
L10

January 24, 2018

1 Thinking about Optimization

CPSC 340: Machine Learning and Data Mining
The University of British Columbia
2017 Winter Term 2
Mike Gelbart

In [1]: import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

1.1 Optimization: introduction

definition

• An "optimization problem" refers to maximizing or minimizing a function.
• There are many, many types of optimization problems.

min
x

(x − a)2 + b

Interpretation: minimize the function f (x) = (x − a)2 + b with respect to x and return the
minimum value x. So in this case

f ⋆ = min
x

(x − a)2 + b

minimizer vs. minimum

• Sometimes you are also interested in the minimizer rather than the minimum (plural min-
ima). This is written as

x⋆ = arg min
x

(x − a)2 + b

1

maximization vs. minimization The same goes for maximizer and maximum and f ∗ =
max f (x) and x∗ = arg max f (x).

• The thing being maximized/minimized is called the objective function. Sometimes (pri-
marily when minimizing) it’s also called the loss function or cost function.

• Sometimes the result is not defined:

max
x

(x − a)2 + b

is ∞. And

arg max
x

(x − a)2 + b

is undefined.

dimensionalities

• The function you are optimizing should be a scalar-valued function, but the inputs need not
be scalar-valued. For example:

min
x

||x||22

is a reasonable thing to write, as is

min
x,y

xy2 + x2 + |x − y|

Continuous vs. discrete

• Some optimization problems are continuous and others are discrete. In CPSC 340 we will
only consider continuous optimization. But you probably saw discrete optimization a lot in
CPSC 221 (e.g., dynamic programming, shortest path in a graph).

How does this relate to CPSC 340 so far? Question: what optimization problems have we seen
in this course so far? Can we describe them?

• decision trees: find the best tree
• a mix of continuous (thresholds) and discrete (split features and leaf predictions)
• KNN: find the closest neighbour
• discrete
• this happens at the predict stage, which is unusual. We usually talk about optimization

during fit.
• Naive Bayes
• not explicitly, but I did say we were doing something called "maximum likelihood"
• we were maximizing something, but the answer was easy to just write down
• k-means: both steps are optimization
• cluster assignment step is discrete optimization

2

• updating the means doesn’t feel like optimization but we were actually minimizing a loss
(see a2!)

• the rest of the course: A LOT of optimization
• almost entirely continuous

Domains

• An optimization problem may come with a domain. In the examples above, we’ve assumed
x ∈ R. But sometimes we restrict ourselves. For example x ≥ 0, etc.

• These are sometimes also called "bounds". Like 0 ≤ x ≤ 1 means x is bounded below by 0
and bounded above by 1.

• Note: you’ll always see things like x ≥ 0 and never x > 0. Why? Consider this

min
x

x s.t. x > 0

What’s the solution?

• BTW "s.t." means "such that". Or maybe "subject to". Depending on your mood.

Constraints: introduction

• An optimization problem may come with one or more constraints (but, for the purposes
of this course, only one objective! If you’ve seen pareto fronts in economics class, that’s a
multi-objective situation).

• Example:

min
x

(x − a)2 + b s.t. sin(x) ≤ 0.5

• If you want, you can think of bounds/domains as a special case of constraints.

• The above is called an inequality constraint. Another type of constraint an an equality
constraint. For example:

min
x

(x − a)2 + b s.t. sin(x) = 0.5

These are very different beasts!!! Roughly speaking,

• equality constraints tend to reduce the dimensionality of the search space (restricting us to a
subspace)

• inequality constraints typically do not reduce the dimensionality but just cut the space "in
half"

Example: minx sin(x) s.t. sin(x) ≥ 0.5

3

In [2]: x = np.linspace(-5,5,1000)

y = np.sin(x)

plt.plot(x, y, label="objective")

plt.plot(x, 0*x+0.5, color="r", linestyle="--", label="constraint")

plt.fill_between(x, -1, 1, where=y>=0.5, label="feasible region", alpha=0.3)

plt.plot([-7*np.pi/6, np.pi/6, 5*np.pi/6], 0.5+np.zeros(3), '*', color="orange", markersize=12, label="solutions")

plt.legend()

plt.title("$\min_x \; \sin(x) \; s.t. \; \sin(x)\geq 0.5$")

plt.show()

We won’t deal with constraints much in this course. Mainly just when we talk about non-
negative matrix factorization (you guessed it, we’ll have non-negativity constraints of the form
xi ≥ 0).

Convex functions

• There is a mathematical definition. You can read about it here.

• For our purposes, the key is for convex functions is that a local minimum is also a global
minimum.

• (optional note) convex --> all local minima are global minima; but non-convex -/-> there
exists local minima that are not global minima

In [3]: x = np.linspace(-10,10,1000)

plt.plot(x,x**2)

4

https://en.wikipedia.org/wiki/Convex_function

plt.title("A convex function")

plt.show()

plt.figure()

plt.plot(x, -x*np.sin(x))

plt.title("A non-convex function")

plt.show()

plt.figure()

plt.plot(x, np.sqrt(np.abs(x)))

plt.title("A non-convex function with only one minimum.")

plt.show()

5

why do we care about convexity

6

• from a machine learning point of view, optimization is often the hard part and very often
the time-consuming part.

• much better methods exist for convex functions than non-convex ones
• also, when you’ve reached a local minimum you can stop.

See the posted notes for more on convexity, and for how to check if a function is convex.

How do we solve (continuous) optimization problems?

• From calculus we were told that to find the min/max of a function, take the derivative and
set to 0

• So what’s the big deal?
• The big deal is that "derivative=0" is an equation we cannot solve most equations!!!
• (I feel like high school gives the wrong impression about this...)

Here’s one:

sin(cos(x)) + 999 log x =
√

x

I just made that up and it might not make any sense, but the point is for it to look weird. Can
we solve this? No. We cannot solve equations in closed form, in general. This is true for one
variable (x ∈ R) and more than one variable (x ∈ Rd, d > 1). So we solve equations with iterative
methods. (Remember Newton’s method?)

There’s an entire field of study related to different such methods. Different methods work well
for different classes of functions. And even "works well" needs to be defined carefully, but roughly
it means "gets to a/the solution quickly".

So, yes, there is a mapping from optimization to solving equations, but we’re not done because

1. solving equations is hard
2. even if we find points where the derivative (gradient) is zero, if the loss is non-convex we

need to worry about local minima, saddle points (maxima are less of a problem)

In words
In math
notation Output type In Python

maximizing a
function over
its domain

maxx f (x) same type as x (a
number, a vector,
...)

scipy.optimize.minimize

selecting the
largest
element from
a set

max({a, b}) a number np.max

a function
given by the
max of two
other
functions

max(f (x), g(x)) a function np.maximum

7

Finally, an aside on min/max... we use them in 3 ways: Case (3) seems to confuse a lot of
students. Here are some examples...

In [4]: x = [9,-34,100,7]

np.max(x)

Out[4]: 100

In []: np.maximum(x) # error

In [11]: x = np.linspace(0,2,1000)

f = lambda z: z**2

g = lambda z: np.sqrt(z)

plt.plot(x,f(x), linewidth=3)

plt.plot(x,g(x), linewidth=3);

In [10]: plt.plot(x, np.maximum(f(x),g(x)), linewidth=3, color='red');

8

In []: np.max(f(x),g(x)) # error

We can use np.max to give us the same result if we operate on scalars (if this is confusing, just
ignore it):

In [16]: def h(z):

return np.max((f(z),g(z)))

plt.plot(x,[h(x_i) for x_i in x], linewidth=3, color="red")

Out[16]: [<matplotlib.lines.Line2D at 0x10e7ec6a0>]

9

In this course we’ll see functions like max(0, 1− x). Here, the 0 can be interpreted as a function
of x if you find that helpful. This function looks like:

In [18]: plt.plot(x, np.maximum(0, 1-x));

And finally case 1 in Python:

10

In [25]: from scipy.optimize import minimize

minx(x − 5)2 + 3

In [27]: result = minimize(lambda x: (x-5)**2+3, np.random.rand())

print("min =", result.fun)

print("arg min =", result.x)

min = 3.0

arg min = [5.00000001]

And we can do the same if x is a vector...

In [28]: result = minimize(lambda x: np.linalg.norm(x-5)+3, np.random.rand(5))

print("min =", result.fun)

print("arg min =", result.x)

min = 3.0000000146294403

arg min = [5. 4.99999999 4.99999999 4.99999999 4.99999999]

11

	Thinking about Optimization
	Optimization: introduction

