
CPSC	340:
Machine	Learning	and	Data	Mining

Ordinary	Least	Squares

Original	version	of	these	slides	by	Mark	Schmidt,	with	modifications	by	Mike	Gelbart. 1



Admin
• Assignment	1	due	tonight
• Reminder:	midterm	in	class	on	Wednesday	Feb	14	(in	2.5	weeks)
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Supervised	Learning	Round	2:	Regression
• We’re	going	to	revisit	supervised	learning:

• Previously,	we	considered	classification:	
– We	assumed	yi was	discrete:	yi =	‘spam’	or	yi =	‘not	spam’.

• Now	we’re	going	to	consider	regression:
– We	allow	yi to	be	numerical:	yi =	10.34cm.
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Regression	examples
• We	want	to	discover	relationship	between	numerical	variables:
– Does	number	of	lung	cancer	deaths	change	with	number	of	cigarettes?
– Does	how	UBC	GPA	relate	to	high	school	GPA?
– Can	I	predict	your	credit	score	based	on	your	age,	occupation,	and	
income?



Handling	Numerical	Labels
• One	way	to	handle	numerical	yi:	discretize.
– E.g.,	for	‘age’	could	we	use	{‘age	≤	20’,	‘20	<	age	≤ 30’,	‘age	>	30’}.
– Now	we	can	apply	methods	for	classification	to	do	regression.
– But	coarse	discretization	loses	resolution.
– And	fine	discretization	requires	lots	of	data.

• There	exist	regression	versions	of	classification	methods:
– Regression	trees,	probabilistic	models,	non-parametric	models.

• Today:	one	of	oldest,	but	still	most	popular/important	methods:
– Linear	regression	based	on	squared	error.
– Very	interpretable	and	the	building	block	for	more-complex	methods.
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Linear	Regression	in	1	Dimension
• Assume	we	only	have	1	feature	(d	=	1):
– E.g.,	xi is	number	of	cigarettes	and	yi is	number	of	lung	cancer	deaths.

• Linear	regression	makes	predictions	𝑦"i using	a	linear	function	of	xi:

• The	parameter	‘w’	is	the	weight or	regression	coefficient of	xi.
• As	xi changes,	slope	‘w’	affects	the	rate	that	𝑦"i increases/decreases:
– Positive	‘w’:	𝑦"i increase	as	xi increases.
– Negative	‘w’:	𝑦"i decreases	as	xi increases.
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Linear	Regression	in	1	Dimension
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Aside:	terminology	woes
• Different	fields	use	different	terminology	and	symbols.
– Data	points	=	objects	=	examples =	rows	=	observations.
– Inputs	 =	predictors	=	features =	explanatory	variables=	regressors =	
independent	variables	=	covariates	=	columns.

– Outputs =	outcomes	=	targets	=	response	variables	=	dependent	variables	
(also	called	a	“label”	if	it’s	categorical).

– Regression	coefficients	=	weights	=	parameters	=	betas.

• With	linear	regression,	the	symbols	are	inconsistent	too:
– In	ML	(e.g.	CPSC	340),	the	features	are	X	and	the	weights	are	w.
– In	statistics	(e.g.	STAT	306),	the	features	are	X	and	the	weights	are	β.
– In	optimization	(e.g.	CPSC	406),	the	features	are	A	and	the	weights	are	x.
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Least	Squares	Objective
• Our	linear	model	is	given	by:

• So	we	make	predictions for	a	new	example	by	using:

• But	we	can’t	use	the	same	error	as	before:
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Least	Squares	Objective
• We	need	a	way	to	evaluate	numerical	error.
• Classic	way	is	setting	slope	‘w’	to	minimize	sum	of squared	errors:

• There	are	some	justifications	for	this	choice.
– A	probabilistic	interpretation	is	coming	later	in	the	course.

• But	usually,	it	is	done	because	it	is	easy	to	minimize.
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Least	Squares	Objective
• Classic	way	to	set	slope	‘w’	is	minimizing	sum	of squared	errors:
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Least	Squares	Objective
• Classic	way	to	set	slope	‘w’	is	minimizing	sum	of squared	errors:
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Digression:	Multiplying	by	a	Positive	Constant
• Note	that	this	problem:

• Has	the	same	set	of	minimizers as	this	problem:

• And	these	also	have	the	same	minimizers:

• I	can	multiply	‘f’	by	any	positive	constant	and	not	change	solution.
– Gradient	will	still	be	zero	at	the	same	locations.
– We’ll	use	this	trick	a	lot!
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Minimizing	a	Differential	Function
• Math	101	approach	to	minimizing	a	differentiable	function	‘f’:

1. Take	the	derivative	of	‘f’.
2. Find	points	‘w’	where	the	derivative	f’(w)	is	equal	to	0.
3. Choose	the	smallest	one	(but	check	that	f’’(w)	is	positive).	
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Finding	Least	Squares	Solution
• Finding	‘w’	that	minimizes	sum	of squared	errors:
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Motivation:	Combining	Explanatory	Variables
• Smoking	is	not	the	only	contributor	to	lung	cancer.
– For	example,	environmental	factors	like	exposure	to	asbestos.

• How	can	we	model	the	combined effect of	smoking	and	asbestos?
• A	simple	way	is	with	a	2-dimensional	linear	function:

• We	have	a	weight	w1 for	feature	‘1’	and	w2 for	feature	‘2’.
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Least	Squares	in	d-Dimensions
• If	we	have	‘d’	features,	the	d-dimensional	linear	model is:

• We	can	re-write	this	in	summation	notation:

• We	can	also	re-write	this	in	vector	notation:

• In	words,	our	model	is	that	the	output	is	a	weighted	sum	of	the	inputs.
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Notation	Alert	(again)
• In	this	course,	all	vectors	are	assumed	to	be	column-vectors:

• So	wTxi is	a	scalar:

• So	rows	of	‘X’	are	actually	transpose	of	column-vector	xi:
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Least	Squares	in	d-Dimensions
• The	linear	least	squares	model	in	d-dimensions	minimizes:

• How	do	we	find	the best	vector	‘w’?
– Set	the	derivative	of	each	variable	(“partial	derivative”)	to	0?
– We’ll	go	through	this	next	class.
– But	first… 19



Modeling	a	y-intercept?
– Linear	model	is	𝑦"i =	wxi instead	of	𝑦"i =	wxi +	β with	y-intercept	β.
– Without	an	intercept,	if	xi =	0	then	we	must	predict	𝑦"i =	0.
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Modeling	a	y-intercept?
– Linear	model	is	𝑦"i =	wxi instead	of	𝑦"i =	wxi +	β with	y-intercept	β.
– Without	an	intercept,	if	xi =	0	then	we	must	predict	𝑦"i =	0.
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Adding	a	Bias	Variable
• Simple	trick	to	add	a	y-intercept	(“bias”)	variable:

– Make	a	new	matrix	“Z”	with	an	extra	feature	that	is	always	“1”.

• Now	use	“Z”	as	features	in	linear	regression.
– Gives	a	model	with	weights	‘v’	that	have	a	non-zero	y-intercept:

• So	we	can	have	a	non-zero	y-intercept	by	changing	features.
– This	means	we	can	ignore	the	y-intercept	in	our	derivations,	which	is	cleaner.
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Summary
• Regression considers	the	case	of	a	numerical	yi.
• Least	squares	is	a	classic	method	for	fitting	linear	models.
– With	1	feature,	it	has	a	simple	closed-form	solution.

• Gradient is	vector	containing	partial	derivatives	of	all	variables.
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Least	Squares	in	2-Dimensions
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Least	Squares	in	2-Dimensions
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Partial	Derivatives

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml 26



Partial	Derivatives

http://msemac.redwoods.edu/~darnold/math50c/matlab/pderiv/index.xhtml 27


