|
1 | 1 |
|
2 |
| -.. _scikit-learn's implementation of SMAPE: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html |
3 |
| -.. _scikit-learn's implementation of MAPE: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html |
| 2 | +.. _scikit-learn's implementation of SMAPE: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html |
| 3 | +.. _scikit-learn's implementation of MAPE: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html |
4 | 4 | .. _Mean Average Precision: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
|
5 | 5 | .. _Fall-out: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Fall-out
|
6 | 6 | .. _Normalized Discounted Cumulative Gain: https://en.wikipedia.org/wiki/Discounted_cumulative_gain
|
|
12 | 12 | .. _SNR: https://en.wikipedia.org/wiki/Signal-to-noise_ratio
|
13 | 13 | .. _ROC AUC: https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Further_interpretations
|
14 | 14 | .. _Cohen's kappa score: https://en.wikipedia.org/wiki/Cohen%27s_kappa
|
15 |
| -.. _scikit-learn's implementation of confusion matrix: https://scikit-learn.org/1.7/modules/model_evaluation.html#confusion-matrix |
16 |
| -.. _confusion matrix gets calculated per label: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html |
| 15 | +.. _scikit-learn's implementation of confusion matrix: https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix |
| 16 | +.. _confusion matrix gets calculated per label: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html |
17 | 17 | .. _F-score: https://en.wikipedia.org/wiki/F-score
|
18 | 18 | .. _Hamming distance: https://en.wikipedia.org/wiki/Hamming_distance
|
19 | 19 | .. _Hinge loss: https://en.wikipedia.org/wiki/Hinge_loss
|
|
26 | 26 | .. _Specificity: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
|
27 | 27 | .. _Type I and Type II errors: https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
|
28 | 28 | .. _confusion matrix: https://en.wikipedia.org/wiki/Confusion_matrix#Table_of_confusion
|
29 |
| -.. _sklearn averaging methods: https://scikit-learn.org/1.7/modules/model_evaluation.html#multiclass-and-multilabel-classification |
| 29 | +.. _sklearn averaging methods: https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-multilabel-classification |
30 | 30 | .. _Cosine Similarity: https://en.wikipedia.org/wiki/Cosine_similarity
|
31 | 31 | .. _spearmans rank correlation coefficient: https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
|
32 | 32 | .. _WordErrorRate: https://en.wikipedia.org/wiki/Word_error_rate
|
|
37 | 37 | .. _explained variance: https://en.wikipedia.org/wiki/Explained_variation
|
38 | 38 | .. _IR Average precision: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
|
39 | 39 | .. _IR Fall-out: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Fall-out
|
40 |
| -.. _MAPE implementation returns: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html |
41 |
| -.. _mean squared logarithmic error: https://scikit-learn.org/1.7/modules/model_evaluation.html#mean-squared-log-error |
| 40 | +.. _MAPE implementation returns: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html |
| 41 | +.. _mean squared logarithmic error: https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-log-error |
42 | 42 | .. _LPIPS: https://arxiv.org/abs/1801.03924
|
43 | 43 | .. _Mean-Average-Precision (mAP) and Mean-Average-Recall (mAR): https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
|
44 | 44 | .. _Tweedie Deviance Score: https://en.wikipedia.org/wiki/Tweedie_distribution#The_Tweedie_deviance
|
|
156 | 156 | .. _DIOU: https://arxiv.org/abs/1911.08287v1
|
157 | 157 | .. _GIOU: https://arxiv.org/abs/1902.09630
|
158 | 158 | .. _Mutual Information Score: https://en.wikipedia.org/wiki/Mutual_information
|
159 |
| -.. _Normalized Mutual Information Score: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.normalized_mutual_info_score.html |
160 |
| -.. _Adjusted Mutual Information Score: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html#sklearn.metrics.adjusted_mutual_info_score |
| 159 | +.. _Normalized Mutual Information Score: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html |
| 160 | +.. _Adjusted Mutual Information Score: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html#sklearn.metrics.adjusted_mutual_info_score |
161 | 161 | .. _pycocotools: https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
|
162 | 162 | .. _Rand Score: https://link.springer.com/article/10.1007/BF01908075
|
163 | 163 | .. _faster-coco-eval: https://github.com/MiXaiLL76/faster_coco_eval
|
164 | 164 | .. _fork of pycocotools: https://github.com/ppwwyyxx/cocoapi
|
165 | 165 | .. _Adjusted Rand Score: https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index
|
166 | 166 | .. _Dunn Index: https://en.wikipedia.org/wiki/Dunn_index
|
167 | 167 | .. _V-Measure Score: https://www.semanticscholar.org/paper/V-Measure%3A-A-Conditional-Entropy-Based-External-Rosenberg-Hirschberg/5421dbcb7e14766eb3d951910ae8d7892d735a01
|
168 |
| -.. _Homogeneity Score: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.homogeneity_score.html |
169 |
| -.. _Completeness Score: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.completeness_score.html |
| 168 | +.. _Homogeneity Score: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html |
| 169 | +.. _Completeness Score: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html |
170 | 170 | .. _Davies-Bouldin Score: https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index
|
171 |
| -.. _Fowlkes-Mallows Index: https://scikit-learn.org/1.7/modules/generated/sklearn.metrics.fowlkes_mallows_score.html#sklearn.metrics.fowlkes_mallows_score |
| 171 | +.. _Fowlkes-Mallows Index: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fowlkes_mallows_score.html#sklearn.metrics.fowlkes_mallows_score |
172 | 172 | .. _FLORES-101: https://arxiv.org/abs/2106.03193
|
173 | 173 | .. _FLORES-200: https://arxiv.org/abs/2207.04672
|
174 |
| -.. _averaging curve objects: https://scikit-learn.org/1.7/auto_examples/model_selection/plot_roc.html |
| 174 | +.. _averaging curve objects: https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html |
175 | 175 | .. _SCC: https://www.ingentaconnect.com/content/tandf/tres/1998/00000019/00000004/art00013
|
176 | 176 | .. _Normalized Root Mean Squared Error: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12109
|
177 | 177 | .. _Generalized Dice Score: https://arxiv.org/abs/1707.03237
|
178 | 178 | .. _Hausdorff Distance: https://en.wikipedia.org/wiki/Hausdorff_distance
|
179 |
| -.. _averaging curve objects: https://scikit-learn.org/1.7/auto_examples/model_selection/plot_roc.html |
| 179 | +.. _averaging curve objects: https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html |
180 | 180 | .. _Procrustes Disparity: https://en.wikipedia.org/wiki/Procrustes_analysis
|
181 | 181 | .. _Cluster Accuracy: https://arxiv.org/abs/2206.07579
|
182 | 182 | .. _Log AUC: https://pubmed.ncbi.nlm.nih.gov/20735049/
|
|
0 commit comments