dplyr
is a new package for data manipulation. It is built to be fast, highly expressive, and open-minded about how your data is stored. It is developed by Hadley Wickham and Romain Francois.
dplyr
's roots are in an earlier, still-very-useful package called plyr
, which implements the "split-apply-combine" strategy for data analysis. Where plyr
covers a diverse set of inputs and outputs (e.g., arrays, data.frames, lists), dplyr
has a laser-like focus on data.frames and related structures.
Have no idea what I'm talking about? Not sure if you care? If you use these base R functions: subset()
, apply()
, [sl]apply()
, tapply()
, aggregate()
, split()
, do.call()
, then you should keep reading.
## install if you do not already have
## from CRAN:
## install.packages('dplyr')
## from GitHub using devtools (which you also might need to install!):
## devtools::install_github("hadley/lazyeval")
## devtools::install_github("hadley/dplyr")
suppressPackageStartupMessages(library(dplyr))
An excerpt of the Gapminder data which we work with alot.
gd_url <- "http://tiny.cc/gapminder"
gdf <- read.delim(file = gd_url)
str(gdf)
## 'data.frame': 1704 obs. of 6 variables:
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ lifeExp : num 28.8 30.3 32 34 36.1 ...
## $ gdpPercap: num 779 821 853 836 740 ...
head(gdf)
## country year pop continent lifeExp gdpPercap
## 1 Afghanistan 1952 8425333 Asia 28.80 779.4
## 2 Afghanistan 1957 9240934 Asia 30.33 820.9
## 3 Afghanistan 1962 10267083 Asia 32.00 853.1
## 4 Afghanistan 1967 11537966 Asia 34.02 836.2
## 5 Afghanistan 1972 13079460 Asia 36.09 740.0
## 6 Afghanistan 1977 14880372 Asia 38.44 786.1
gtbl <- tbl_df(gdf)
gtbl
## Source: local data frame [1,704 x 6]
##
## country year pop continent lifeExp gdpPercap
## 1 Afghanistan 1952 8425333 Asia 28.80 779.4
## 2 Afghanistan 1957 9240934 Asia 30.33 820.9
## 3 Afghanistan 1962 10267083 Asia 32.00 853.1
## 4 Afghanistan 1967 11537966 Asia 34.02 836.2
## 5 Afghanistan 1972 13079460 Asia 36.09 740.0
## 6 Afghanistan 1977 14880372 Asia 38.44 786.1
## 7 Afghanistan 1982 12881816 Asia 39.85 978.0
## 8 Afghanistan 1987 13867957 Asia 40.82 852.4
## 9 Afghanistan 1992 16317921 Asia 41.67 649.3
## 10 Afghanistan 1997 22227415 Asia 41.76 635.3
## .. ... ... ... ... ... ...
glimpse(gtbl)
## Variables:
## $ country (fctr) Afghanistan, Afghanistan, Afghanistan, Afghanistan,...
## $ year (int) 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992...
## $ pop (dbl) 8425333, 9240934, 10267083, 11537966, 13079460, 1488...
## $ continent (fctr) Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asi...
## $ lifeExp (dbl) 28.80, 30.33, 32.00, 34.02, 36.09, 38.44, 39.85, 40....
## $ gdpPercap (dbl) 779.4, 820.9, 853.1, 836.2, 740.0, 786.1, 978.0, 852...
A tbl_df
is basically an improved data.frame, for which dplyr
provides nice methods for high-level inspection. Specifically, these methods do something sensible for datasets with many observations and/or variables. You do NOT need to turn your data.frames into tbl_df
s to use plyr
. I do so here for demonstration purposes only.
If you feel the urge to store a little snippet of your data:
(snippet <- subset(gdf, country == "Canada"))
## country year pop continent lifeExp gdpPercap
## 241 Canada 1952 14785584 Americas 68.75 11367
## 242 Canada 1957 17010154 Americas 69.96 12490
## 243 Canada 1962 18985849 Americas 71.30 13462
## 244 Canada 1967 20819767 Americas 72.13 16077
## 245 Canada 1972 22284500 Americas 72.88 18971
## 246 Canada 1977 23796400 Americas 74.21 22091
## 247 Canada 1982 25201900 Americas 75.76 22899
## 248 Canada 1987 26549700 Americas 76.86 26627
## 249 Canada 1992 28523502 Americas 77.95 26343
## 250 Canada 1997 30305843 Americas 78.61 28955
## 251 Canada 2002 31902268 Americas 79.77 33329
## 252 Canada 2007 33390141 Americas 80.65 36319
Stop and ask yourself ...
Do I want to create mini datasets for each level of some factor (or unique combination of several factors) ... in order to compute or graph something?
If YES, use proper data aggregation techniques or facetting in ggplot2
plots or conditioning in lattice
-- don’t subset the data. Or, more realistic, only subset the data as a temporary measure while you develop your elegant code for computing on or visualizing these data subsets.
If NO, then maybe you really do need to store a copy of a subset of the data. But seriously consider whether you can achieve your goals by simply using the subset =
argument of, e.g., the lm()
function, to limit computation to your excerpt of choice. Lots of functions offer a subset =
argument!
Copies and excerpts of your data clutter your workspace, invite mistakes, and sow general confusion. Avoid whenever possible.
Reality can also lie somewhere in between. You will find the workflows presented below can help you accomplish your goals with minimal creation of temporary, intermediate objects.
filter()
takes logical expressions and returns the rows for which all are TRUE
.
filter(gtbl, lifeExp < 29)
## Source: local data frame [2 x 6]
##
## country year pop continent lifeExp gdpPercap
## 1 Afghanistan 1952 8425333 Asia 28.8 779.4
## 2 Rwanda 1992 7290203 Africa 23.6 737.1
filter(gtbl, country == "Rwanda")
## Source: local data frame [12 x 6]
##
## country year pop continent lifeExp gdpPercap
## 1 Rwanda 1952 2534927 Africa 40.00 493.3
## 2 Rwanda 1957 2822082 Africa 41.50 540.3
## 3 Rwanda 1962 3051242 Africa 43.00 597.5
## 4 Rwanda 1967 3451079 Africa 44.10 511.0
## 5 Rwanda 1972 3992121 Africa 44.60 590.6
## 6 Rwanda 1977 4657072 Africa 45.00 670.1
## 7 Rwanda 1982 5507565 Africa 46.22 881.6
## 8 Rwanda 1987 6349365 Africa 44.02 848.0
## 9 Rwanda 1992 7290203 Africa 23.60 737.1
## 10 Rwanda 1997 7212583 Africa 36.09 589.9
## 11 Rwanda 2002 7852401 Africa 43.41 785.7
## 12 Rwanda 2007 8860588 Africa 46.24 863.1
filter(gtbl, country %in% c("Rwanda", "Afghanistan"))
## Source: local data frame [24 x 6]
##
## country year pop continent lifeExp gdpPercap
## 1 Afghanistan 1952 8425333 Asia 28.80 779.4
## 2 Afghanistan 1957 9240934 Asia 30.33 820.9
## 3 Afghanistan 1962 10267083 Asia 32.00 853.1
## 4 Afghanistan 1967 11537966 Asia 34.02 836.2
## 5 Afghanistan 1972 13079460 Asia 36.09 740.0
## 6 Afghanistan 1977 14880372 Asia 38.44 786.1
## 7 Afghanistan 1982 12881816 Asia 39.85 978.0
## 8 Afghanistan 1987 13867957 Asia 40.82 852.4
## 9 Afghanistan 1992 16317921 Asia 41.67 649.3
## 10 Afghanistan 1997 22227415 Asia 41.76 635.3
## 11 Afghanistan 2002 25268405 Asia 42.13 726.7
## 12 Afghanistan 2007 31889923 Asia 43.83 974.6
## 13 Rwanda 1952 2534927 Africa 40.00 493.3
## 14 Rwanda 1957 2822082 Africa 41.50 540.3
## 15 Rwanda 1962 3051242 Africa 43.00 597.5
## 16 Rwanda 1967 3451079 Africa 44.10 511.0
## 17 Rwanda 1972 3992121 Africa 44.60 590.6
## 18 Rwanda 1977 4657072 Africa 45.00 670.1
## 19 Rwanda 1982 5507565 Africa 46.22 881.6
## 20 Rwanda 1987 6349365 Africa 44.02 848.0
## 21 Rwanda 1992 7290203 Africa 23.60 737.1
## 22 Rwanda 1997 7212583 Africa 36.09 589.9
## 23 Rwanda 2002 7852401 Africa 43.41 785.7
## 24 Rwanda 2007 8860588 Africa 46.24 863.1
Compare with some base R code to accomplish the same things
gdf[gdf$lifeExp < 29, ] ## repeat `gdf`, [i, j] indexing is distracting
subset(gdf, country == "Rwanda") ## almost same as filter ... but wait ...
Before we go any further, we should exploit the new pipe operator that dplyr
imports from the magrittr
package. This is going to change your data analytical life. You no longer need to enact multi-operation commands by nesting them inside each other, like so many Russian nesting dolls. This new syntax leads to code that is much easier to write and to read.
Here's what it looks like: %>%
. The RStudio keyboard shortcut: Ctrl + Shift + M (Windows), Cmd + Shift + M (Mac), according to this tweet.
Let's demo then I'll explain:
gdf %>% head
## country year pop continent lifeExp gdpPercap
## 1 Afghanistan 1952 8425333 Asia 28.80 779.4
## 2 Afghanistan 1957 9240934 Asia 30.33 820.9
## 3 Afghanistan 1962 10267083 Asia 32.00 853.1
## 4 Afghanistan 1967 11537966 Asia 34.02 836.2
## 5 Afghanistan 1972 13079460 Asia 36.09 740.0
## 6 Afghanistan 1977 14880372 Asia 38.44 786.1
This is equivalent to head(gdf)
. This pipe operator takes the thing on the left-hand-side and pipes it into the function call on the right-hand-side -- literally, drops it in as the first argument.
Never fear, you can still specify other arguments to this function! To see the first 3 rows of Gapminder, we could say head(gdf, 3)
or this:
gdf %>% head(3)
## country year pop continent lifeExp gdpPercap
## 1 Afghanistan 1952 8425333 Asia 28.80 779.4
## 2 Afghanistan 1957 9240934 Asia 30.33 820.9
## 3 Afghanistan 1962 10267083 Asia 32.00 853.1
I've advised you to think "gets" whenever you see the assignment operator, <-
. Similary, you should think "then" whenever you see the pipe operator, %>%
.
You are probably not impressed yet, but the magic will soon happen.
Back to dplyr
...
Use select()
to subset the data on variables or columns. Here's a conventional call:
select(gtbl, year, lifeExp) ## tbl_df prevents TMI from printing
## Source: local data frame [1,704 x 2]
##
## year lifeExp
## 1 1952 28.80
## 2 1957 30.33
## 3 1962 32.00
## 4 1967 34.02
## 5 1972 36.09
## 6 1977 38.44
## 7 1982 39.85
## 8 1987 40.82
## 9 1992 41.67
## 10 1997 41.76
## .. ... ...
And here's similar operation, but written with the pipe operator and piped through head
:
gtbl %>%
select(year, lifeExp) %>%
head(4)
## Source: local data frame [4 x 2]
##
## year lifeExp
## 1 1952 28.80
## 2 1957 30.33
## 3 1962 32.00
## 4 1967 34.02
Think: "Take gtbl
, then select the variables year and lifeExp, then show the first 4 rows."
Here's the data for Cambodia, but only certain variables:
gtbl %>%
filter(country == "Cambodia") %>%
select(year, lifeExp)
## Source: local data frame [12 x 2]
##
## year lifeExp
## 1 1952 39.42
## 2 1957 41.37
## 3 1962 43.41
## 4 1967 45.41
## 5 1972 40.32
## 6 1977 31.22
## 7 1982 50.96
## 8 1987 53.91
## 9 1992 55.80
## 10 1997 56.53
## 11 2002 56.75
## 12 2007 59.72
and what a typical base R call would look like:
gdf[gdf$country == "Cambodia", c("year", "lifeExp")]
## year lifeExp
## 217 1952 39.42
## 218 1957 41.37
## 219 1962 43.41
## 220 1967 45.41
## 221 1972 40.32
## 222 1977 31.22
## 223 1982 50.96
## 224 1987 53.91
## 225 1992 55.80
## 226 1997 56.53
## 227 2002 56.75
## 228 2007 59.72
or, possibly?, a nicer look using base R's subset()
function:
subset(gdf, country == "Cambodia", select = c(year, lifeExp))
## year lifeExp
## 217 1952 39.42
## 218 1957 41.37
## 219 1962 43.41
## 220 1967 45.41
## 221 1972 40.32
## 222 1977 31.22
## 223 1982 50.96
## 224 1987 53.91
## 225 1992 55.80
## 226 1997 56.53
## 227 2002 56.75
## 228 2007 59.72
We've barely scratched the surface of dplyr
but I want to point out key principles you may start to appreciate. If you're new to R or "programing with data", feel free skip this section and move on.
dplyr
's verbs, such as filter()
and select()
, are what's called pure functions. To quote from Wickham's Advanced R Programming book:
The functions that are the easiest to understand and reason about are pure functions: functions that always map the same input to the same output and have no other impact on the workspace. In other words, pure functions have no side effects: they don’t affect the state of the world in any way apart from the value they return.
In fact, these verbs are a special case of pure functions: they take the same flavor of object as input and output. Namely, a data.frame or one of the other data receptacles dplyr
supports. And finally, the data is always the very first argument of the verb functions.
This set of deliberate design choices, together with the new pipe operator, produces a highly effective, low friction domain-specific language for data analysis.
Go to the next block, dplyr
functions for a single dataset, for more dplyr
!
dplyr
official stuff
- package home on CRAN
- note there are several vignettes, with the introduction being the most relevant right now
- the one on window functions will also be interesting to you now
- development home on GitHub
- tutorial HW delivered (note this links to a DropBox folder) at useR! 2014 conference
Blog post Hands-on dplyr tutorial for faster data manipulation in R by Data School, that includes a link to an R Markdown document and links to videos
Cheatsheet I made for dplyr
join functions (not relevant yet but soon)