genes space, incl'g glial)")
# With numbers
pheatmap(cor_t_defined.neu,
annotation_col=clusterInfo,
annotation_colors=clusterCols,
#show_colnames=FALSE,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=6.2, fontsize_col=6.2,
display_numbers=TRUE, fontsize_number=2.6,
main="Correlation of neuronal cluster-specific t's from all regions \n (top 100 cluster genes space, incl'g glial)")
dev.off()
## Non-neuronal set for supplement === === ===
ts.fullMat.non <- ts.fullMat
ts.defined.non <- ts.defined
glia.idx <- NA
for(i in c("As", "Micro", "Endo", "Mural","Oligo", "OPC", "Tcell", "Macro")){
glia.idx <- c(glia.idx, grep(i, colnames(ts.fullMat.non)))
}
# Rm the empty NA
glia.idx <- glia.idx[-1]
ts.fullMat.non <- ts.fullMat.non[ ,glia.idx]
ts.defined.non <- ts.defined.non[ ,glia.idx]
cor_t_xRegions.non <- cor(ts.fullMat.non)
cor_t_defined.non <- cor(ts.defined.non)
# Add some cluster info for add'l heatmap annotations
clusterInfo.glia <- data.frame(region=ifelse(is.na(ss(colnames(ts.fullMat.non), "_",3)),
ss(colnames(ts.fullMat.non), "_",2),
ss(colnames(ts.fullMat.non), "_",3))
)
rownames(clusterInfo.glia) <- colnames(ts.fullMat.non)
# Print
pdf("pdfs/revision/acrossRegions_correlation_region-specific-NON-NeuronalSubcluster-ts_MNT2021.pdf",width=9)
pheatmap(cor_t_xRegions.non,
annotation_col=clusterInfo.glia,
annotation_colors=clusterCols,
#show_colnames=FALSE,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=7, fontsize_col=7,
display_numbers=TRUE, fontsize_number=4,
main="Correlation of glia/other cluster-specific t's from all regions \n (all shared expressed genes)")
pheatmap(cor_t_defined.non,
annotation_col=clusterInfo.glia,
annotation_colors=clusterCols,
#show_colnames=FALSE,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=7, fontsize_col=7,
display_numbers=TRUE, fontsize_number=4,
main="Correlation of glia/other cluster-specific t's from all regions \n (top 100 cluster genes space, incl'g neuronal)")
dev.off()
## For main section on AMY 'Astro_B' ===
table(droplevels(sce.allRegions$cellType[grep("Astro", sce.allRegions$cellType)]))
# amy_Astro_A amy_Astro_B dlpfc_Astro hpc_Astro_A hpc_Astro_B nac_Astro_A
# 1555 83 782 936 234 99
# nac_Astro_B sacc_Astro_A sacc_Astro_B
# 1000 747 160
sce.astro <- sce.allRegions[ ,grep("Astro", sce.allRegions$cellType)]
sce.astro$cellType <- droplevels(sce.astro$cellType)
# br5161 br5207 br5212 br5276 br5287 br5400 br5701
# amy_Astro_A 484 0 350 230 0 111 380
# amy_Astro_B 7 0 10 49 0 12 5
# dlpfc_Astro 371 274 137 0 0 0 0
# hpc_Astro_A 424 0 375 0 137 0 0
# hpc_Astro_B 83 0 125 0 26 0 0
# nac_Astro_A 27 0 5 8 3 56 0
# nac_Astro_B 115 0 377 173 8 294 33
# sacc_Astro_A 87 0 390 8 0 224 38
# sacc_Astro_B 85 0 19 23 0 28 5
# Note: br5182 not represented bc it was only used for an NAc-NeuN sample
# As in the step03's, re-create 'logcounts'
sce.astro.hold <- sce.astro
assay(sce.astro, "logcounts") <- NULL
sizeFactors(sce.astro) <- NULL
sce.astro <- logNormCounts(sce.astro)
## PW markers?
mod <- with(colData(sce.astro), model.matrix(~ donor))
mod <- mod[ , -1, drop=F] # intercept otherwise automatically dropped by `findMarkers()`
# Run pairwise t-tests
markers.astro.t.pw <- findMarkers(sce.astro, groups=sce.astro$cellType,
assay.type="logcounts", design=mod, test="t",
direction="up", pval.type="all", full.stats=T)
sapply(markers.astro.t.pw, function(x){table(x$FDR<0.05)})
# amy_Astro_A amy_Astro_B dlpfc_Astro hpc_Astro_A hpc_Astro_B nac_Astro_A
# FALSE 33520 33403 33534 33534 33368 33104
# TRUE 18 135 4 4 170 434
# nac_Astro_B sacc_Astro_A sacc_Astro_B
# FALSE 33260 33432 33532
# TRUE 278 106 6
# non-0-median - run them all
#amy_astro_B <- which(sce.astro$cellType == "amy_Astro_B")
astro.idx <- splitit(sce.astro$cellType)
medianNon0.astro <- lapply(astro.idx, function(x){
apply(as.matrix(assay(sce.astro, "logcounts")), 1, function(y){
median(y[x]) > 0
})
})
# non0median.amy.As_B <- apply(as.matrix(assay(sce.astro, "logcounts")), 1, function(y){
# median(y[amy_astro_B]) > 0
# })
#table(non0median.amy.As_B) # 146
sapply(medianNon0.astro, table)
# amy_Astro_A amy_Astro_B dlpfc_Astro hpc_Astro_A hpc_Astro_B nac_Astro_A
# FALSE 31172 33392 32280 31669 32205 32155
# TRUE 2366 *146 1258 1869 1333 1383
# nac_Astro_B sacc_Astro_A sacc_Astro_B
# FALSE 31122 31761 32827
# TRUE 2416 1777 711
sapply(astro.idx, function(x){quantile(sce.astro$sum[x])})
# amy_Astro_A amy_Astro_B dlpfc_Astro hpc_Astro_A hpc_Astro_B nac_Astro_A
# 0% 1182.0 188.0 884.00 1940.0 1127 798.0
# 25% 7471.5 850.5 4008.75 5631.5 3609 4049.5
# 50% 11275.0 *1156.0 5737.00 7996.5 5767 6524.0
# 75% 16469.5 1842.5 7953.00 11802.5 8420 9175.5
# 100% 35728.0 7739.0 26618.00 30085.0 20088 17601.0
# nac_Astro_B sacc_Astro_A sacc_Astro_B
# 0% 635.00 174.0 102.00
# 25% 7457.75 5781.0 1977.25
# 50% 10811.50 7575.0 3872.50
# 75% 15545.00 10077.5 6176.25
# 100% 37265.00 23974.0 14206.00
# Add respective 'non0median' column to the stats for each set of markers
for(i in names(markers.astro.t.pw)){
markers.astro.t.pw[[i]] <- cbind(markers.astro.t.pw[[i]],
medianNon0.astro[[i]][match(rownames(markers.astro.t.pw[[i]]),
names(medianNon0.astro[[i]]))])
colnames(markers.astro.t.pw[[i]])[12] <- "non0median"
}
sapply(markers.astro.t.pw, function(x){table(x$FDR<0.05 & x$non0median == TRUE)["TRUE"]})
# amy_Astro_A.TRUE amy_Astro_B.TRUE dlpfc_Astro.TRUE hpc_Astro_A.TRUE
# 14 4 3 3
# hpc_Astro_B.TRUE nac_Astro_A.TRUE nac_Astro_B.TRUE sacc_Astro_A.TRUE
# 72 11 202 75
# sacc_Astro_B.NA
# NA
markerList.astro <- lapply(markers.astro.t.pw, function(x){
rownames(x)[x$FDR < 0.05 & x$non0median==TRUE]
})
markerList.astro[["amy_Astro_B"]]
# [1] "DST" "COL19A1" "MACF1" "RBFOX1"
# Check out these
plotExpressionCustom(sce.astro.hold, anno_name="cellType", features_name="Astro sub-class",
features=c("DST", "COL19A1", "MACF1", "RBFOX1"), ncol=2)
sce.astro$prelimCluster <- droplevels(sce.astro$prelimCluster)
table(sce.astro$cellType, sce.astro$prelimCluster)
sapply(splitit(sce.astro$region), function(x){table(droplevels(sce.astro$cellType[x]),
droplevels(sce.astro$prelimCluster[x]))})
# $amy
# 8 17 18 27 38 52 55
# amy_Astro_A 836 131 107 347 90 0 44
# amy_Astro_B 0 0 0 0 0 83 0
#
# $dlpfc * Note this:
# 10 32 49 64 65 78 88 98
# dlpfc_Astro 64 32 109 65 205 230 47 30
#
# $hpc
# 2 7 13 15 29 31 35 38
# hpc_Astro_A 302 112 0 168 32 231 91 0
# hpc_Astro_B 0 0 117 0 0 0 0 117
#
# $nac
# 16 17
# nac_Astro_A 99 0
# nac_Astro_B 0 1000
#
# $sacc
# 14 28 47
# sacc_Astro_A 641 0 106
# sacc_Astro_B 0 160 0
## Make Astro class marker array from pw tests like with the NAc interneurons ===
markers.astro.t.pw.full <- markers.astro.t.pw
markers.astro.t.pw[["sacc_Astro_B"]] <- NULL
topToPrint <- as.data.frame(sapply(markers.astro.t.pw, function(x) {
head(rownames(x)[x$FDR < 0.05 & x$non0median==TRUE], n=3)}))
table(unlist(topToPrint) %in% rownames(sce.astro)) # good
topToPrint
# Print
pdf("pdfs/revision/pubFigures/suppFig_across-regions_astros-marker-array_MNT2021.pdf", height=4, width=10)
print(
plotExpressionCustom(sce.astro.hold, features=c(t(topToPrint)), features_name="",
anno_name="cellType", point_alpha=0.3, point_size=0.7, ncol=8, scales="free_y") +
ggtitle(label="amy_Astro_A amy_Astro_B dlpfc_Astro hpc_Astro_A hpc_Astro_B nac_Astro_A nac_Astro_B sacc_Astro_A") + xlab("") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 8),
axis.title.y = element_text(angle = 90, size = 12),
axis.text.y = element_text(size = 9),
plot.title = element_text(size = 12),
panel.grid.major=element_line(colour="grey95", size=0.8),
panel.grid.minor=element_line(colour="grey95", size=0.4))
)
dev.off()
### MNT revision add ========
# -> What are depleted in AMY's Astro_B, compared to the rest?
# Same mod
mod <- with(colData(sce.astro), model.matrix(~ donor))
mod <- mod[ , -1, drop=F]
markers.astro.t.1vAll <- list()
for(i in levels(sce.astro$cellType)){
# Make temporary contrast
sce.astro$contrast <- ifelse(sce.astro$cellType==i, 1, 0)
# Test cluster vs. all others
markers.astro.t.1vAll[[i]] <- findMarkers(sce.astro, groups=sce.astro$contrast,
assay.type="logcounts", design=mod, test="t",
std.lfc=TRUE,
direction="up", pval.type="all", full.stats=T)
}
# Re-organize like with other region-specific markers stats:
markers.astro.t.1vAll <- lapply(markers.astro.t.1vAll, function(x){
# Basically take the 'stats.[1 or 0]' since is redundant with the 'summary'-level stats
lapply(x, function(y){ y[ ,4] })
})
#Re-name std.lfc column and the entries; add non-0-median info
for(i in names(markers.astro.t.1vAll)){
colnames(markers.astro.t.1vAll[[i]][["0"]])[1] <- "std.logFC"
colnames(markers.astro.t.1vAll[[i]][["1"]])[1] <- "std.logFC"
# Add non0median Boolean - might be informative for both sets of stats
markers.astro.t.1vAll[[i]][["0"]] <- cbind(markers.astro.t.1vAll[[i]][["0"]],
medianNon0.astro[[i]][match(rownames(markers.astro.t.1vAll[[i]][["0"]]),
names(medianNon0.astro[[i]]))])
colnames(markers.astro.t.1vAll[[i]][["0"]])[4] <- "non0median"
# "1" aka 'enriched'
markers.astro.t.1vAll[[i]][["1"]] <- cbind(markers.astro.t.1vAll[[i]][["1"]],
medianNon0.astro[[i]][match(rownames(markers.astro.t.1vAll[[i]][["1"]]),
names(medianNon0.astro[[i]]))])
colnames(markers.astro.t.1vAll[[i]][["1"]])[4] <- "non0median"
# Then re-name the entries to more interpretable, because we'll keeping both contrasts
names(markers.astro.t.1vAll[[i]]) <- paste0(i,c("_depleted", "_enriched"))
}
## Let's save this
save(markers.astro.t.1vAll, medianNon0.astro,
file="rdas/revision/markers-stats_acrossRegions-astros_findMarkers_MNT2021.rda")
# Explore some expression
plotExpressionCustom(sce.astro.hold, anno_name="cellType", features=head(rownames(markers.astro.t.1vAll[["amy_Astro_B"]][["amy_Astro_B_depleted"]]),n=12),
features_name="Downregulated in AMY Astro_B", ncol=4, scales="free_y") +
xlab("") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 8),
axis.title.y = element_text(angle = 90, size = 12),
axis.text.y = element_text(size = 10),
plot.title = element_text(size = 12),
panel.grid.major=element_line(colour="grey95", size=0.8),
panel.grid.minor=element_line(colour="grey95", size=0.4))
sapply(markers.astro.t.1vAll, function(x){table(head(x[[1]]$non0median,n=40))})
# amy_Astro_A amy_Astro_B dlpfc_Astro hpc_Astro_A hpc_Astro_B nac_Astro_A
# FALSE 26 22 21 34 15 8
# TRUE 14 18 19 6 25 32
# nac_Astro_B sacc_Astro_A sacc_Astro_B
# FALSE 24 33 6
# TRUE 16 7 34
# So each population has its own set of genes specifically depleted
# For AMY Astro_B, those are (median expression == 0):
printThese <- head(rownames(markers.astro.t.1vAll[["amy_Astro_B"]][["amy_Astro_B_depleted"]])[
markers.astro.t.1vAll[["amy_Astro_B"]][["amy_Astro_B_depleted"]]$non0median==FALSE
],n=22)
head(which(markers.astro.t.1vAll[["amy_Astro_B"]][["amy_Astro_B_depleted"]]$non0median==FALSE),n=22)
# PTPRZ1 GABRB1 LINC00461 NHSL1 TCF4 PDE7B FUT9
# 7 12 16 19 22 23 24
# SASH1 AKT3 MAST4 NFIB ATP13A4 APC AC091826.2
# 25 27 28 29 30 31 32
# SOX6 CARMIL1 PREX2 DENND1A MBD5 GNAQ ZFAND3
# 33 34 35 36 37 38 39
# STXBP5
# 40
plotExpressionCustom(sce.astro.hold, anno_name="cellType", features=printThese,
features_name="Downregulated in AMY Astro_B", ncol=4, scales="free_y") +
xlab("") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 8),
axis.title.y = element_text(angle = 90, size = 12),
axis.text.y = element_text(size = 10),
plot.title = element_text(size = 12),
panel.grid.major=element_line(colour="grey95", size=0.8),
panel.grid.minor=element_line(colour="grey95", size=0.4))
# end revision exploration ==========
# Plot the $sum densities
coldat <- as.data.frame(colData(sce.astro))
coldat$log10.sum <- log10(coldat$sum)
pdf("pdfs/revision/pubFigures/suppFig_across-regions_astros-totalUMIs-density_MNT2021.pdf", height=3.5, width=7.5)
ggplot(coldat, aes(x=log10.sum, color=cellType, fill=cellType)) +
geom_density(alpha=0.15,size=1.2) +
scale_color_manual(values=tableau10medium[1:9],
labels=paste0(levels(sce.astro$cellType)," (",table(sce.astro$cellType),")")) +
labs(colour="Cell type") +
scale_fill_manual(values=tableau10medium[1:9]) + guides(fill=FALSE) +
xlab("log10(total.n.UMIs)") + ylab("Density") +
ggtitle("Distribution of total UMIs captured per astrocyte cell class") +
theme(axis.title.x = element_text(size = 14),
axis.text.x = element_text(hjust = 1, size = 11),
axis.title.y = element_text(angle = 90, size = 14),
axis.text.y = element_text(size = 11),
plot.title = element_text(size = 14))
dev.off()
## Do the same with 'Micro' to contrast to Astro:
sce.micro <- sce.allRegions[ ,grep("Micro", sce.allRegions$cellType)]
sce.micro$cellType <- droplevels(sce.micro$cellType)
table(sce.micro$cellType, sce.micro$donor)
# br5161 br5207 br5212 br5276 br5287 br5400 br5701
# amy_Micro 411 0 304 14 0 117 355
# dlpfc_Micro 152 144 92 0 0 0 0
# hpc_Micro 487 0 481 0 193 0 0
# nac_Micro 66 0 59 33 34 222 15
# nac_Micro_resting 3 0 33 22 0 5 0
# sacc_Micro 232 0 243 3 0 292 14
# Broad distribution:
micro.idx <- splitit(sce.micro$cellType)
sapply(micro.idx, function(x){quantile(sce.micro$sum[x])})
# amy_Micro dlpfc_Micro hpc_Micro nac_Micro nac_Micro_resting sacc_Micro
# 0% 435 879.00 454 1504 105.0 113.00
# 25% 3952 3019.25 3580 4268 469.5 3198.50
# 50% 5381 3883.50 4661 5545 866.0 4378.00
# 75% 7055 4911.75 5966 6789 1327.5 5458.25
# 100% 20500 11137.00 12463 12537 5239.0 11896.00
# Plot the $sum densities
coldat <- as.data.frame(colData(sce.micro))
coldat$log10.sum <- log10(coldat$sum)
pdf("pdfs/revision/pubFigures/suppFig_across-regions_micro-totalUMIs-density_MNT2021.pdf", height=3.5, width=7.5)
ggplot(coldat, aes(x=log10.sum, color=cellType, fill=cellType)) +
geom_density(alpha=0.15,size=1.2) +
scale_color_manual(values=tableau20[15:20],
labels=paste0(levels(sce.micro$cellType)," (",table(sce.micro$cellType),")")) +
labs(colour="Cell type") +
scale_fill_manual(values=tableau20[15:20]) + guides(fill=FALSE) +
xlab("log10(total.n.UMIs)") + ylab("Density") +
ggtitle("Distribution of total UMIs captured per microglia cell class") +
theme(axis.title.x = element_text(size = 14),
axis.text.x = element_text(hjust = 1, size = 11),
axis.title.y = element_text(angle = 90, size = 14),
axis.text.y = element_text(size = 11),
plot.title = element_text(size = 14))
dev.off()
## AMY 'Inhib_B' vs DLPFC 'Inhib_A' - r=0.86 ===
sce.dlpfc <- sce.allRegions[ ,sce.allRegions$region=="dlpfc"]
sce.dlpfc$cellType <- droplevels(sce.dlpfc$cellType)
# Plot some AMY 'Inhib_B' markers (seen in Louise's DLPFC 'Inhib_A' lists)
plotExpressionCustom(sce.dlpfc, anno_name="cellType", features_name="some AMY 'Inhib_B'",
features=c("VIP", "CALB2", "CRH", "PTHLH"), ncol=2) +
### Final revision add - 23-24Aug2021 ==========
# Q: Is the 'excit-signature' MSNs clustering with mostly excitatory neurons
# robust to bootstrapping?
#install.packages("pvclust")
library(pvclust)
## Extract clusters from `pheatmap`
# (reference: https://www.biostars.org/p/287512/)
out <- pheatmap(cor_t_defined.neu,
show_rownames=T, cluster_cols=T, cluster_rows=T, scale="none",
cex=1, clustering_distance_rows="euclidean", cex=1,
clustering_distance_cols="euclidean", clustering_method="complete",
border_color=FALSE, fontsize_row=6.2, fontsize_col=6.2,)
# Test `pvclust()`
set.seed(109)
test.pvclust <- pvclust(cor_t_defined.neu, method.dist="euclidean",
method.hclust="complete", nboot=10)
plot(test.pvclust, cex=0.7, hang=-1)
table(rownames(cor_t_defined.neu[out$tree_row[["order"]],]) ==
rownames(cor_t_defined.neu[test.pvclust$hclust$order,]))
# all 69 TRUE - good.
set.seed(109)
boot.pvclust <- pvclust(cor_t_defined.neu, method.dist="euclidean",
method.hclust="complete", nboot=5000)
# With 56G RAM interactively, took ~15min without parallelization
## What if performed on the original ts.neu?
# Just do the default 1000 bootstraps:
set.seed(109)
boot.onTs <- pvclust(ts.defined.neu, method.dist="euclidean",
method.hclust="complete", nboot=1000)
# Plot both iterations
pdf("pdfs/revision/acrossRegions_correlation_Neuronal-ts_pvclust-dendrogram_MNT2021.pdf", width=10, height=6)
plot(boot.pvclust, cex=0.7, hang=-1, cex.pv=.6, main="pvclust on correlation matrix (nboot=5000)")
plot(boot.onTs, cex=0.7, hang=-1, cex.pv=.6, main="pvclust on input cluster-defining t's (nboot=1000, default)")
pvrect(boot.onTs, alpha=0.95)
dev.off()
save(boot.pvclust, boot.onTs, file="rdas/revision/zforRef_pvclust_tests_MNT2021.rda")
### NAc 'excit' MSNs vs others?? =============================
# 'MSN.D1_A', 'MSN.D1_D', 'MSN.D2_A', 'MSN.D2_B' vs the rest
load("rdas/revision/regionSpecific_NAc-n8_cleaned-combined_MNT2021.rda", verbose=T)
sce.test <- sce.nac[ ,-grep("drop.", sce.nac$cellType)]
sce.test$cellType <- droplevels(sce.test$cellType)
sce.test$contrast <- 0
# Make the 'excit' ones 1
msn.excit.idx <- c(grep("MSN.D1_A", sce.test$cellType),
grep("MSN.D1_D",sce.test$cellType),
grep("MSN.D2_A",sce.test$cellType),
grep("MSN.D2_B",sce.test$cellType))
sce.test$contrast[msn.excit.idx] <- 1
# And the others -1
msn.rest.idx <- setdiff(grep("MSN", sce.test$cellType), msn.excit.idx)
sce.test$contrast[msn.rest.idx] <- -1
table(sce.test$cellType, sce.test$contrast) # good
# Do the PC components correlate with this contrast?
apply(reducedDim(sce.test, "PCA_opt"), 2, function(x){cor(x, sce.test$contrast)})
# [1] 0.5451128939 0.3584196778 -0.1526565503 0.4616036003 0.0412478196 -0.5014262238
# [7] 0.2344336760 0.4066390607 -0.5440848773 -0.0247296291 0.1251926241 -0.2562537482
# [13] 0.2353769426 -0.2995765135 0.1100234036 -0.0645767070 0.3322698995 0.0861300085
# [19] 0.1999916772 -0.1836870541 0.0628782010 -0.0735522902 -0.1502806994 0.1031656553
# [ etc. ]
which(abs(apply(reducedDim(sce.test, "PCA_opt"), 2, function(x){cor(x, sce.test$contrast)})) >= 0.4)
#[1] 1 4 6 8 9
sce.test$cellType.con <- as.character(sce.test$cellType)
sce.test$cellType.con[msn.excit.idx] <- "MSN.excit"
sce.test$cellType.con[msn.rest.idx] <- "MSN.inhib"
sce.test$cellType.con <- factor(sce.test$cellType.con)
coldat <- cbind(reducedDim(sce.test, "PCA_opt"), colData(sce.test))
colnames(coldat) <- gsub("V", "PC", colnames(coldat))
coldat <- as.data.frame(coldat)
coldat$cellType.MSNs <- as.character(coldat$cellType)
coldat$cellType.MSNs[grep("MSN", coldat$cellType.MSNs)] <- "MSN.broad"
coldat$cellType.MSNs <- factor(coldat$cellType.MSNs)
# Trick some cell class colors - use blue & red
cell_colors.nac.hold <- cell_colors.nac
cell_colors.nac <- cell_colors.nac[names(cell_colors.nac) %in% levels(sce.test$cellType.con)]
cell_colors.nac["MSN.excit"] <- cell_colors.nac.hold["MSN.D1_A"]
cell_colors.nac["MSN.inhib"] <- cell_colors.nac.hold["drop.doublet_B"]
cell_colors.nac["MSN.broad"] <- cell_colors.nac.hold["drop.doublet_C"]
## Plot top 10 ===
lay <- rbind(c(1,1),
c(2,2))
coldat$MSNsize <- ifelse(coldat$cellType.MSNs=="MSN.broad",0.5,0.15)
pdf("pdfs/revision/regionSpecific_top10PCs_cellClass_MSNsGrouped-or-split_MNT2021.pdf")
for(i in 1:10){
# All MSNs combined:
grouped <- ggplot(coldat, aes_string(x=colnames(coldat)[i], color="cellType.MSNs", fill="cellType.MSNs")) +
geom_density(alpha=0.15,size=0.8) +
scale_color_manual(values=cell_colors.nac) +
labs(colour="Cell type") +
scale_fill_manual(values=cell_colors.nac) + guides(fill=FALSE) +
xlab(paste0("PC", i)) + ylab("Density") +
ggtitle(paste0("Principal component ",i," by cell class; all MSNs grouped")) +
theme(axis.title.x = element_text(size = 13),
axis.text.x = element_text(hjust = 1, size = 11),
axis.title.y = element_text(angle = 90, size = 14),
axis.text.y = element_text(size = 11),
plot.title = element_text(size = 12),
legend.text = element_text(size = 9),
legend.key.size = unit(0.4, "cm"))
# Separated into 'Excit' & 'Inhib'
separated <- ggplot(coldat, aes_string(x=colnames(coldat)[i], color="cellType.con", fill="cellType.con")) +
geom_density(alpha=0.15,size=0.8) +
scale_color_manual(values=cell_colors.nac) +
labs(colour="Cell type") +
scale_fill_manual(values=cell_colors.nac) + guides(fill=FALSE, size=FALSE) +
xlab(paste0("PC", i)) + ylab("Density") +
ggtitle(paste0("Principal component ",i," by cell class; MSNs separated by signature")) +
theme(axis.title.x = element_text(size = 13),
axis.text.x = element_text(hjust = 1, size = 11),
axis.title.y = element_text(angle = 90, size = 14),
axis.text.y = element_text(size = 11),
plot.title = element_text(size = 12),
legend.text = element_text(size = 9),
legend.key.size = unit(0.4, "cm"))
# Plot both per page:
grid.arrange(grobs=list(grouped,
separated),
layout_matrix=lay)
}
dev.off()
## Violin plot iteration =======
pdf("pdfs/revision/regionSpecific_top10PCs_cellClass_MSNsGrouped-or-split_violins_MNT2021.pdf")
for(i in 1:10){
grouped <- ggplot(coldat, aes_string(x="cellType.MSNs",y=colnames(coldat)[i],
fill="cellType.MSNs",color="cellType.MSNs")) +
geom_violin(alpha=0.4,size=1.2) +
scale_color_manual(values=cell_colors.nac) +
labs(colour="Cell class") +
scale_fill_manual(values=cell_colors.nac) + guides(fill=FALSE) +
ylab(paste0("PC", i)) + xlab("") +
ggtitle(paste0("Principal component ",i," by cell class; all MSNs grouped")) +
theme(axis.title.x = element_text(size = 13),
axis.text.x = element_text(angle=90, hjust = 1, size = 11),
axis.title.y = element_text(angle = 90, size = 14),
axis.text.y = element_text(size = 11),
plot.title = element_text(size = 12),
legend.text = element_text(size = 9),
legend.key.size = unit(0.4, "cm"))
# Separated into 'Excit' & 'Inhib'
separated <- ggplot(coldat, aes_string(x="cellType.MSNs",y=colnames(coldat)[i],
fill="cellType.con",color="cellType.con")) +
geom_violin(alpha=0.4,size=1.2) +
scale_color_manual(values=cell_colors.nac) +
labs(colour="Cell class") +
scale_fill_manual(values=cell_colors.nac) + guides(fill=FALSE) +
ylab(paste0("PC", i)) + xlab("") +
ggtitle(paste0("Principal component ",i," by cell class; MSNs separated by signature")) +
theme(axis.title.x = element_text(size = 13),
axis.text.x = element_text(angle=90, hjust = 1, size = 11),
axis.title.y = element_text(angle = 90, size = 14),
axis.text.y = element_text(size = 11),
plot.title = element_text(size = 12),
legend.text = element_text(size = 9),
legend.key.size = unit(0.4, "cm"))
# Plot both per page:
grid.arrange(grobs=list(grouped,
separated),
layout_matrix=lay)
}
dev.off()
### 'Excitatory' MSNs [+ rest of excitatory 'branch'] vs the rest (or vs other MSNs at least) =========
## From above:
# Top 100 cluster genes space
cor_t_neu_cluster <- pheatmap(cor_t_defined.neu,
color=my.col.all,
breaks=theSeq.all,
fontsize_row=6.2, fontsize_col=6.2, cex=1,
clustering_distance_rows="euclidean",
clustering_distance_cols="euclidean",
clustering_method="complete")
rownames(cor_t_defined.neu[cor_t_neu_cluster$tree_row[["order"]],]) # This is the order we want
# [1] "MSN.D1_D_nac" "MSN.D2_B_nac" "Inhib_E_amy" "MSN.D1_A_nac" "MSN.D2_A_nac"
# [6] "Excit_A_sacc" "Excit_E_sacc" "Excit_F_hpc" "Excit_A_dlpfc" "Excit_D_dlpfc"
# [11] "Excit_F_sacc" "Excit_C_sacc" "Excit_E_dlpfc" "Excit_D_sacc" "Excit_C_amy"
# [16] "Excit_B_dlpfc" "Excit_C_dlpfc" "Excit_A_hpc" "Excit_D_hpc" "Excit_A_amy"
# [21] "Excit_B_hpc" "Excit_F_dlpfc" "Excit_B_sacc" "Inhib_C_amy" "Inhib_B_hpc"
# [26] "Excit_C_hpc" "Inhib_G_amy" "Inhib_A_amy" "Excit_E_hpc"
excit.classes <- rownames(cor_t_defined.neu[cor_t_neu_cluster$tree_row[["order"]],])[1:29]
# Clean this up (needs to look like 'region_Class')
excit.classes <- paste0(ss(excit.classes,"_",3),
"_",
ss(excit.classes,"_",1),
"_",
ss(excit.classes,"_",2))
# Wanna test specifically this 'excitatory branch' vs the other MSNs
sub.classes <- c(excit.classes, "nac_MSN.D1_B","nac_MSN.D1_C","nac_MSN.D1_E","nac_MSN.D1_F",
"nac_MSN.D2_C","nac_MSN.D2_D")
# Load and subset those for some contrasts
load("rdas/revision/all-n24-samples_across-regions-analyses_forFigOnly_MNT2021.rda", verbose=T)
sce.sub <- sce.allRegions[ ,sce.allRegions$cellType %in% sub.classes]
sce.sub$cellType <- droplevels(sce.sub$cellType)
table(sce.sub$cellType)
# Re-create 'logcounts'
sizeFactors(sce.sub) <- NULL
assay(sce.sub, "logcounts") <- NULL
sce.sub <- logNormCounts(sce.sub)
# Make contrast
sce.sub$excit.branch <- ifelse(sce.sub$cellType %in% excit.classes, 1, 0)
# t-test: test 'excit' vs. rest of MSNs
# since binarizing, can use the '1vAll' approach to keep both contrasts
mod <- with(colData(sce.sub), model.matrix(~ donor))
mod <- mod[ , -1, drop=F] # intercept otherwise automatically dropped by `findMarkers()`
markers.excit.branch <- findMarkers(sce.sub, groups=sce.sub$excit.branch,
assay.type="logcounts", design=mod, test="t",
std.lfc=TRUE,
direction="up", pval.type="all", full.stats=T)
# Only one contrast, so take that column
markers.excit.branch <- lapply(markers.excit.branch, function(x){ x[ ,4] })
names(markers.excit.branch) <- c("Excit_depleted", "Excit_enriched")
sapply(markers.excit.branch, function(x){table(x$log.FDR <= log(0.05))})
# Excit_depleted Excit_enriched
# FALSE 28108 27182
# TRUE 5430 6356
Readme <- "This test is comparing all 'excitatory branch' classes from the across-regions (including four MSN D1/D2 classes) analysis vs those remaining 'inhibitory' MSNs"
save(markers.excit.branch, excit.classes, Readme,
file="rdas/revision/markers-stats_x-regions_excitBranch-vs-restOfMSNs_MNT2021.rda")
head(rownames(markers.excit.branch[["Excit_enriched"]]), n=40)
# [1] "NRG3" "RGS7" "GRM5" "ARAP2" "RGS6" "ZMAT4"
# [7] "AK5" "CSMD1" "ARNT2" "UTRN" "KCNMA1" "LDLRAD4"
# [13] "GPC5" "EPB41L2" "LIMCH1" "PRKCB" "MAP3K5" "COCH"
# [19] "AC073050.1" "SLC35F3" "SLC8A1" "TJP1" "ADAMTS19" "FRMD5"
# [25] "FMNL2" "MAN1A1" "EFNA5" "HTR2C" "XKR4" "AC008574.1"
# [31] "LDB2" "KIRREL3" "ADK" "SGCZ" "ERC2" "PDZD2"
# [37] "HS6ST3" "ABLIM1" "PDE3B" "DOCK4"
head(rownames(markers.excit.branch[["Excit_depleted"]]), n=40)
# [1] "ADARB2" "ALK" "LUZP2" "CASZ1" "KIRREL1" "RXRG"
# [7] "KCNT2" "SORCS2" "CACNG5" "BACH2" "PMEPA1" "EPS8"
# [13] "TACR1" "SEMA5B" "SEMA6D" "DLX6-AS1" "TSHZ1" "GDNF-AS1"
# [19] "CRHR2" "GABRG3" "SLC35F1" "KIT" "FOXP2" "AC068722.1"
# [25] "TRHDE" "PLCB1" "ARHGAP18" "PLCXD3" "AL590867.1" "FHOD3"
# [31] "FAM155A" "MTSS1" "AC022126.1" "PDLIM5" "CPNE4" "TLL1"
# [37] "PCSK2" "AL589740.1" "SPON1" "LOXHD1"
## What about just a within-NAc MSNs contrast? =====================
load("rdas/revision/regionSpecific_NAc-n8_cleaned-combined_MNT2021.rda", verbose=T)
# sce.nac, chosen.hvgs.nac, pc.choice.nac, ref.sampleInfo, annotationTab.nac, cell_colors.nac
sce.test <- sce.nac[ ,grep("MSN.", sce.nac$cellType)]
sce.test$cellType <- droplevels(sce.test$cellType)
# For plotting:
sce.hold <- sce.test
# Split into 'MSN.excit' or 'MSN.inhib'
msn.excit.idx <- c(grep("MSN.D1_A", sce.test$cellType),
grep("MSN.D1_D",sce.test$cellType),
grep("MSN.D2_A",sce.test$cellType),
grep("MSN.D2_B",sce.test$cellType))
sce.test$cellType.sig <- "MSN.inhib"
sce.test$cellType.sig[msn.excit.idx] <- "MSN.excit"
table(sce.test$cellType, sce.test$cellType.sig)
# MSN.excit MSN.inhib
# MSN.D1_A 3927 0
# MSN.D1_B 0 239
# MSN.D1_C 0 283
# MSN.D1_D 718 0
# MSN.D1_E 0 638
# MSN.D1_F 0 86
# MSN.D2_A 4262 0
# MSN.D2_B 285 0
# MSN.D2_C 0 314
# MSN.D2_D 0 58
# Re-create 'logcounts'
sizeFactors(sce.test) <- NULL
assay(sce.test, "logcounts") <- NULL
sce.test <- logNormCounts(sce.test)
mod <- with(colData(sce.test), model.matrix(~ donor))
mod <- mod[ , -1, drop=F] # intercept otherwise automatically dropped by `findMarkers()`
markers.excit.msns <- findMarkers(sce.test, groups=sce.test$cellType.sig,
assay.type="logcounts", design=mod, test="t",
std.lfc=TRUE,
direction="up", pval.type="all", full.stats=T)
# Only one contrast, so take that column
markers.excit.msns <- lapply(markers.excit.msns, function(x){ x[ ,4] })
names(markers.excit.msns)
#[1] "MSN.excit" "MSN.inhib"
Readme <- "This test is comparing the excitatory-signature (4) MSN classes vs those (6) more 'inhibitory' MSNs"
save(markers.excit.msns, Readme,
file="rdas/revision/markers-stats_excitMSNs-vs-inhibMSNs_MNT2021.rda")
lapply(markers.excit.msns, function(x){table(x$log.FDR<log(0.05))})
# MSN.excit MSN.inhib
# FALSE 26937 28396
# TRUE 6601 5142
head(rownames(markers.excit.msns[["MSN.excit"]]), n=40)
# [1] "HTR2C" "SLC35F3" "UTRN" "RGS6" "ARAP2" "COCH"
# [7] "RGS7" "SGCZ" "PDZD2" "ZMAT4" "GPC5" "LDLRAD4"
# [13] "MAP3K5" "AC008574.1" "NRG3" "EPB41L2" "FOXO1" "MAN1A1"
# [19] "PLPPR1" "ADK" "HTR4" "ARNT2" "ADAMTS19" "AC073050.1"
# [25] "SGK3" "DCC" "GRM5" "AK5" "TENM2" "LRRC4C"
# [31] "PRKCB" "PSD3" "CSMD1" "KCTD8" "CDH12" "DIAPH2"
# [37] "ANKS1B" "MCTP1" "SLC8A1" "LINC01322"
head(rownames(markers.excit.msns[["MSN.inhib"]]), n=40)
# [1] "LUZP2" "ADARB2" "KIRREL1" "TRHDE" "CPNE4" "FAM155A" "ALK" "CASZ1"
# [9] "SEMA5B" "KCNT2" "CNTN5" "RXFP1" "FHOD3" "ILDR2" "EPS8" "ZNF804B"
# [17] "DPP10" "RXRG" "CACNG5" "CRHR2" "SLIT1" "GABRG3" "SORCS2" "BACH2"
# [25] "SPECC1" "FMN1" "PLCXD3" "SLC35F1" "PLCB1" "DIRAS2" "XYLT1" "CAMK2D"
# [33] "ADAM19" "OPCML" "TLL1" "PPM1E" "CACNA1C" "NRXN3" "GRIN2A" "KCNJ3"
# Re-order and plot top 6 per grouping
sce.hold$cellType <- factor(sce.hold$cellType,
levels=c("MSN.D1_A","MSN.D1_D","MSN.D2_A","MSN.D2_B",
"MSN.D1_B", "MSN.D1_C","MSN.D1_E",
"MSN.D1_F","MSN.D2_C", "MSN.D2_D"))
pdf("pdfs/revision/pubFigures/suppFig_NAc_excit-vs-inhib-MSN-markers_MNT2021.pdf", height=4, width=6)
plotExpressionCustom(sce.hold, anno_name="cellType", features=c(head(rownames(markers.excit.msns[["MSN.excit"]]), n=6)),
features_name="Upregulated in 'excitatory'-signature MSN", ncol=3, scales="free_y") +
scale_color_manual(values=cell_colors.nac) + xlab("") +
theme(axis.text.x = element_text(angle = 90, hjust = 1, size = 8),
axis.title.y = element_text(angle = 90, size = 12),